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Machine learning framework for analysis of transport through complex
networks in porous, granular media: A focus on permeability
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We present a data-driven framework to study the relationship between fluid flow at the macroscale and the
internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with
varying particle size distribution and confining pressure are generated using the discrete element method. For
each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct
a pore network and a particle contact network to quantify the connectivity of the pores and particles across the
mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of
microstructural properties and multiscale complex network features that optimally characterize permeability.
We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the
weighted pore network. With the pore network links weighted by the local conductance, the average closeness
centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean
geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively
quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively
large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore
structure.
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I. INTRODUCTION

Transport through porous, granular systems is of central
importance in a wide range of technological and engineering
applications, including ceramics [1], pervious concrete [2],
hydrocarbon recovery [3], hydraulic fracking [4], geoseques-
tration of CO2 [5], exploitation of geothermal energy as
a renewable energy source [6], and geologic disposal of
radioactive waste [7]. In the energy resource sector alone,
the economic cost of many processes, including ground
exploration (i.e., site investigations), construction, and main-
tenance of associated infrastructure, to risk monitoring and
mitigation, runs into billions of dollars [8,9]. Ultimately, the
design and management of these processes use estimations of
the hydraulic, thermal, and mechanical properties of porous,
granular media (e.g., ground, concrete, etc.) at the macroscopic
scale. In turn, robust predictions of such properties rely on
fundamental knowledge of the material’s internal grain and
pore structure and of its influence on the efficiencies of
transmission pathways for interstitial fluid flow, heat transfer,
electrical flow, stress transfer, etc. [10–13].

This effort focuses on quantifying the relationship between
the internal pore structure, across the micro- and mesoscales,
and permeability at the macroscopic scale. Before proceeding,
it is instructive to place this study in the context of the state
of the art, especially given the immense research attention
that has been paid to the characterization and modeling of
transport properties in granular media. Despite significant past
efforts, many aspects that are fundamental to engineering
scale transport in these materials remain poorly understood.
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A long standing impediment to progress has been the limited
access to the internal structure of a material under load. Recent
advances in nondestructive, high resolution three-dimensional
(3D) and 4D imaging, however, have rapidly overcome this
limitation and are now able to deliver unprecedented detail at
the scale of individual grains and pores [14–17]. Advances in
postprocessing techniques, such as data-constrained modeling,
can now also infer submicron porosity and compositional
information [18]. Such developments, coupled with data
generated from high performance computing and discrete
element models [19–21], have prompted a pressing need for
new data-driven concepts and tools that can embrace the
information embodied in these rich microstructural data sets,
and uncover patterns that facilitate an understanding of how the
underlying physics at the microscopic and mesoscopic scales
(the cause) relate to transport phenomena at the macrocopic
scale (the effect). In particular, of crucial importance to
transport phenomena are patterns in the connectivity of the
solid grain phase and of the interstitial pore space across
the mesoscale, since these provide vital clues on the relative
efficiencies of transmission pathways for different granular
materials [2,13,22–25].

Different strategies have been employed to capitalize
on the rich data sets from nondestructive, high resolution
imaging techniques. One strategy has been to extract hidden
patterns in the data. For example, spatiotemporal patterns
uncovered in studies of force transmission have shed light
on the underlying mechanisms of various phenomena at the
macroscale, including shear jamming [26], aging [27], and
strain localization [28]. Emergent linear and cyclic mesoscale
structures, which form the structural building blocks of
self-organization, have been characterized (e.g., force chains,
cycles) and introduced into continuum models that can capture
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the defining dynamics inside shear bands (e.g., [29–31]). In
the engineering literature on pore fluid transport, a large body
of knowledge has been gained from use of standard statis-
tical methods to analyze microstructural data; this strategy
has led to important insights on the relationships between
macroscopic transport properties and structural characteristics
of porous media such as porosity and path tortuosity [32], grain
size [33], particle shape [34], local pore space connectivity,
e.g., through coordination number [2,13,25,35], and pore
geometry [36]. What is still missing, however, are robust
multiscale descriptors of pore connectivity and associated
transmission pathways, and their relationship to macroscopic
transport [13,37–42]. Although techniques employing local
percolation probabilities [22], the Euler characteristic [43],
and n-point correlation functions [12,44–46] have helped to
fill this knowledge gap, studies continue to highlight a critical
need for explicit, higher-order, three-dimensional topology and
connectivity descriptors to be incorporated in predictions of
permeability and thermal conductivity [13,37–42].

A perennial challenge for characterization and modeling
of phenomena involving granular media is that the internal
connectivity of, and interactions between, the pores and the
particles exhibit hallmarks of complexity: multiscale and
nonlinear interactions that lead to patterns of self-organization
at the mesoscale [47,48]. In this study, we take the first steps
in a line of investigation which fuses modern advances in
statistics (i.e., machine learning) and complex systems (i.e.,
complex networks) to develop a data-driven framework that
is particularly suited for multiscale and nonlinear phenomena
germane to complex systems. Although this study focuses
solely on unraveling the details of permeability, our approach
is general and applicable to studies of other transport (thermal,
electrical) phenomena in porous, granular media. With respect
to studies of permeability, our approach distinguishes itself
from past efforts in two fronts. First, our approach exploits
emerging developments in big data analytics, high resolution
imaging, and high performance computing—by combining
discrete element methods, finite element methods, complex
networks, machine learning, and computerized tomography
in a single data-driven platform. Second, we fuse machine
learning with complex networks to establish an objective
method for identifying metrics that parsimoniously charac-
terize the internal connectivity and concomitant efficiency of
transmission pathways across multiple spatial scales.

The rest of this paper is organized as follows. Because
our proposed data-driven framework combines techniques and
concepts from separate research disciplines, we first provide
an overview of this framework along with a brief review
of relevant extant literature at the start of Sec. II, before
discussing the implementation of the different components of
this framework. In Sec. III, we focus on the machine learning
analysis and present a relationship between permeability
and a complex network descriptor of pore connectivity. We
summarize our key findings and identify future research
directions in Sec. IV.

II. METHODS

Our framework weaves together multiple techniques into
one platform. Thus, to aid understanding, we begin with
an overview of the main components, placing these in the

context of relevant past work and the most pressing research
needs, before providing details of the implementation each
component in subsequent subsections.

A. Proposed framework

The framework is divided into three components (Fig. 1).
The first component delivers the complete data to be analyzed,
i.e., the feature set, comprising the “input variables” and the
“output variable” (steps 1–4, Fig. 1). The input variables
consist of two groups of data. The first group consists of
the raw high resolution data at the level of individual pores
and particles; the second group consists of multiscale complex
network metrics that include connectivity descriptors. Those
in the second group utilize information from the raw data in
the first group. Although the generation of high resolution
imaging data sets in the first group is still prohibitively
expensive for many real materials, there is a clear trend
towards these data sets becoming increasingly accessible and
routine [14,15]. High resolution imaging may guide the DEM
simulations, as, for example, shown by Delaney et al. [49], or
potentially replace these altogether. In anticipation of such data
capability and assets, we thus envisage that this framework
may ultimately be applied to microstructural data of real
porous, granular media samples using microstructural data
gathered directly from high resolution imaging techniques
(e.g., x-ray microcomputed tomography). In the present study,
however, in order to perform the requisite machine learning
analysis, O(100) samples are needed. Repeated use of (high
resolution) imaging equipment and postprocessing software
for large quantities of samples is presently costly.

