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Biased Brownian motion in narrow channels with asymmetry and anisotropy
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We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal
channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while
anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire
a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is
injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces
an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and
drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in
experiments on a tilted channel, is found to be consistent with those obtained from dynamic mobility and position
probability distribution measurements. These results are explained by a simple collision model that suggests the
random kinetic energy transfer between different translational degrees of freedom may be turned into useful work
in the presence of asymmetry and anisotropy.
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Effective and selective transport of ions and biomolecules
through membrane channels and motors [1–3] is vital to a
living cell. The size of these channels is often comparable to
that of the matter to be transported, and the channel shape
is often asymmetric. It has been suggested that the shape of
the channel may play an important role in force generation
in the DNA package of bacteriophages [4] and motion of
kinesin along microtubules [5]. On the other hand, Brownian
motion is inevitable because of the size of the molecules.
Therefore, it is worthwhile to study the physics underlying
the transport phenomenon of Brownian particles through a
channel of comparable width and nontrivial shape, not only
to understand vital biological processes but also to improve
the design of nano-devices for separation and manipulation of
nano-materials [2,6].

The transport behavior of a Brownian particle in a channel
with varying cross section has been studied for a long time
[7–10]. Clearly if the boundaries of the channel are symmetric
and no external force along the channel is present, transport
along the channel is impossible. Even if the channel wall
is asymmetric, a particle in the channel will perform only
unbiased Brownian motion due to thermal fluctuation. Surpris-
ingly we find that the presence of anisotropy, which induces
larger random kinetic energy in the transverse direction (with
respect to the channel axis) than that in the longitudinal
direction, may lead to an effective driving force along the
channel. If the transverse degree of freedom, with velocity that
follows Gaussian statistics, is considered a thermal bath to the
transverse degree of freedom, our finding shows that useful
work may be extracted from a thermal bath under suitable
symmetry breaking. A simple theory based on collision
dynamics of the particle with the channel walls can explain
the origin of the driving force, which is related to the position
distribution of the particle in the channel.

In this study, the Brownian motion of a single millime-
ter size bead confined in a vertically vibrated quasi-two-
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dimensional horizontal channel as shown in Fig. 1(a). The
channel is composed of connected cells with asymmetric walls.
A channel, which is composed of 12 identical cells arranged
in four connected branches fabricated by an automated
milling machine (Roland MDX-540) on a single piece of
black acrylic plate, is mounted on an electromagnetic shaker
(Vibration Source Technology VS-300) that oscillates the
channel sinusoidally in the vertical direction. A 6 mm diameter
plastic bead of mass m = 0.11 g is placed in the channel, and a
transparent acrylic plate is used as the top cover to the channel.
Each cell is bounded by a wall that follows equation

yu(x) =
{

a + bx 0 � x < xm

a1 + b1x xm � x < L
(1)

and another wall yd (x) = −yu(x). Here x is the position along
the longitudinal direction as shown in Fig. 1(b). The height
of the walls is 15 mm, the length of a cell is L = 56 mm,
the half-width of the bottleneck is a = 5.6 mm, b = tan(π/6),
a1 = a + L/b, and b1 = −1/b. The length of the wall W1

between x = 0 and x = xm is L1 = 48.5 mm and that of the
wall W2 between x = xm and x = L is L2 = 28 mm. The
width w of the cell becomes yu − yd = 2yu, and the widest
location in the cell is at xm = 3

4L = 42 mm. Semicircular
ridges of 6 mm diameter and spaced 9 mm apart are machined
at the base of the cells as shown in Fig. 1(c). These ridges
are parallel to the longitudinal direction (x axis) to provide
anisotropy for the cell so that a bead can acquire a horizontal
impulse perpendicular to the longitudinal direction when it
hits the base.

