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Predicting sample lifetimes in creep fracture of heterogeneous materials
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Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an
important and highly challenging problem because of the inherently heterogeneous nature of most materials
that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep
deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual
samples by exploiting the “universal” features in the sample-inherent creep curves, particularly the passage to
an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation
localization controls the shape of the creep curve and thus the degree of lifetime predictability.

DOI: 10.1103/PhysRevE.94.023002

I. INTRODUCTION

The problem of how to predict material strength and sample
failure is where engineering, materials science, and physics
meet [1–4]. The predictability of lifetimes of structures and
materials involves phenomena on various scales, beginning
with atomic interactions. In brittle fracture, sample failure is
governed by statistical strength laws: by dividing a material
sample into independent subvolumes [5], its strength is
determined by the statistics of extremes [6,7] or, in essence,
by the spirit of the renormalization group [5]. One may know
the probability distribution of the failure stresses a priori but
no more.

In contrast to brittle materials, most real materials are often
ductile to some degree and exhibit a complicated rheological
creep response under constant applied loads [8–11]. To
simplify the typical time-dependent creep response to constant
applied loads that lead to failure, we can divide it into primary,
secondary, and tertiary creep [12,13]: initial strain-hardening
(described by the Andrade law) [14,15], steady-state or
logarithmic creep [16], and a final phase in which the strain
rate εt increases, implying strain softening [17], finally leading
to sample failure. For the paper samples we study here, this
progression is illustrated in Fig. 1, which shows a typical
creep strain versus time behavior and experimental details.
The figure also illustrates the use of digital image correlation
(DIC) in such experiments to obtain strain fields and strain rate
fields at different stages of creep.

As a direct, consequential result of such a sequence of
events, for any sample, two characteristic time scales are
evident: the sample lifetime tc and the time tm, at which
the creep rate versus time curve εt (t) exhibits a minimum
[lower inset of Fig. 2(a)]. Beyond tm, the sample strain rate
accelerates towards final failure. For heterogeneous materials,
the creep curves, and thus both of these time scales (tm and
tc), may exhibit large sample-to-sample fluctuations, even for
experiments performed under identical conditions (applied
load, temperature, humidity, etc.).

Here we consider the possibility of exploiting correlations
between tm and tc (and other properties of the creep curves
of individual samples) to predict their lifetimes [8,18–20].
To this end, we first discuss the typical sample-dependent
properties of the creep strain rate curves εt (t). Then, we
study various lifetime prediction schemes, taking advantage

of the curves’ regularities from sample to sample, including
the relative location in time tm/tc of the minimum creep
rate. We show that it is possible to predict lifetimes of
individual samples with a heterogeneous microstructure since
there is a strong correlation between tc and tm. By performing
numerical simulations of viscoelastic fiber bundle models,
we show that the regularities in the time-dependent creep
deformation process underlying such predictability are related
to geometry-controlled deformation localization, an effect that
precedes the final failure of the sample. Finally, we summarize
the results.

II. EXPERIMENTS

We performed constant load creep experiments on ordinary
copy paper, a quasi-two-dimensional material, using an Instron
Electropuls E1000 tensile testing machine, see Fig. 1(a). Since
the mechanical properties of paper depend on temperature and
humidity [21,22], the tests were performed under constant
conditions (23◦C, rH 50%) in a controlled testing chamber.
The default sample size is 50 × 100 × 0.1 mm (width × height
× thickness); the applied load was chosen so that the majority
of the samples (for which largest statistics have been collected
to measure the sample-to-sample fluctuations under identical
loads) have typical lifetimes of 20 min maximum (see also the
Supplemental Material (SM), Fig. S7 [23]). The constant load
is reached by a linear load ramp lasting 5 s (see SM, Fig. S1, for
the impact of this on the measurement of short lifetimes tc; SM
and Fig. S4, also contain discussion of more complicated stop-
and-go loading protocols). Simultaneous acoustic emission
(AE) measurements showed that only very few AE events
could be detected, at least prior to close to tc.