Consequently, for this study, we resort to artificially
generated samples of porous, granular media to gather data
spanning micro-, meso- and macroscales; see steps 1–3, Fig. 1.
The microstructure of samples can be generated using stochas-
tic reconstruction methods [45,50,51], (non)ballistic proce-
dures [52–54], process-based reconstruction methods [36], and
discrete-element methods (DEMs) [55]. Each technique has its
own strengths and limitations. For example, a proper stochastic
reconstruction requires high computational effort (for the
simulated annealing) [42] and does not capture the dynamic
processes that precede the creation of porous, granular me-
dia [39]. For this work, we choose the DEM for its simplicity,
reproducibility, broad acceptance, and extensibility (step 1,
Fig. 1). In its simplest form, spherical particles may represent
old alluvial deposits (porous, granular systems of typically
high sphericity and low angularity). Assemblies of different
grain shapes and degrees of (interparticle) cementation may
be modeled within DEMs with clusters of spheres that more
realistically represent nonspherical grains [19]. In addition,
DEMs may be used to capture samples with evolving fracture
patterns (e.g., [24,56]). As a reference case for our DEM
samples, we include a single monodisperse sphere packing
for which the centroids and radii have been determined using
x-ray computed tomography [49,57–59].

To capture pore connectivity, i.e., higher-order, three-
dimensional topology, and geometry [13,39], we opt for a
different class of multiscale connectivity descriptors from
complex networks [60]. These will generate mesoscale data
(step 3, Fig. 1)—in addition to the aforementioned physical
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FIG. 1. Real sample parameters, partially obtained from high resolution imaging, are used in the DEM simulation to generate realistic
artificial samples (step 1). Fluid flow is simulated with a finite element method to compute the permeability (step 2). A pore network and contact
network are constructed to compute multiscale complex network variables (step 3). Micro-meso-macro data comprise the physical properties
at the pore and grain scale, the network variables and permeability (step 4). The resulting feature set is used for feature selection and model
construction (step 5) to generate predictions (step 6) and insights (step 7).

properties of the constituent grains and pores that form
our initial input data. Complex network theory opens an
avenue for multiscale characterization of fluid flow phenomena
in porous, granular media. Using a shortest paths analysis
of the pore network, for example, a region of efficient
transport in the shear bands of deforming, dense granular
media was identified [56]. More recently, Russell et al. [24]
uncovered optimized flow pathways that are driven by complex
jamming-unjamming dynamics unique to shear bands, giving
explicit structural insights into causes of enhanced flow
and permeability in fractured media. They also provide a
template for the abstract representation of the pore space in a
three-dimensional granular assembly using concepts from dual
graphs. In this work, however, we construct a pore network
that more closely represents the physical pore domains in a
manner similar to those adopted in past network models of
porous, granular media [23,61–63]. Finally, at the macroscopic
level, we compute the permeability of each of our samples by
performing a finite element simulation of the fluid flow through
the pore space, using a model that has been validated against
physical experiments [11,64–66] (step 2, Fig. 1).

Having collated all the data on material properties spanning
micro-, meso-, and macroscales (step 4, Fig. 1), we next
employ machine learning techniques to establish objectively
a parsimonious relationship between permeability (i.e., the
output variable) and the internal structure of our granular
samples (i.e., the input variables); see step 5, Fig. 1. Distinct
from traditional curve fitting of data (e.g., Hazen formula,
Archie’s law) which seeks to establish unknown parameters
based on a known model function derived from theory and/or
experiments, here we use machine learning to establish the
model function itself from the data. Machine learning provides
a rigorous statistical framework for analysis of complex data
sets, such as noisy, high dimensional data, through feature
selection (i.e., finding a subset of relevant and nonredundant
input variables that can best predict a given output variable),

model construction, and error and uncertainty quantifica-
tion [67,68]. The use of machine learning techniques has
precedence in studies of materials and transport phenomena.
Ma et al. [69] presented a machine learning framework to
classify and predict fluid flow properties of stochastically
reconstructed rocks, studying the relationships with geometry,
topology, and statistical correlation functions. Xu et al. [70]
predict the damping parameters of polymer nanocomposites,
using correlation functions, particle shape descriptors, and
pore size descriptors. Feature selection for materials science
has been explored by Ghiringhelli et al. [71]. Khandelwal [72]
used machine learning to predict the thermal conductivity of
rocks, based on the uniaxial compressive strength, density,
porosity, and P -wave velocity. Machine learning has also been
used extensively with (macroscale) soil survey data for pe-
dotransfer functions [73,74] and in geotechnical applications
such as slope stability and liquefaction [75].

In our proposed framework, we use machine learning to
establish a model of and insights on internal structural features
that define, permeability (steps 6 and 7, Fig. 1). Although
we predict the permeability at the end, our main objective
is to characterize permeability through feature selection. We
proceed in two phases. In the first phase, we choose feature
selection methods that are appropriate for the dataset at hand, to
identify a nonredundant subset of the most relevant properties,
including descriptors of connectivity, to characterize perme-
ability. Using more than one feature selection algorithm allows
us to investigate feature “importance” from various angles:
that is, we can rule out, and thus ensure our conclusions are
robust to, algorithmic artifacts and assumptions. In addition,
we assess our results against well established microstructural
properties known to influence permeability (e.g., void ratio). In
the second phase, we use the selected features in a predictive
model and employ techniques, such as cross validation, to
quantify the uncertainty in our predictions. We discuss the
methods from Fig. 1 in detail in the upcoming subsections,
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in the order illustrated in Fig. 1. The terms “variable” and
“feature” are used interchangeably.

B. Discrete element modeling

We develop a model for Ottawa sand and sandstone,
comprising rounded quartz particles [10], for which DEM
can provide a reasonable approximation of real geomechanical
behavior [20,66]. The simulation is implemented in Yade [76].
A total of 536 packings are generated using the simulation
parameters summarized in Table I. The friction angle is
drawn from a uniform distribution in an expanded range
similar to the range used by Garcia et al. [77] (between
approximately 5.7◦ and 24.2◦), encapsulating the commonly
used quartz friction angles reported by Procter and Barton [78].
For simplicity, a uniform grain size distribution with mean
radius 0.5 mm is used, varying the extrema of the distribution
between the monodispersed packing U (0.5,0.5) mm and the
polydispersed packing U (0.2,0.8) mm. The Young’s modulus
is set to an artificially low value to generate a wide void ratio
distribution. Samples under low confining pressure (small
particle overlap) approximate Ottawa sand, while samples
under higher (e.g., >106) confining pressure (larger particle
overlap) act as a simple proxy for sandstone.

In each DEM simulation, a rectangular box with base
dimensions 15 by 15 mm is created. Periodic boundary condi-
tions are imposed on the four vertical plane boundaries. After
drawing the friction angle, grain size range, and confining
pressure from their respective distributions shown in Table I,
the DEM simulation proceeds in two stages. In the first stage,
shown in Fig. 2(a), 400 grains (10%) are placed randomly,
without overlap, slightly above the box floor. After placement,
the grains fall and settle under gravity. When the unbalanced
force (ratio of the average contact force and average per-body
force) reaches a small threshold value, a new batch of 400
particles is introduced. Care is taken to introduce each batch at
equal height from the top of the settled packing. This process
is repeated ten times, until all 4000 particles are settled.
Repeatedly settling batches of grains effectively simulates
the air pluviation method that is used in the preparation of
laboratory soil samples [79]. Grains are not frozen during the
simulation. In the second stage, shown in Fig. 2(b), the packing
from the first stage is subjected to an isotropic, confining
pressure, effectively reducing the porosity. Yade approximates
a quasistatic equilibrium condition of the packing by reducing
the loading velocity while approaching the goal confining
pressure. The simulation is terminated when the unbalanced
force reaches a small threshold value.