We label the cells by the branch number and their position
in the branch as shown in Fig. 1(d). The electromagnetic
shaker drives the channel in vertical sinusoidal oscillation with
frequency f = 30, 40,..., 90 Hz and amplitude A = 1, 2 mm.
A fast camera (Prosilica GE680) is used to capture images
from above. It is programed to take 10 frames at 100 frames
per second within each 0.2 s for at least 2 h. In this way, we
capture image sequences of two different time scales: 0.01 and
0.2 s. The position of the bead is located in each frame using

2470-0045/2016/94(2)/022902(4) 022902-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022902


ZHENG PENG AND KIWING TO PHYSICAL REVIEW E 94, 022902 (2016)

branch 1

branch 3branch 4

br
an

ch
 2

cell 11 cell 12

cell 43

cell 42

cell 41

cell 31cell 32

cell 13

cell 33(d)

(a) Fast
Camera

Shaker

6mm 3mm

x
y

(c)

(b)

L1 L2

L

W1 W2

x

y

(e) t [s]

t=0

t=80

t=160

w

FIG. 1. (a) Schematic diagram of experimental setup. (b)
Schematic of a branch. (c) The shape and dimension of the grooves
on the channel base. (d) Position distribution of the beads recorded at
f = 60 Hz and A = 1 mm. (e) Positions of bead along the channel
in 160 s duration every 0.2 s. The vertical color bar at the right shows
the time in seconds.

standard imaging software [11]. The fast image sequences
are used for velocity measurements, while the slow image
sequences are used for measuring the position distribution, the
long time diffusion, and the drift velocity of the bead.

Figure 1(d) is a typical plot of the bead positions. One can
see that the position distribution in each of the four branches is
qualitatively the same while the distribution within one cell is
nonuniform. We calculate the position probability density in
a branch Pb(x), which is defined as the ratio n(x,�x)

nb�x
where nb

and n(x,�x) are, respectively, the total number of points in the
branch and the number of points in the interval (x,x + �x).
Figure 2 shows that Pb(x) for the four branches are indeed
the same within experimental uncertainty, as expected from
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FIG. 2. Probability density of the bead Pb(x) in the four branches
at A = 1 mm, f = 60 Hz. Inset shows the probability density Pc(x)
of the cells in branch 1. The dash line in the inset is the expected
Pc(x) if the bead positions are uniformly distributed within the cell.
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FIG. 3. Velocity distribution of ux and uy at vibration condition
A = 1 mm, f = 60 Hz. The solid line is a Gaussian fit for P (uy).
Inset shows that thermal speed uTy

increases with increasing vibration
strength Vs .

symmetry argument. However, the number of points in each
cell nc within the same branch are different. Nevertheless the
position probability density in a cell Pc(x) = n(x,�x)

nc�x
is the

same for each cell as shown in the inset of Fig. 2. Hence,
the robust and nontrivial distribution Pc(x) depends only on
the asymmetric cell boundaries and the anisotropy induced
by the ridges on the base of the cell. If the bead is uniformly
distributed in the cell, one would expect Pc(x) to be a piecewise
linear function as indicated by the dashed lines in the inset.

Using the fast image sequences we obtain the longitudinal
velocity ux and the transverse velocity uy of the beads. Figure 3
shows the velocity distributions P (ux) and P (uy) measured at
A = 1 mm and f = 60 Hz. We find that P (uy) follows a
Gaussian distribution. This suggests that the transverse degree
of freedom has reached thermal equilibrium and hence can

be characterized by a thermal speed uTy
=

√
〈u2

y〉. The inset

of Fig. 3 shows that uTy
increases with increasing vibration

strength (denoted by the maximum speed of the channel Vs =
2πAf in the vertical direction) as expected.

Using an image sequence of every 0.2 s, we locate the
position of the bead and calculate the displacement x(t) along
the longitudinal direction. An average movement of the bead
in the counterclockwise direction is apparent from the position
records shown in Fig. 1(e). Although x(t) fluctuates at a
small time interval, it increases linearly with t over a long
time [see Fig. 4(a)], and the drift velocity vd is found to
increase linearly with the thermal speed uTy

as shown in
Fig. 4(b). On the other hand, the fluctuation δx(t) has a mean-
squared-displacement MSD ≡ 〈[δx(t + �t) − δx(t)]2〉 that
is proportional to the time lag �t as shown in Fig. 4(c). Hence,
the bead performs biased diffusive motion with a diffusivity
D such that MSD = 2D�t . Figure 4(d) shows that D is
constant at small uTy

and increases linearly with uTy
at large

uTy
. The presence of finite drift along the channel suggests

the presence of an effective force along the longitudinal
direction. To measure this force, we repeat the experiment
with both ends of each branch blocked and mount the channel
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FIG. 4. (a) The time dependent of the displacement x (thick black
line) and the fluctuation δx (thin red line). (b) Variation of the drift
velocity with thermal speed uTy