The material characteristics of the paper sheets are the
grammage (areal weight) ρg = 80 g/m2, breaking threshold
Pb = 24 MPa (2.4 kN/m; typical tensile index for cross-
direction copy paper is 20–40, breaking threshold Pb =
1.6–3.2 kN/m), and Young’s modulus E = 2.2 GPa. The
internal displacement sensor of the testing machine produces
the global engineering strain ε = (l − l0)/l0 (with l and l0
the actual and initial length of the sample, respectively). In
addition, we can calculate displacements in an evenly spaced
grid, with a typical grid spacing of 1 mm, by simultaneously
using the DIC method [Fig. 2(b)] [24,25]. The local strain
is defined as εloc = (uyi,j+1 − uyi,j )/dist(ri,j ,ri,j+1), where
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FIG. 1. Experimental setup to study the spatiotemporal creep
dynamics of paper samples. (a) The tensile testing machine where the
paper sample, attached between two clamps, is subject to a constant
applied force. (b) A typical creep curve and example strain maps
computed by digital image correlation analysis for three times t1,
t2, and t3, showing how the strain fluctuations develop towards the
localization of deformation leading finally to sample failure.

uy is the primary displacement parallel to loading (j and y

coordinate) and r is the position vector.

A. Scaling of creep properties

By performing a large set of creep experiments under
different conditions, we can establish a linear relation tm ∝
atc [17], with a a constant (for more detail, including the
variety of experiments performed, see the SM). We find a =
0.83 ± 0.01 [26] and a wide range of tcs spanning three orders
of magnitude [Fig. 2(a); see also SM, Figs. S1, S2, and S5].
Generally and depending on the material, the constant a attains
values that reflect the typical shape of the creep curve and, in
particular, it is often much smaller than 0.83 (see Refs. [27,28]
for examples). This behavior is reminiscent to what is known in
materials science as the Monkman-Grant (MG) relation [29],
where tc is often correlated with the minimum strain rate,
εt,min [30]. The MG relation is usually used in the context of
variations in the experimental conditions (load, temperature,
etc.) causing the subsequent variations in tc [18,31,32]. Here
we consider the relation correlating tc with tm [rather than
with εt,min ≡ εt (tm)] in the context of the sample-to-sample
variability that arises from the heterogeneous nature of the
material.

A general ansatz for the sample and time-dependent creep
rate [8] would be εt (t) = εt,minf (t/tc), if the sample-dependent
shape of the creep curve can be summarized by the lifetime and
minimum creep rate only. Figure 2(a), upper inset, shows that
the parts of the different creep curves corresponding to the two
last regimes—logarithmic (where εt ∼ t−1) and tertiary—can
indeed be collapsed onto a single master curve using such
an ansatz. Doing so also reveals a divergence of εt as tc is
approached, εt ∝ (tc − t)−b, with b ≈ 1.0 [9,33] (see also SM,
Fig. S6). This behavior suggests the possibility to predict the
sample lifetime tc, exploiting the “universal” properties of the
creep curve, implied by the data collapse.

B. Predicting tc

Clearly, we should use the measured value of tm for a sample
to predict its tc, via the relation tc = tm/a [19,20]. Finding

FIG. 2. (a) The time of the minimum creep rate tm as a function
the sample lifetime tc for a large number of experiments, including
different loading conditions and sample geometries, and also repeat-
ing the experiment several times using the same conditions. The data
are well described by tm = 0.83 tc. Lower inset: Time dependence
of strain rate εt for three example experiments, all exhibiting a
minimum strain rate at time t = tm (shown with a red arrow in one
case) before acceleration towards final failure at time t = tc. Upper
inset: A data collapse of six creep curves after rescaling the time axis
by the lifetime tc and the vertical axis by the minimum strain rate
εt (tm) [9]. (b) Comparisons of lifetime predictions (tc) to the actual
values of lifetime, tc, with the black lines corresponding to a 10%
difference between the predicted and actual value of tc. Inset: Six
different cases of actual prediction experiments. The full symbols
correspond to minimum strain rate time tm estimates and the open
ones to the corresponding tc predictions. The εt data are shown with
the curves. The six cases are also marked in the main figure with the
correspondingly colored symbols.

tm from the data—a posteriori or during an experiment—is
somewhat complicated for two reasons: experimental noise
and intrinsic fluctuations [24,26] in the instantaneous sample
creep rate [see Fig. 3(a) for an example εt (t) curve]. In other
words, the sample creep rate varies in time so even though
the envelope curve for εt (t) is easy to establish, on smaller
time scales, both measurement accuracy and actual creep rate
fluctuations become important.