TABLE I. Simulation parameters used in DEM.

Number of grains 4000
Grain shape spherical
Density (kg/m3) 2650
Young’s modulus (Pa) 108

Poisson’s ratio 0.2
Friction angle (deg) θ ∈ U (5.7◦,31◦)
Grain radius (mm) U (0.5 − α,0.5 + α), α ∈ U (0.0,0.3)
Confining pressure (Pa) 10n, n ∈ U (5,7)

FIG. 2. (a) Gravity deposition. Batches of grains are sequentially
added to a rectangular box and settle under gravity. (b) Triaxial
compression. A confining pressure is applied along the x, y, and
z axes.

In addition to the 536 packings generated with our DEM
simulation, we include a reference case of a real sphere
packing. Using x-ray computed tomography, Aste and co-
workers [57,58] developed a technique to extract sphere
centroids and raddii from real packings of glass beads. We
use one of the stationary samples (FB18) described in [49,59].
In a settlement process somewhat similar to our gravity
deposition, approximately 1.5×105 monodisperse particles in
a fluidized column are subjected to a flow pulse from the
bottom, after which the particles settle in a mechanically stable
configuration. We scale the packing to have the same mean
particle radius as our DEM samples (0.5 mm) and extract a
small cubic representative element volume (REV) (with length
13% of the original x length) from the center of the packing.

C. Finite element modeling

The permeability computation consists of three stages,
summarized in Table II. First, to control computational costs, a
representative element volume (REV) is subsampled from the
center of each DEM sample. Because the sample limits vary,
depending on the amount of confining pressure applied in the
triaxial compression, the REV length, height, and width are
taken proportionally to the original sample limits. The fraction
(45%) is determined from a mesh-convergence study, in which
we increased the REV size until the permeability and porosity
converged. Second, we mesh the 536 subsamples using finite
elements in Simpleware ScanIP [80]. Last, the fluid flow
simulation is performed in COMSOL Multiphysics [81].
The simulation solves the governing Navier-Stokes equations,
assuming the flow is incompressible and isotropic, assuming
the fluid (water) is Newtonian, and assuming a no-slip
boundary condition on the solid surfaces. The permeability

022904-4



MACHINE LEARNING FRAMEWORK FOR ANALYSIS OF . . . PHYSICAL REVIEW E 94, 022904 (2016)

TABLE II. Preprocessing, meshing, and simulation settings.

Preprocessing REV % 45%

ScanIP mesh algorithm +FE Grid

mesh type smoothed
elements linear
minimum quality 0.1

COMSOL side BC symmetric
top pressure 10 Pa
top BC inlet
bottom pressure 9 Pa
bottom BC outlet
fluid dynamic viscosity 0.001002 Pa s
fluid unit weight 9.789 × 103 N m−3

linear solver direct (LU)

is obtained by modifying Darcy’s law to [65]

k = η

γ

v̄

ī
=

ηn

AV

∫
AV

vz dAV

(�p/L)
, (1)

where k (m2) is the numerically computed permeability and
n is the porosity of the sample. The fluid properties are the
dynamic viscosity η (Pa s−1) and the unit weight γ (N/m3). A
pressure difference �p (Pa) is imposed over the sample length
L (m) along the z axis and the vertical velocity vz (m/s−1)
is averaged over an x-y plane with void area AV (m2). The
variables v̄ and ī are the averaged Darcy velocity and hydraulic
gradient, respectively. The value of k is computed for both the
inlet and outlet plane, and subsequently averaged, similar to
work by Narsilio et al. [65]. Because our permeability data
span three orders of magnitude and we wish to predict each
magnitude equally well, we consider the natural logarithm of
the permeability in the upcoming analysis.

An example of the resulting mesh is shown in Fig. 3, along
with several fluid flow streamlines and a vertical slice of the
velocity field. Red colors indicate higher velocities.

D. Complex networks

For each sample, a weighted contact network and weighted
pore network are constructed. In order to relate complex
network features to the permeability, it is crucial that the
network weighting is physically representative. Ideally, the

TABLE III. Network construction. Edges in the pore network are
weighted by local conductance, while edges in the contact network
are weighted by contact area.

Pore network Contact network

Node representation pores particles
Node features pore void ratio grain size

surface area surface area
Edge representation throats particle contacts
Edge features conductance contact area

throat void ratio

weighting is, by itself, strongly related to the permeability. Our
choices for the representation and weighting are summarized in
Table III. The conductance weighting is outlined in Appendix.
In the next two sections, the network construction and derived
variables are discussed in detail.

1. Network construction

The contact network is constructed by assigning a node to
each grain and an edge if the corresponding grains touch. The
edges in the contact network are weighted with the contact
area. To construct the pore network, nodes are assigned to
pores, connected by an edge if the corresponding pores share
a throat.

What constitutes a “pore” and “throat” remains ambigu-
ous [82]. We opt to use the modified Delaunay tessellation
approach by Al-Raoush and Willson [63], with several
adaptations [83]. Similar to their approach, we assume pore
bodies are encapsulated by (merged collections of) tetrahedra.
Each tetrahedron consists of four triangular faces. Pore throats
are found on shared faces of tetrahedra. Our approach to
constructing the pore network proceeds as follows:

(1) A Delaunay tessellation is constructed first, using the
centroids of the grains.

(2) Rather than using a nonlinear optimization procedure
with inscribed spheres, a conceptually simpler approach is
introduced. A pair of tetrahedra in the Delaunay tessellation is
merged if the areal porosity of the shared face is higher than
a certain threshold. The merging procedure is illustrated in
Fig. 4 for a simple setup of six spheres and three tetrahedra.

(3) Nodes are assigned to (merged collections of) tetrahe-
dra, representing the pore bodies. Next, each pair of tetrahedra

FIG. 3. The finite element mesh, an illustration of the fluid flow paths from top (high pressure) to bottom (low pressure), and a cross section
of the velocity field.
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FIG. 4. Depiction of the construction of the pore network. Two
faces are isolated and the void area and solid area (in two dimensions)
on the faces is determined. Then, the areal porosity of each face
is compared to the threshold ε. In this example, only the adjacent
tetrahedra for the red (right) face are merged.

(collections) is connected with an edge if they share a face,
representing pore throats.

(4) The boundaries of the pore volume are the surface of
the grains and the throats. Rather than defining pore volume
by an inscribed sphere, we record the pore void ratio as the
fraction of void and solid volume in the (merged collection
of) tetrahedra. The pore surface area is computed as the area
of grains exposed to void space inside the (merged collection
of) tetrahedra. In addition, we compute the throat void ratio
on the faces of the (merged collections of) tetrahedra (see n

in Fig. 4). Last, to construct a network weighting related to
the permeability, we compute the local conductance in a tube
model of adjacent pores and throats. For more details on the
conductance computation, we refer to the Appendix.

The only hyperparameter in the pore network construction,
the porosity threshold ε, is set to 0.4. Based on our experience,
this choice results in an reasonable distinction between pores
and pore throats. Our implementation (using the computational
geometry library CGAL [84]) avoids voxelation in most cases,
except for the pore volume calculations. An example of the
contact network and pore network is shown in Fig. 5. By
avoiding inscribed spheres or medial axes and adopting the
aforementioned merging criterion, we gain a useful, physically
representative distinction between pores and throats based on
simple surface areas (throats) and volumes (pores).