. (c) MSD of δx. (d) Diffusion constant
versus uTy

.

at an angle φ = 0.7◦,0.8◦,1.1◦,1.5◦ to the horizontal so that
the bead experiences a force mg sin φ due to gravity along
(against) the longitudinal direction in branch 1 (branch 3).
Here g = 9.81 m/s2 is the acceleration due to gravity. Figure 5
is a semilog plot of the probability density Pb(x) for different
branches at inclined angle φ = 1.5◦ with vibration amplitude
A = 1 mm and frequency f = 40 Hz. One can see that the
bead spends most of its time in cell 3 of branch 1, whereas
the bead spends nearly an equal amount of time in each of the
three cells of branch 3. Hence, the net force on the bead along
the x direction should vanish in branch 3. So the driving force
may be estimated to be ≈ mg sin 1.5◦ = 2.56 × 10−5 N.

Figure 5 implies that the probability density for a cell
Pc(x) depends on inclination. For example, in branch 1
(black squares), Pc(0) is smaller than Pc(L) for cell 12.
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FIG. 5. Reduced probability density Pb(x) in different branches
measured at A = 1 mm, f = 40 Hz, and inclined angle φ = 1.5◦.
Inset shows that � log P (defined in text) increases almost linearly
with sin φ; the solid line is a linear fit with horizontal intercept =
−2.27 × 10−2 ± 14%.

FIG. 6. (a) Schematic diagram of a bead colliding with a wall
making an angle θ with the channel axis. (b) Ratio between drift
velocity and diffusivity vd/D versus thermal speed uTy

. Values of
� log P/L are obtained from position density measurements under
different vibration conditions, and Fd/Tg is that calculated using
Eq. (5).

Interestingly, when the logarithm of the ratio Pc(L)/Pc(0)
is plotted against inclination, a linear relation between
� log P ≡ log [Pc(L)/Pc(0)] = log Pc(L) − log Pc(0) versus
sin φ is revealed as shown in the inset of Fig. 5. Note that
the horizontal intercept when multiplied by mg gives the
magnitude of the driving force. The driving force thus obtained
is 2.46 × 10−5 N ± 14%.

Since the drift velocity vanishes in channels with symmetric
walls, i.e., b = −b1 in Eq. (1), a finite drift velocity implies
the presence of a driving force originated from the asymmetric
walls. Consider a typical collision of the bead to the wall
W2 in a cell as shown in Fig. 6(a). The velocity change
after a collision is ��u = −λ�u · n̂n̂ where �u is the precollision
velocity of the bead and λ = (1 + α) with α = 0.92 being the
restitution coefficient. As shown in the figure, velocity change
in the longitudinal direction is

�ux = −λ sin2 θux + λ cos θ sin θuy. (2)

Then the average force experienced by the bead along the
channel axis is given by ν2m〈�ux〉 = −γ2〈ux〉 + ν2κ〈uy〉
where γ2 = ν2mλ sin2 θ , κ = mλ cos θ sin θ , and ν2 is the
collision frequency, which can be considered as the probability
of the bead hitting the wall per unit time. In the situation
depicted in Fig. 6(a) with θ < π/2, uy is more probably
pointing downward for collision to occur. Hence, we consider
only negative values of uy and replace 〈uy〉 by −〈|uy |〉. Using
a similar argument, the average force of the bead in the x

direction due to collision with W1 is ν1m〈�ux〉 = −γ1〈ux〉 +
ν1κ〈|uy |〉 where γ1 = ν1mλ cos2 θ . Hence, the total average
net force due to collisions with W1 and W2 is

Fx = −(γ1 + γ2)〈ux〉 + (ν1 − ν2)κ〈|uy |〉. (3)

Adding the other two walls on the other side, the total force on
the bead in the cell is 2Fx , which can be written as m d

dt
〈ux〉.