The slow decay of εt when approaching tm implies that
estimating tm during the experiment by approximating—as
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FIG. 3. (a) Definition of the transient time ttrans corresponding
to the crossover from primary to secondary creep regime is here
given by the point (blue dot) at which a fit (black line) corresponding
to the typical Andrade or primary creep law, εt = At−2/3, deviates
more than 10% from the data (shown in green). (b) tc as a function
of the corresponding ttrans, revealing a roughly exponential trend,
〈tc(ttrans)〉 ∼ exp(ttrans/t0). (c) Shows that the relative spatial strain rate
fluctuations, computed by DIC 128 s from the start of the experiment
using a time window of 10 s (see the inset for an example of a map of
the fluctuating local strain rates), exhibit an inverse correlation with
the lifetime, tc.

a trial approach—εt in the neighbourhood of t = tm with
a second-order polynomial is difficult. Thus, we chose the
simple method to fit a straight line to the εt (t) data within time
intervals of length �t (chosen here as 10 s, see the SM for
more details). Then, we define tm as the time at which the slope
of the fitted line changes sign. In other words, we compute
the moving average of the strain rate over �t and search for
the zero of the time derivative. Figure 2(b) shows how this
approach works. Typically, we can reach an accuracy of 10%
of the tc prediction. The inset of Fig. 2(b) shows how this works

in a few particular cases: the tm estimated and the tc computed
from the estimate. Sample-to-sample fluctuations in the tm
determination from the experimental εt data, as well as from
the natural variations around the average MG-like relation,
produce errors in the prediction scheme; the SM contains an
analysis of the magnitude of the expected error.

One may ask if tc can be predicted by considering signa-
tures [18] observable already at earlier stages of creep (i.e.,
for t < tm, see also SM for more discussion). The secondary
creep sample-dependent details of the creep curve are not
useful for lifetime prediction as no noticeable correlation
exists between the slope A of the creep rate in the logarithmic
phase [20], where εt ∝ At−1, and both tm and tc. In Fig. 3(a)
and 3(b), we consider the correlation between the time of the
crossover from primary (Andrade) to secondary (logarithmic)
creep, ttrans, with tc (recall that the whole creep curve does
not permit a collapse). Figure 3(b) shows that this crossover
implies a correlation and thus a degree of predictability, with a
roughly exponential trend 〈tc(ttrans)〉 ∼ exp(ttrans/t0). However,
this effect is much less useful for prediction than the relation
between tm and tc, given the large fluctuations of tc for
a given ttrans. One can also consider the sample-dependent
spatial strain [24] (as those shown in Fig. 1) or strain rate
fluctuations [26] [Fig. 3(c)] obtained by DIC [24,34] during
the early stages of the creep process. The data in Fig. 3(c)
indicate that samples with large relative strain rate fluctuations
�εt,loc/〈εt,loc〉 (standard deviation of local rates normalized by
the mean rate), reflecting the presence of heterogeneities in the
sample material structure, tend to break earlier than samples
with small fluctuations [24]. Again, this approach has only
limited predictive power, as implied by large fluctuations of tc
for a given �εt,loc/〈εt,loc〉.

III. LOCALIZATION OF DEFORMATION
AND LIFETIME DISTRIBUTIONS

Geometry-controlled deformation localization may cause
the transition at t = tm from strain hardening to softening. We
next show how to understand this using a viscoelastic serial
fiber bundle model (SFBM) [5,35,36]. The SFBM exhibits
an early strain-hardening material response, thus mimicking
the slowing creep rate (primary or secondary types of creep).
It thus catches as a model the salient features of creep
experiments but is not intended to have more than descriptive
power, e.g., as regards the influence of material microstruture
on creep behavior. As it is a discrete model of fibers or elements
it assumes the implicit presence of a material-dependent length
scale, which is relevant for the damage or strain localization
the model exhibits [5,24]. Analogous to the loading geometry
of the creep experiments, the fiber bundle layers (of which
there are Ns, with Np fibers each) carry load in series, each
having a random failure threshold, allowing for an eventual
localization of deformation to a single layer. We simulate
viscoelastic SFBMs with a fixed total number of fibers, N =
Np × Ns = 256 000, for various Ns, each with viscoelastic
constitutive behavior [5,35]. That behavior is modeled by
a Kelvin-Voigt element [35], or the constitutive equation
σ0 = βεt + Eε of the fibers, with β a damping constant, E the
Young modulus, and σ0 the constant external load (here we
set β = E = 1 for simplicity). In addition to such viscoelastic
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FIG. 4. (a) The MG [tm(tc)] relation is depicted for three different
geometries of the viscoelastic SFBM, i.e., different values of the
number Ns of bundles connected in series. For each Ns (with Ns =
1, 40, and 1000 shown in red, blue, and green, respectively), we
consider also several load values (shown with different symbols)
close to but above the critical load required to break the sample. (b)
The evolution of tm/tc ≡ a(Ns) with Ns. The solid line corresponds to
a fit of the form of a(Ns) = 1 − Ae−(Ns/B)C , with A = 0.69 ± 0.01,
B = 17.6 ± 0.1, and C = 0.26 ± 0.01. (c) Examples of the scaled
creep curves for the three Ns values shown in (a). Notice how the
minimun strain rate time tm moves towards the lifetime tc as Ns is
increased.