2. Network features

Having established the network construction procedure, we
discuss the complex network features next. Denote (V,E) as
the set of vertices and edges in the network, respectively. The
length of a weighted shortest path between nodes i,j ∈ V ,
denoted d(i,j ), is the path from i to j that minimizes the
summed weights of the traversed edges. Because higher con-
ductance generally corresponds to more flow, but shortest paths

FIG. 5. Example of the contact network and pore network. Nodes
in the pore network are visualized as spheres with (scaled) equivalent
volume to the corresponding pore void volume. The pore network
construction correctly identified both the particle connections on the
bottom left and the large pore body in the center of the excerpt on the
bottom right.

are computed through minimization of the edge weighting,
edges in the pore network are assigned the reciprocal of the
conductance as a weighting. Similarly, in preparation for future
applications to heat flow, edges in the contact network are
assigned the reciprocal of the contact area as a weighting. A
total of eight network properties are computed, both for the
contact network and the pore network.

For a full review of complex network theory, developments
and applications, refer to the work by Newman [60]. We
compute both the degree, i.e., the number of edges adjacent to
a node, and the weighted degree, which is the sum of the edge
weights adjacent to a node. In the granular media research
community, the degree is often referred to as the coordination
number. In the pore network, degree represents the number
of throats for a particular pore, while in the contact network,
degree is the number of particle contacts for a particular parti-
cle. We also compute the network density, not to be confused
with the packing density, as the ratio 2|E|/[|V |(|V | − 1)] of
potential edges over actual edges in the network. The network
diameter is calculated as maxi,j∈V d(i,j )/(|V | − 1), finding
the length of the “longest” shortest path between all pairs of
nodes in the network. The betweenness centrality quantifies
the fraction of shortest paths passing through a particular node
i ∈ V [85],

CB
node(i) = β

∑
j,k∈V

σ (j,k|i)
σ (j,k)

,

where σ (j,k) is the total number of shortest paths between
node j and k, σ (j,k|i) is the number of shortest paths between
j and k that pass through i and β = 1/[(|V | − 1)(|V | − 2)/2]
is a normalization term equal to the number of pairs of nodes
excluding i. The edge betweenness centrality CB

edge(e) for edge
e ∈ E is computed by computing σ (j,k|e) as the number
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of shortest paths passing through edge e and setting β =
2/[|V |(|V | − 1)]. For the pore network, high values should
indicate that the corresponding pore (node betweenness) or
pore throat (edge betweenness) is “important” for the fluid
flow. Finally, we compute the closeness centrality for each
node i ∈ V as the reciprocal of the summed shortest path
distances to all other nodes j ∈ V [86],

CC(i) = β

⎡
⎣|V |−1∑

j=1

d(i,j )

⎤
⎦

−1

,

where β = |V | − 1 is the normalization term. High closeness
centrality indicates a “central” pore and, again, hints towards
a strong contribution to the fluid flow. The degree, weighted
degree, betweenness centrality and closeness centrality can be
averaged over all nodes or edges to obtain a global network
feature. For example, high average closeness centrality may
indicate relatively “short” shortest paths throughout the net-
work, hinting towards a more permeable sample with many
large throats.

E. Feature set

Referring back to step 4 in the overview Fig. 1, the next step
is to extract relevant physical features from the DEM packing
and connectivity features from the network representations.
The physical features include the global void ratio, local

(pore, throat) void ratio, pore surface area, specific surface
area, and the coefficients of uniformity and curvature. We also
compute the throat to pore volume ratio, where the throat
volume is equal to the volume of a sphere with radius equal
to the radius of the throat area represented as a circle, and
record the confining pressure, friction angle, and the grain
radius distribution range α (see Table I) for each sample. In
terms of network descriptors, we compute all features listed in
the previous section.

The full feature set is presented in Table IV as our educated,
physically inspired “initial guess” of features that could be
relevant in characterizing and predicting the permeability.
The physical features (nos. 1–13) include pore, throat, and
grain geometry, as well as several packing features and
DEM input features. None of these features, however, address
the connectivity in the packing, which is a highly relevant
aspect for the permeability [13]. To this end, we include the
complex network features (nos. 14–27) in our feature set,
which are inherently multiscale and are able to succinctly
describe connectivity of pores (pore network) and grains
(contact network). Note that, in Sec. III, quantities are made
dimensionless in the plots, using (depending on the units)
the mean particle diameter (d50) and the dynamic viscosity
η (d50 = 0.001 m, refer to Table I, and η = 0.001 002 Pa s,
refer to Table II). We experimented with various distribution
indicators, such as the mean, variance, skewness, kurtosis,
and percentiles. For simplicity, we include only the mean

TABLE IV. Feature notation. Note that we use [X]a to denote a distribution of parameter a of an entity X to emphasize the difference
between scalars (no brackets) and distributions.

No. Notation Entity Attribute Units

1 e packing void ratio
2 p packing confining pressure (Pa)
3 ssa packing specific surface area (m−1)
4 [T ]V /[P ]V throat and pore throat to pore volume ratio
5 [T ]K throat conductance (m3 Pa−1 s−1)
6 [T ]e throat void ratio
7 [P ]e pore void ratio
8 [P ]As

pore surface area (m2)
9 [B]Ac

particle contact area (m2)
10 α particle grain size range (m)
11 cu particle coefficient of uniformity
12 cc particle coefficient of curvature
13 θ particle friction angle (deg)

14 Gp
ρ pore network network density

15 G
p

D pore network network diameter (m−3 Pa s)
16 [Gp]κ pore network degree
17 [Gp]κw

pore network weighted degree (m−3 Pas)
18 [Gp]CB

edge
pore network edge betweenness centrality

19 [Gp]CB
node

pore network node betweenness centrality
20 [Gp]CC pore network closeness centrality (m3 Pa−1 s−1)
21 Gc

ρ contact network network density
22 Gc

D contact network network diameter (m−2)
23 [Gc]κ contact network degree
24 [Gc]κw

contact network weighted degree (m−2)
25 [Gc]CB

edge
contact network edge betweenness centrality

26 [Gc]CB
node

contact network node betweenness centrality
27 [Gc]CC contact network closeness centrality (m2)
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μ for each distribution, averaging over the corresponding
entity (throats, pores, particles, nodes, or edges). We found
that, although the other distribution indicators do reveal
some interesting relationships, the main conclusions of this
work hold when only the mean is used. Given the small
length scale under consideration, and the homogeneity of
our samples, averaging is a valid and straightforward method
to reduce each distribution to a single parameter. The fea-
tures p, μ[T ]K, μ[B]Ac

, μ[Gc]κw
, μ[Gc]CC , μ[Gp]κw

, and
μ[Gp]CC are found to span multiple orders of magnitude.
In order to weigh different magnitudes within these features
equally, we compute the natural logarithm. Finally, in order to
weigh different magnitudes between different features equally,
we standardize each feature by subtracting the mean and
dividing by the standard deviation, as is standard practice in
machine learning:

x̃i = xi − μ(X)

σ (X)
,

where X = (x1, . . . ,xN ) is a feature vector with N values (for
N packings) and μ and σ are the mean and standard deviation,
respectively. Figure axes used in Sec. III are shown in original
scales, however, for a more physically meaningful discussion.