Since γ1,2 > 0, the first term in Eq. (3) is proportional to −〈ux〉.
It acts like an effective viscous force (friction) to the beads and
hence does not contribute to the drift. It is the second term,
(ν1 − ν2)κ〈|uy |〉, which is possible to drive the bead along the
channel. At steady state when the driving force is balanced by
the effective friction, we have 〈ux〉 = ν1−ν2

γ1+γ2
κ〈|uy |〉 ∝ 〈|uy |〉.

This is consistent with our experimental finding in Fig. 4(b)

since 〈ux〉 is the drift velocity and 〈|uy |〉 =
√

2
π
〈u2

y〉 =
√

2
π
uTy

.
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Let the overall collision rate of the bead with all four walls
in the cell be νo. Then we have ν1,2 = νo

2
L1,2

L1+L2
Here we assume

uniform probability density along the walls for simplicity. The
overall collision rate νo can be approximated by 〈|uy |〉/w̄
where w̄ is the average half width of the channel. Then the
driving force can be expressed as

Fd = m

w̄

L1 − L2

L1 + L2
λ cos θ sin θ

〈|uy |
〉2
. (4)

Substituting the values of the parameters (m = 0.11 g, w̄ =
17.7 mm, L1 = 48.5 mm, L2 = 28 mm, λ = 1.92, θ = 60◦,
〈|uy |〉 = 120 mm/s) in our experiment, we have Fd = 1.96 ×
10−5 N, which is the same order of magnitude to that measured
in the inclined channel experiment.

Since 〈|uy |〉2 = 2
π
u2

Ty
, the above expression for Fd can be

rewritten in terms of the granular temperature Tg ≡ mu2
Ty

so
that

Fd

Tg

= 2

πw̄
λ cos θ sin θ

L1 − L2

L1 + L2
, (5)

which depends only on the geometry of the cell. This driving
force acts like an effective potential on the bead. When a bead
enters the cell of the channel at x = 0 and leaves at x = L, it
experiences a change in the effective potential U (L) − U (0)
related to the work done by the driving force such that FdL =
U (0) − U (L). Since the effective potential can be expressed in
terms of the position density [12] as U (x) = −Tg log Pc(x) +
Uo, we have

FdL = Tg[log Pc(L) − log Pc(0)] = Tg� log P. (6)

Here we assume that the effective temperature of the bead in
the x direction is comparable to Tg . Then the diffusivity D

and the drift velocity vd are related by the Stokes-Einstein
relation: D = μTg where μ = vd/Fd is the mobility. So we
have D = Tgvd/Fd . Together with Eq. (6), the ratio between

the drift velocity and the diffusivity becomes

vd

D
= 1

L
� log P = Fd

Tg

, (7)

which connects the dynamic quantities vd , D, and the steady-
state position distribution and the driving force Fd . Here
� log P is defined as log Pc(L) − log Pc(0). The above result
is confirmed by our experimental data as shown in Fig. 6(b).

To summarize, we observe finite drift of a Brownian bead
in a channel with asymmetric walls and anisotropic base.
Our observations can be explained quantitatively by a simple
collision dynamics theory, which suggests the following
picture for the kinetic energy transfer among the different
degrees of freedom of the bead. When the bead hits the
anisotropic base of the channel, kinetic energy is transferred
from the vertical direction to the transverse and longitudinal
directions with more energy going to the former. When the
bead hits the walls, kinetic energy is transferred from the
transverse direction to the longitudinal direction with more
energy to the positive than the negative longitudinal direction
due to asymmetry of the walls. Hence the bead acquires a finite
drift in along the channel axis. In our system, the transverse
degree of freedom may be considered a thermal bath at high
temperature that transfers heat to the longitudinal degree of
freedom at a lower temperature. Then the anisotropy and the
asymmetry of the channel act like an engine that generates
work, in the form of finite drift velocity, during heat transfer
between different degrees of freedom [12]. The efficiency
depends on the ratio of the effective temperatures of the
transfers and longitudinal degree of freedom. The details are
now being studied. On the other hand, the effective net force
from collisions with the walls not only drives the bead to drift
along the channel axis but also produces a nontrivial position
probability density [13], a phenomenon yet to be understood.
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