dynamics, we include a failure criterion for the fibers, implying
that a fiber fails if its strain exceeds a local and random
failure threshold εc with a probability density p(εc). In the
simulations, we choose p(εc) to be a uniform distribution
between 0 and 1; other bounded distributions yield similar
results. If a fiber fails, then the load is equally distributed
among the remaining intact fibers within the bundle (global
load sharing) [5]. Thus, the time evolution of the individual
fiber bundles (of which there are Ns in series) is described
by σ0/[1 − P (ε)] = βεt + Eε, where P is the cumulative
distribution of the failure thresholds [35]. The time-dependent
deformation behavior of each of the Ns FBMs in series is
computed by numerical integration of this equation. The global
rheology of the serial model is obtained as a sum over the
Ns independent subsystems, and the rheology, analogous to
creep experiments, exhibits an initial deformation stage with
a decreasing creep rate, followed by accelerating deformation
towards its final failure. The small Ns limit of this model is
known to lead to a roughly parabolic creep curve and to fix
tm/tc to 0.5. Obviously, this limit could be varied by tuning
the rheology of the model.

For applied loads close to but above the critical value
required to eventually break the sample, we observe a linear
relation tm = a(Ns)tc, with a somewhat smaller range of tcs
than in our experiments [Fig. 4(a)]. Such a relation can be used
to predict the sample lifetimes if we measure tm from the data
before failure. As shown in Fig. 4(b), the slope a(Ns) varies

FIG. 5. Lifetime histograms shown for the experiments (a) and
the model (b) using a “Weibull paper” [plotting the inverse cumulative
lifetime distribution 1 − Pcum(tc) using a double logarithmic scale].

with Ns, from close to 0.5 (Ns = 1) towards 1 with Ns → ∞.
Figure 4(c) shows examples of the creep curves for different
values of Ns. This behavior as a function of Ns is a consequence
of the extremal statistical nature of the problem: The weakest
layer will eventually control the sample approach to failure,
leading to geometry-dependent deformation behavior [7].

Thus, in the spirit of extremal statistics arguments where
such functional forms are often encountered, we compare
the a(Ns) data with a stretched exponential, a(Ns) = 1 −
Ae−(Ns/B)C , and obtain a reasonable fit with A = 0.69 ± 0.01,
B = 17.6 ± 0.1, and C = 0.26 ± 0.01. This kind of weak
dependence of a on Ns means that experimentally testing
this scaling prediction by varying the sample dimensions is
difficult. The model implies that sample-to-sample variations
(the disorder of each sample) dictate the crossover from strain-
stiffening to localization and strain-softening (tertiary creep;
see also SM, Fig. S8). This crossover yields a linear relation
between tm and tc, with a geometry-dependent prefactor
controlling tm, and thus determines how early during the creep
process the sample lifetime can be predicted.

One important aspect is the lifetime distribution of the
samples, which can be obtained from both the experimental
data and the model. Figure 5(a) presents the histogram
of tcs for a set of 170 nominally identical samples from
experiments performed under identical conditions. It compares
experimental data with the serial fiber bundle model using
three different geometries (as above, Ns = 1, 40, and 1000,
with N = 256 000). The empirical histogram seems to be
wider and exhibits a tail towards long lifetimes (SM, Fig. S3),
which appears to be power-law-like with an exponent close
to −1. We next test whether the experiments or the model
could be captured with a “weakest link” or extremal statistics
analysis. In this scope, Fig. 5(a) shows the experimental data
plot in a way that would reveal if the histogram follows a
two-parameter Weibull distribution. A linear behavior cannot
be established (a Weibull exponent fit shows a very small
exponent value of about 0.8, which should not be meaningful),
and the statistics obtained from the model simulations are
even less Weibull-like. Thus, the lifetime distributions do not
follow weakest link scenarios of brittle time-dependent failure,
in which the system failure takes place when the weakest
subsystem reaches its lifetime [37–39]. This is not a surprise
in the SFBM because it exhibits a more complex rheology
than models of brittle fracture do. The causality implied by
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the model is such that the tm that signals the transition to the
deformation localization determines tc, not vice versa, and tm
does not follow from weakest-link-like arguments.