F. Feature selection

In the presence of a large feature set, such as the one
presented in the previous section, we aim to uncover the
most “important” features for the permeability in an objective
manner using feature selection. Formally, given N instances of
M features F = {Xi ; i = 1, . . . ,M}, the objective of feature
selection is to find a subset S ⊆ F with m features that “op-
timally” characterize a target variable Y [87]. Each instance
corresponds to a packing, and the target variable is, in our
case, the natural logarithm of the permeability. We present four
feature selection algorithms of increasing complexity. The first
three [Kendall correlation, mutual information, and minimum-
redundancy, maximum relevance (mRMR)] are myopic, i.e.,
conditional dependencies between features are ignored. The
fourth algorithm (RReliefF) is nonmyopic.

1. Kendall rank correlation

In contrast with the Pearson correlation coefficient, the
Kendall rank correlation coefficient (Kendall’s τ ) can mea-
sure nonlinear dependence between variables [88]. Let X =
(x1, . . . ,xN ) ∈ F be the values of a certain feature X and
Y = (y1, . . . ,yN ) the target variable values, and define Nc

as the number of concordant pairs (xi > xj and yi > yj or
xi < xj and yi < yj ) and Nd as the number of discordant
pairs (xi > xj and yi < yj or xi < xj and yi > yj ). Then,
−1 � τ � 1 is defined as

τ = Nc − Nd

1
2N (N − 1)

.

Values close to 1 or −1 indicate a good agreement between
rankings, generally indicating a strong relationship between
the feature X and target variable Y . We employ Kendall rank
correlation because of its initial simplicity and its ability to
identify nonlinear relationships.

2. Mutual information

Let X and Y be two random variables with joint probability
p(X,Y ) and marginal probabilities p(X) and p(Y ), then the
mutual information I (X; Y ) is defined as

I (X; Y ) =
∫

Y

∫
X

p(x,y) ln
p(x,y)

p(x)p(y)
dxdy.

Computing the integrals is often difficult with a limited number
of instances [87]. As a solution, continuous variables can be
discretized and the mutual information is computed as

I (X; Y ) =
∑
y∈Y

∑
x∈X

p(x,y) ln
p(x,y)

p(x)p(y)
.

Mutual information measures the degree of mutual dependence
between X and Y . For the discretization, we experiment
with a range of different techniques, including equal-sized
bins, percentile bins, and mean-based splittings using μ ± aσ ,
where μ is the mean of a feature, σ is the standard deviation,
and a is a tuning parameter. We find that k equal-sized
bins between the minimum and maximum of each feature
deliver robust results, particularly when the results from
this discretization are averaged for k = 5,6, . . . ,150. The
permeability is discretized using 50 equal-sized bins between
the minimum and maximum. Although some information is
lost by discretizing continuous variables, mutual information
is included in our study because it can identify nonlinear,
nonmonotonic relationships.

3. Minimum redundancy, maximum relevance

The mRMR method [87] is essentially an optimization
procedure with two objectives:

(1) To maximize dependency, that is, find features that are
strongly correlated with the target variable,

max D(S,Y ), D = 1

|S|
∑
Xi∈S

I (Xi ; Y ).

(2) To minimize redundancy, that is, avoid features in S that
are highly correlated among themselves,

min R(S), R = 1

|S|2
∑

Xi,Xj ∈S

I (Xi ; Xj ).

An exhaustive search of all possible subsets S ⊆ F is often
computationally unfeasible. Hence, in practice, an incremental
search method is used. First, set S0 = {Xi0} where Xi0 =
arg maxXi∈F I (Xi ; Y ). We then incrementally add a feature
to the current subset Sk−1,k � 1 with the criterion

max
Xi∈F\Sk−1

⎡
⎣I (Xi ; Y ) − 1

m − 1

∑
Xj ∈Sk−1

I (Xi ; Xj )

⎤
⎦. (2)

Note that the mRMR ranking should be interpreted collec-
tively. That is, for a ranking of three features, the combination
of ranked features 1 and 2 may be better than feature 3, with
respect to characterizing the permeability, but this does not
mean that feature 3 is less relevant (individually) than feature 1
or 2. Instead, the feature score in the incremental optimization
procedure is based on the relevance to the permeability and
the degree of redundancy with the already selected features in
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Sk−1. We discretize all features and the permeability using 50
equal-sized bins between the minimum and maximum. We use
mRMR because the method combines the strengths of mutual
information (nonlinear, nonmonotonic relationships) with the
ability to maximize dependency and minimize redundancy.

4. RReliefF

The last feature selection algorithm under investigation is
the RReliefF method [89–91]. The family of relief methods
estimate a feature’s importance W [X] based on its ability
to separate values of the target variable, approximating the
following difference of probabilities [90]:

W [X] = P (dissimilarX | dissimilarY )

−P (dissimilarX | similarY ).

In words, a feature X is rewarded for separating dissimilar
values of Y and penalized for separating similar values of Y .
Given two instances I1 and I2, “similar” and “dissimilar” for
either the feature X or target Y is defined using the distance
function

diff(Z,I1,I2) = |value(Z,I1) − value(Z,I2)|
max(Z) − min(Z)

for continuous features, where value(Z,I ) is the value of
Z ∈ {X,Y } in instance I . For a detailed discussion of the
implementation of RReliefF, which involves the use of an
exponential correction to the distance function and k-nearest
neighbors to improve robustness, we refer to the overview by
Robnik-Šikonja and Kononenko [92]. In our implementation,
we use the parameters k = 70 nearest neighbors and σ =
20 in the exponential distance function, as recommended
by the authors. We select RReliefF because it can detect
conditional dependencies between features given the target
variable values, a highly desirable property in feature sets with
strong dependencies, because two features that appear useless
individually may be useful together [93]. A drawback is that
RReliefF, in contrast with mRMR, does not detect feature
redundancy.

G. Prediction

Characterizing the permeability through feature selection is
the main objective of this work. The final stage of prediction,
though, is included for completeness and as an experiment
to quantify the predictive capability of the chosen features.
Traditionally, in supervised machine learning, we train (or
fit) a predictive model using both the input (values for
selected features) and output (permeability values) of the
model, and subsequently ask the model to predict (or test)
the permeability given a collection of unseen instances. In this
context, machine learning mitigates limited understanding of
the fundamental, underlying governing equations of a system
by performing data-driven predictions [75]. Even though we
deliberately made no assumptions regarding the linearity of
the relationships between features and the permeability, we
restrict our use of predictive methods to linear regression
for simplicity. As will become clear in the results section,
many high-scoring features have, in fact, a linear relationship
with the permeability, for which linear regression suffices. For
linear regression theory, we refer to [67,68]. In this section,

we discuss the validation methods used to quantify the error
and uncertainty in our predictions of the permeability.

1. Cross validation

A common problem of machine learning in scarce data
settings is that the test set might not be sufficiently large to
provide a robust estimate of the generalization performance.
The most widely used method to remedy this issue is K-fold
cross validation, for which the data are split into K parts of
equal size [68]. We run an iterative procedure for k = 1, . . . ,K ,
where, in iteration k, the model is trained using k − 1 parts
and tested on the single, remaining part. By averaging the
resulting K test set scores, we obtain a more robust estimate
of the generalization performance. Feature selection may
be combined with cross validation by running the feature
selection algorithm on the k − 1 parts before training the model
[69, Sec. 7.10.2]. Note that because the feature selection is
repeated K times, rankings may differ for different folds. We
expect the differences to be minimal, however, if the feature
selection method is robust and sufficient data are available.
Cross validation should be understood as a method to evaluate
the process of fitting a model, rather than evaluating the model
itself [94].

2. Assessment

To study the generalization performance of a model, we use
two commonly used performance indicators. The root-mean-
squared error (RMSE) is defined as

RMSE =
√

1

N

∑N

i=1
(ŷi − yi)2, (3)

where ŷi is the predicted value and yi is the measured value for
each of the N test set instances. We also report the coefficient
of determination R2, defined as

R2 = 1 − u

v
, u =

N∑
i=1

(yi − ŷi)
2, v =

N∑
i=1

(yi − ȳ)2, (4)

where ȳ is the mean of the measured values.

III. RESULTS AND DISCUSSION

A. Feature selection

Before we highlight the key insights from our analysis,
we present the broad results first. The feature selection
scores for Kendall rank correlation, mutual information, and
RReliefF, applied to the feature set from Sec. II E and
permeability values from Sec. II C, are summarized in Table V.
Key parameters, discussed in the subsequent analysis, are
highlighted. We make a number of observations. First, we
observe a similar top ten for Kendall correlation and mutual
information, and a slightly different top ten for RReliefF. We
attribute this distinction to the ability of RReliefF to detect
conditional dependencies, whereas Kendall correlations and
mutual information are purely myopic methods. The best
scoring feature in RReliefF (throat conductance [T ]K ) can
be thought of as having both a strong individual dependency
and conditional dependency (combined with other features) on
the permeability. A difference between RReliefF and the other
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TABLE V. Ranked scores assigned to each feature for three feature selection algorithms. For the notation, refer to Table IV.

Kendall correlation Mutual informationa RReliefF

1 ln μ [Gp]CC 0.878 ln μ [Gp]CC 0.412 ± 0.017 ln μ [T ]K 0.313
2 μ [P ]e 0.848 ln μ [T ]K 0.374 ± 0.013 ln μ [Gp]CC 0.290
3 μ [Gc]κ −0.848 μ [P ]e 0.365 ± 0.017 e 0.237
4 ln μ [T ]K 0.847 e 0.361 ± 0.014 μ [T ]e 0.233
5 e 0.842 μ [Gc]κ 0.358 ± 0.016 ln μ [Gp]κw

0.223
6 μ [Gc]CB

edge
0.828 μ [T ]e 0.347 ± 0.017 μ [P ]e 0.175

7 μ [T ]e 0.816 ln μ [Gp]κw
0.336 ± 0.023 μ [Gc]κ 0.160

8 ln μ [Gp]κw
−0.787 ln p 0.323 ± 0.033 ssa 0.140

9 ln p −0.775 μ [Gc]CB
edge

0.318 ± 0.024 Gc
ρ 0.123

10 Gc
ρ −0.732 ln μ [B]Ac

0.296 ± 0.041 μ [Gp]CB
edge

0.096

11 ln μ [B]Ac
−0.723 Gc

ρ 0.291 ± 0.034 μ [Gp]CB
node

0.093
12 μ [Gc]CB

node
0.723 ln μ [Gc]CC 0.280 ± 0.036 μ [T ]V /[P ]V 0.081

13 ln μ [Gc]CC −0.704 ssa 0.271 ± 0.046 μ [P ]As
0.052

14 Gc
D 0.623 μ [Gc]CB

node
0.270 ± 0.039 Gp

ρ 0.049
15 ln μ [Gc]κw

0.607 μ [Gp]CB
node

0.252 ± 0.048 θ 0.045
16 ssa 0.594 μ [Gp]CB

edge
0.246 ± 0.049 μ [Gc]CB

edge
0.036

17 μ [T ]V /[P ]V 0.572 ln μ [Gc]κw
0.243 ± 0.049 μ [Gc]CB

node
0.027

18 μ [Gp]CB
node

−0.547 μ [P ]As
0.232 ± 0.059 cu 0.024

19 μ [Gp]CB
edge

−0.513 Gc
D 0.227 ± 0.045 μ [Gp]κ 0.004

20 μ [P ]As
0.467 Gp

ρ 0.219 ± 0.066 α 0.002
21 μ [Gp]κ −0.465 μ [T ]V /[P ]V 0.213 ± 0.033 cc −0.001
22 Gp

ρ 0.265 μ [Gp]κ 0.211 ± 0.055 G
p

D −0.010
23 θ 0.192 G

p

D 0.201 ± 0.065 ln μ [Gc]κw
−0.028

24 G
p

D −0.106 α 0.200 ± 0.051 Gc
D −0.052

25 cu 0.087 θ 0.186 ± 0.032 ln p −0.064
26 α 0.087 cu 0.148 ± 0.025 ln μ [Gc]CC −0.094
27 cc −0.000 cc 0.133 ± 0.023 ln μ [B]Ac

−0.115

aMean ± standard deviation of scores for a set of different binnings, as explained in Sec. II F.

two rankings is the confining pressure p. Further inspection of
this feature reveals that p is heavily penalized for not having
a clear relationship with the permeability for low confining
pressures (p < 106 Pa). For the mutual information scores,
we observe that the standard deviation over various binnings
is relatively small compared to the mean scores, indicating a
robust ranking.

Second, in terms of network parameters, the pore network
closeness centrality [Gp]CC receives high scores in all three
methods, indicating the importance of this feature for the
permeability. Not surprisingly, the edge weighting for the pore
network, [T ]K , scores high in all three methods as well. Other
important network features appear to be the degree [Gc]κ in the
contact network and the weighted degree [Gp]κw

in the pore
network. We observe that the betweenness centrality receives
medium scores and the network diameter and network density
receive relatively low scores in all three feature selection
methods. Based on these observations, the closeness centrality
in the pore network appears to be the most promising network
feature to predict the permeability.

Third, in terms of physical features, the local pore void ratio
[P ]e, global void ratio e, and local throat void ratio [T ]e are
given relatively high scores in all three methods, confirming
the well-known importance of the void ratio. The friction
angle θ and parameters related to the grain size distribution
(cu, cc, and α) receive low scores in all three algorithms. We

attribute this result to the fact that these parameters are only
suitable to predict the permeability if all other parameters
of the porous medium are held constant, or, equivalently, if
the conditional dependencies between the friction angle or
grain size distribution with other features are utilized. Kendall
correlation and mutual information, being myopic, do not
account for such feature interactions. In the case of RReliefF,
we believe that the conditional dependencies of θ , cu, cc, and α

are relatively weak, resulting in low scores. These observations
are consistent with geotechnical literature and are revealed
even in the absence of disciplinary knowledge.