The final question we address relates to the predictability
of the location of the nucleation of the final crack leading to
the eventual failure of the paper sample: Do the local yielding
dynamics [2] correlate prior to tm with the final localization
or where the crack will be? This, however, is found not
to be the case: The “activity spots” [40] detected by DIC
during the early stages of creep are not significantly correlated
with the final deformation localization and sample failure.
In the experiments (material) at hand, typical fluctuations
have a fairly large spatial scale compared to the sample
size [24,26]. Also, the final crack is detectable using infrared
thermography [41] only roughly 1 s before the sample failure
(SM, Figs. S9 and S10).

IV. SUMMARY

We have studied in depth the sample-to-sample variations
in creep fracture of paper samples—an example of a heteroge-
neous material—and explored the possibility of forecasting the
sample lifetime and the location where the sample fails using
modeling and experiment. We found that the linear tm vs tc
relation can be used to predict tc of individual samples of paper.
This predictability is particularly important in the sample-
to-sample variability under equal testing conditions; it also
extends to other loads and more complicated loading protocols.
For the current test case, our approach is able to predict roughly
the last 20% of the sample lifetime, which—as conjectured
by the model—is a material and loading-geometry-dependent
quantity. For other materials/cases, the “83%” is expected to
assume other values, typically smaller ones.

This is an early “warning signal” rather than a final
divergence of the creep rate (see Fig. 2) as the sample-
dependent tc is approached. Other research considers two
related, bordering cases: the subcritical dynamics of single
cracks [42,43] and using acoustic emission (AE) as a diag-
nostic for failure prediction, analogous to the tertiary creep
strain rate divergence results shown in Fig. 2 [18,33,44–47].
The current work differs in two general and major ways: We
examine samples without (or prior to the formation of) a
dominating crack, before the moment the dynamics of such
a crack dictates the remaining lifetime, and when there is no
degree of AE that could be used as a signal for failure.

We have discovered earlier signatures of the creep deforma-
tion process that correlate with the eventual tc, shown in Fig. 3.

In addition, predicting the actual location of the final crack is
an intrinsically hard task. To elaborate, there are two issues:
deciphering from local strain rate fields εt,loc where the creep
deformation will be localized during the transition to tertiary
creep and when that will take place (tm). Early correlations
imply memory effects: The sample lifetime is correlated with
the “sample quality” to a degree. The fields εt,loc are used to
see this by choosing a suitable time interval inside which the
magnitudes of these local deformation rates correlate with the
time-dependent strength, or the sample lifetime. The question
now is this: Can we find better measures for lifetime prediction
than to correlate tm with tc? Our results imply that, prior
to tm, εt itself does not have any useful, hidden properties.
DIC provides the εt,loc information. The fields are reasonably
detailed in time (with time intervals of small fractions of the
duration of any particular experiment) and spatially limited to
the accuracy reachable by DIC (subpixel strains). There are
three obvious candidates for quantities that could be studied
for predictability: fluctuations (see above), early signs of the
final localization of deformation in tertiary creep and in crack
formation, and the identification of larger than average local
yielding (“slip events”). After some trials, none of these seems
viable.

To reproduce the relation between tm and tc, we present a
simple model of localization, reproducing the tc(tm) relation,
and predicting that it, and, consequently, the possibility to
predict sample lifetimes, depends on the sample geometry.
The deterministic features (e.g., tm) do not result from “critical
phenomena,” but the final temporal increase of the strain rate
and its functional dependence (on tc − t) could arise from
collective deformation processes. The physics of the model
also agrees with our empirical lack of success in finding
schemes for tc prediction that would apply earlier than tm.
Thus, we have found that predictability of creep fracture
incorporates several issues: intrinsic material rheological
behavior, the fluctuations that follow from the randomness or
disorder in the material, and the sample geometry that is most
relevant for the deformation localization and for the degree of
lifetime predictability.
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