Having performed a quantitative analysis of the feature set,
we further investigate a number of features, inspired by the
ranking in Table V. We hypothesized a strong relationship
between the permeability and the average closeness centrality
of the pore network. Indeed, the pore network closeness
centrality consistently ranks high (first for Kendall correlation,
first for Mutual Information, and second for RReliefF) in our
feature selection algorithms. Figure 6 depicts this key result in
the form of a scatter plot of the data, along with the two pore
networks corresponding to the permeability extrema and the
Aste et al. reference packing. Recall that the pore network is
weighted using the conductance, as outlined in the Appendix.
We observe an approximately linear relationship between the
logarithm of the average closeness centrality and the logarithm
of the permeability. The variance in closeness centrality
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FIG. 6. Scatter plot of the average closeness centrality in the pore network and the permeability, along with the pore networks at the extrema
and the corresponding distributions of the shortest path lengths. The edge widths in the pore network are scaled by the conductance.

decreases slightly, as the permeability increases. The reference
case shows good resemblance with the observed trend in the
DEM data, exhibiting a high permeability due to the fact that
Aste et al. [59] did not subject the sample to compression. As
may be expected, the maximum dimensionless permeability
(1.8×10−3) is found in a sample subjected to a low confining
pressure (1.7×105 Pa) resulting in a high overall void ratio
(0.68). The minimum permeability (1.3×10−5) corresponds to
a low void ratio (0.17) stemming, in turn, from a high confining
pressure (9.9×106 Pa). The shortest paths distributions on
the right of Fig. 6 show that a high permeability and high
average closeness centrality corresponds to a pore network
with relatively fewer, shorter shortest paths. In contrast, a low
permeability and low average closeness centrality corresponds
to relatively many, longer shortest paths. We can explain
the difference using the geometry and connectivity in the
corresponding pore networks: the highly permeable sample at
the top contains large pores and throats, whereas the pores and
throats in the bottom network are much smaller. In summary,
the average closeness centrality is able to capture the interplay
between fluid flow, shortest paths, pore sizes, and throat sizes
in a single scalar.

Figure 7 contains a selection of other relationships
between features and the permeability. In Fig. 7(a), a
power-law-like dependency is observed between the per-
meability and the various void ratio parameters, consis-
tent with past results [25,95–98]. The global void ratio
and averaged pore void ratio data closely resemble k ∝
e3 while, interestingly, the averaged throat void ratio fits
better with k ∝ e4. Moreover, while the volumetric void ratio
parameters (e and μ[P ]e) vary between 0.17 and 0.74, the
averaged throat (areal) void ratio is much smaller, varying
between 0.10 and 0.30. Showing similar variance compared to
the void ratio, the average contact network degree (i.e., coordi-
nation number) in Fig. 7(b) also has a defined relationship with
the permeability. For higher confining pressures, the average
degree in the contact network increases and the void ratio
decreases. Consequently, the pore connectivity decreases, and,

similar to Fig. 7(a), the permeability reduction accelerates for
larger values of the average contact network degree. Similar,
accelerated permeability reduction is observed by Fredrich and
co-workers [13,25]. With an average contact network degree
of 1.95, the Aste et al. reference case is showing a similar
trend but much lower value compared to our DEM data. We
attribute this result to (1) the fact that the reference case is
not subjected to triaxial compression, and (2) the imaging
resolution, which, as noted in [49], may not always be sufficient
to identify particle contacts.

We investigate two lower-scoring features in Fig. 7(c). It
can be observed that taken together, the specific surface area
ssa and coefficient of uniformity cu are able to explain a
reasonable fraction of the variance in the permeability. This
relationship is expected to be even stronger when considering
finer grained porous media than the Ottawa sandlike medium
studied in this work. The conditional dependency explains
why ssa ranks higher in the RReliefF scores, compared to
the Kendall and mutual information scores. In Fig. 7(c),
we also compare least-square fits to the simulation data and the
Kozeny-Carman (KC) estimate (data itself not shown). We use
the KC equation as presented by Carrier III [99], setting the
empirical coefficient at 5. Although the KC estimate slightly
underpredicts the permeability compared to our simulation
values, we observe a reasonable agreement between the two
lines and the Aste et al. reference packing. Last, we include the
pore network diameter in Fig. 7(d) as an example of a feature
with little predictive value, showing no clear relationship with
the permeability. The lack of predictive value is confirmed by
the low feature selection scores in Table V.

B. Redundancy reduction

None of the methods from Table V take a critical aspect
of the feature set into account: redundancy. To quantify this
phenomenon, we compute the interfeature correlation values
using the (absolute) Kendall correlation score between each
pair of features. The average intercorrelation values between
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FIG. 7. (a) Global and averaged local (pore and throat) void
ratio. (b) Averaged contact network degree. (c) Specific surface area,
colored by coefficient of uniformity. Also includes a least-squares
fit of the simulation data and the Kozeny-Carman estimate. (d) Pore
network diameter.

features 1–9 and 17–27 (see Table IV) is relatively high (0.64),
while the remaining features (10–16) exhibit low interfeature
correlations (0.30). We conclude that the pore network features
and contact network features are correlated with the packing
features, throat features, and pore features, highlighting the
overlap between the traditional physical features and the
network-based features.

Having observed redundancy in the feature set, we can em-
ploy the minimum-redundancy, maximum relevance (mRMR)
method. The result of applying the mRMR method to the
full feature set is shown in Table VI for the top-ten features.

TABLE VI. Top-ten feature selection scores of the mRMR method.

1 ln μ [Gp]CC 0.422
2 ln μ [Gp]κw

0.042
3 μ [Gc]κ 0.042
4 e 0.029
5 μ [P ]e 0.024
6 μ [Gc]CB

edge
0.022

7 μ [T ]e 0.020
8 μ [T ]V /[P ]V 0.018
9 ln μ [T ]K 0.015
10 ln p 0.015

We reiterate that for a particular feature, the mRMR score
should be interpreted as the sum of a bonus for the relevance
to the permeability and a penalty for redundancy with higher-
ranked features. Hence, [Gp]CC (ranked first) has the highest
relevance, in terms of mutual information, to the permeability.
The feature ranked second, [Gp]κw

, maximizes Eq. (2) by
simultaneously having minimal redundancy with [Gp]CC and
maximal relevance to the permeability. Note that the mRMR
score drops significantly after the first feature, indicating either
low relevance with the permeability or high redundancy with
the first feature. Based on the methods from Table V, for which
[Gp]κw

achieves high relevancy scores, we conclude that the
drop in mRMR scores can be attributed to high redundancy.
In conclusion, the pore network closeness centrality is able
to capture a large fraction of the available microstructural
information in the sample, resulting in any other features
being mostly redundant. Equivalently, none of the other
features are able to explain much of the remaining variance
in the permeability for a particular value of the pore network
closeness centrality.

C. Stability

We analyze the stability of each feature selection algorithm
by recomputing the feature selection scores and corresponding
ranking using an increasingly large fraction of the 536 samples.
Unless the algorithm is unstable or none of the features
correlate with the permeability, we expect the scores to
converge as more data become available. Figure 8 depicts the
result of this analysis. Kendall correlation produces the most
stable results, consistently ranking the pore network closeness
centrality as the best feature. The features that do change
in ranking correspond, in fact, to scores that are relatively
close. Mutual information and RReliefF show less stable
rankings, compared to Kendall correlation, although the top
ten only show minor changes when at least 50% of the data are
used. The mRMR method is clearly the least stable, showing
large variations in the ranking for all but the highest-ranked
feature. We attribute this result to the optimization procedure
in mRMR, which struggles to identify the most relevant and
least redundant features after the first feature (pore network
closeness centrality) has been chosen. We conclude that the
top ten ranking for Kendall correlation, mutual information
and RReliefF are reasonably reliable in terms of stability. The
mRMR ranking, beyond the highest-ranking feature, is less
reliable.
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FIG. 8. Convergence of the feature selection rankings as more
data become available. When 100% of the data are used, the ranking
corresponds to Tables V and VI.

D. Prediction

Having discussed the characterization of permeability using
feature selection, the remaining step in our framework (Fig. 1)
is the prediction of the permeability. We randomly split the
data in 80% (428 packings) and 20% (108 packings) for
training and testing purposes, respectively, and run Kendall
correlation feature selection on the training set. Assuming
that the top features in the resulting ranking are strongly
correlated with the permeability, we pick the top two features
(ln μ[Gp]CC and μ[P ]e) as the independent variables in the
linear regression model. We take the natural logarithm of
the average pore void ratio μ[P ]e because the permeability
k and μ[P ]e approximately follow a power-law relation [see
Fig. 7(a)] for which a log-log plot is linear. Note that taking
the logarithm of a feature does not change its ranking, because
Kendall correlation is invariant to monotone transformations.
Figure 9 shows the prediction plane and Table VII lists the
root-mean-square error (RMSE) and R2. For the single 80/20
split, the RMSE over the training set is lower than the RMSE
over the test set, which we attribute to the inclusion of some
of the outliers (shown in Fig. 6) in the test data. Indeed, when
run with tenfold cross validation, which should average out
the effect of outliers, the RMSE of the test set and training set
are approximately equal at 0.14. The R2 scores in Table VII
suggest that 98% of the variance in the permeability (or,
equivalently 86% of the standard deviation) is explained by
the pore void ratio and pore network closeness centrality.
Not shown here are the cross-validation scores when only
a single feature is used, i.e., either μ[Gp]CC or μ[P ]e, which
are worse than the result above (test set RMSE of 0.19 ± 0.04
and 0.17 ± 0.02, respectively). Hence, despite the fact that
the mRMR method (see Table VI) identifies most features as

FIG. 9. Linear regression using the logarithm of the average pore
void ratio and the logarithm of the average pore network closeness
centrality. Only the 108 test set instances are shown. Terms used to
make the permeability and closeness centrality dimensionless have
been moved to the intercept term of the regression formula to indicate
scale-dependence.

redundant, combining the closeness centrality with a geometry
feature does (slightly) improve the prediction. Observe that the
regression coefficients of μ[Gp]CC (0.48) and μ[P ]e (1.77)
deviate from the observed coefficients of approximately 1 (see
Fig. 6) and 3 [see Fig. 7(a)], respectively. The discrepancy
appears due to a tradeoff in fitting two independent variables
simultaneously.

We experimented with more advanced, nonlinear regression
method (e.g., support-vector regression, random forest regres-
sion) but encountered only a small reduction in RMSE and,
more importantly, a larger degree of overfitting. We attribute
this result to two factors: (1) the relationship between either of
our chosen features and the permeability is linear in a log-log
scale, as shown in Figs. 6 and 7(a), for which a linear model is
most appropriate, and (2) the combination of the pore network
closeness centrality and pore void ratio already captures most
of the variance in the permeability, so adding another feature
(or using a higher-order model) is not going to significantly
reduce the prediction error. Essentially, we find that the
combination of a connectivity feature (closeness centrality)
and a geometry feature (pore void ratio) performs well in
characterizing (e.g., explaining the variance in) permeability.

TABLE VII. RMSE and R2 values are computed using Eqs. (3)
and (4), respectively. For cross validation, we report the mean and
variance over the different folds.

80/20 split Tenfold cross validation

Data RMSE R2 RMSE (μ ± σ ) R2 (μ ± σ )

Train 0.14 0.98 0.14 ± 0.002 0.98 ± 0.001
Test 0.17 0.98 0.14 ± 0.023 0.98 ± 0.013
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IV. CONCLUSION

We developed a general data-driven framework for model-
ing transport in porous, granular media from high resolution
microstructural data. We quantitatively analyzed a large
feature set, spanning micro- to mesoscales, to optimally
“characterize” permeability. By employing multiple feature
selection algorithms, we gather objective evidence that certain
features are important in predicting permeability and others
are not. In particular, the weighted pore network closeness
centrality consistently outperforms all other features across
all the methods used. The weighted pore network closeness
centrality parsimoniously characterizes the internal connec-
tivity and concomitant efficiency of transmission pathways
across multiple spatial scales. Specifically, a sample with a
high permeability has an internal pore structure encompassing
many efficient shortest paths that run through relatively large
pore bodies connected to each other by high conductance pore
throats. This closeness centrality metric renders most other
features redundant in explaining variance in the permeability.
Analysis of the corresponding shortest paths and pore network
data reveals the interplay between shortest paths, pore and
throat geometry, and fluid flow captured by the closeness cen-
trality. As an example of utilizing the feature selection results,
we fit a linear model to the pore void ratio and pore network
closeness centrality, which is able to explain approximately
86% of the standard deviation in the permeability.

The framework presented here can be applied to investigate
the relationship between permeability (or any other transport
property at the macroscopic, engineering scale) and a given
feature set, where the latter contains any number of measurable
internal properties that span the micro- to mesoscales, for
a porous granular material. We demonstrate that feature
selection methods are a useful, quantitative approach to
extract key parameters from a large dataset. Caution must
be exercised however, since the methods are subject to
algorithmic subtleties (e.g., myopic versus nonmyopic) that
influence the results. Therefore, the feature selection score of
a variable, a measure of the extent to which it characterizes
the permeability, should always be interpreted in light of
the assumptions of the particular algorithm used. The use of
multiple feature selection methods and the stability test shown
in Fig. 8, which we adopt here to rule out algorithmic artifacts,
are useful checks for the robustness of the results.

In applying the framework to relatively simple sphere pack-
ings, we take the first step in applying complex network theory
to pore networks. Ongoing work is focused on (1) developing,
implementing, and validating stable feature selection methods
to ensure robustness of features to variations in the training
data for accurate characterization and prediction of perme-
ability, (2) characterizing other transport properties (e.g.,
thermal conductivity) within the proposed framework, and
(3) predicting local pore phenomena (e.g., clogging, filtration)
with macroscale implications, using complex networks.
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APPENDIX: CONDUCTANCE COMPUTATION

In this Appendix, we briefly detail our approach to
computing the local conductance, used as the edge weighting
in the pore network. Define (p1,p2) as the pair of pores,
connected by pore throats ti , i = 1, . . . ,Nt . Assume the pores
can be represented as cylinders with lengths (Lp1 ,Lp2 ), radii
(rp1 ,rp2 ), and volumes (Vp1 ,Vp2 ) equal to the original pore
volumes. Furthermore, assume the throats can be represented
by cylinders with lengths Lti , radii rti , and top and bottom areas
Ati equal to the original pore throat areas. We then compute
the conductance weighting C (m3 Pa−1 s−1) as the harmonic
mean

C = Lp1 + Lteqv + Lp2

Lp1
Cp1

+ Lteqv

Cteqv
+ Lp2

Cp2

, (A1)

where Lteqv and Cteqv are the arithmetic means

Lteqv =
∑Nt

i=1 Lti Ati∑Nt

i=1 Ati

, Cteqv =
∑Nt

i=1 Cti Ati∑Nt

i=1 Ati

.

Equation (A1) is also illustrated in Fig. 10. The conductances
Cp1 , Cp2 , and Cti are computed from the Hagen-Poiseuille
equation

Q = Cpk
�p = πr4

pk

8ηLpk

�p, k = 1,2,

Q = Cti �p = πr4
ti

8ηLti

�p, i = 1, . . . ,Nt ,

where Q is the fluid discharge (m3 s−1), η is the dynamic
viscosity (Pa s), and �p is the pressure drop (Pa). Note that
in our case, “pores” are (merged collections of) tetrahedra and

FIG. 10. Illustration of Eq. (A1) for Nt = 2 throats connecting a
pair of pore bodies (p1,p2).
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“throats” are shared faces, but the theory applies to any pore
network construction algorithm (e.g., inscribed spheres) as

long as the pores and throat representations can be translated
to equivalent cylinders.
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