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Random sequential adsorption of linear and square particles with excluded volume interaction is studied
numerically on planar lattices considering Gaussian distributions of lateral sizes of the incident particles, with
several values of the average μ and of the width-to-average ratio w. When the coverage θ is plotted as function of
the logarithm of time t , the maximum slope is attained at a time tM of the same order of the time τ of incidence of
one monolayer, which is related to the molecular flux and/or sticking coefficients. For various μ and w, we obtain
1.5τ < tM < 5τ for linear particles and 0.3τ < tM < τ for square particles. At tM , the coverages with linear and
square particles are near 0.3 and 0.2, respectively. Extrapolations show that coverages may vary with μ up to
20% and 2% for linear and square particles, respectively, for μ � 64, fixed time, and constant w. All θ vs log t

plots have approximately the same shape, but other quantities measured at times of order tM help to distinguish
narrow and broad incident distributions. The adsorbed particle-size distributions are close to the incident ones
up to long times for small w, but appreciably change in time for larger w, acquiring a monotonically decreasing
shape for w = 1/2 at times of order 100τ . At tM , incident and adsorbed distributions are approximately the
same for w � 1/8 and show significant differences for w � 1/2; this result may be used as a consistency test in
applications of the model. The pair correlation function g(r,t) for w � 1/8 has a well defined oscillatory structure
at 10tM , with a minimum at r ≈ μ and maximum at r ≈ 1.5μ, but this structure is not observed for w � 1/4.

DOI: 10.1103/PhysRevE.94.022802

I. INTRODUCTION

Models of random sequential adsorption (RSA) describe
real processes in which atoms or molecules sequentially adsorb
on a substrate to form a monolayer or a multilayer [1,2]. A
broad range of applications include adsorption of colloidal
particles [2,3] and of proteins [4,5] on various substrates,
growth of atomic islands of metals or semiconductors [6],
functionalization of semiconductor surfaces with molecular
monolayers [7], etc. The RSA models may consider one or
more species of adsorbing particles, different particle shapes,
discrete or continuous size distributions, and include other
surface processes such as diffusion and desorption [1,2,8–10].

Polydispersity of incident particle size is observed in a
large number of processes, especially in (but not restricted
to) colloidal particle and macromolecule deposition. The
simplest RSA models that account for polydispersity effects
are those with binary particle-size distribution [11–15], which
were already used to explain real system properties [16,17].
Uniform distributions of particle size were also considered
in continuum [18,19] and lattice [20–22] models, showing
interesting features such as the effects of particle shape on the
maximal surface coverage and on the form of concentration
decay. For some applications, models of polydisperse mixtures
with power-law size distributions were also proposed [23,24].
Surface diffusion and desorption were neglected in most cases.

RSA of mixtures of spheres and disks with Gaussian size
distributions were also studied in Refs. [25–27]. Some im-
portant conclusions from those works were the increase of the
adsorption rate and the shift of the adsorbed particle-size distri-
bution peak as the width of the incident distribution increased.
These results helped to interpret data for polystyrene nanopar-
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ticle adsorption on charged layers over silicon substrates [28].
Recent works also model adsorption of silver and hematite
nanoparticles by RSA of polydisperse mixtures [29–31].

The aim of the present work is to study related RSA
problems on lattices, in which submonolayers are formed
by adsorption of particles with sizes following discretized
Gaussian distributions. Two limiting cases of particle shape
are considered separately, namely linear segments and filled
squares. Broad ranges of the average lateral size and of the
width-to-average ratio are considered to model the incident
flux. The evolution of the coverage shows that plots of this
quantity as function of log t have maximal slopes in narrow
time ranges, which are related to the incident flux, with weaker
effects of particle shape, average size, and distribution width.
This feature may be used, for instance, to estimate orders
of magnitude of molecular flux or sticking coefficients. The
adsorbed particle-size distributions are also analyzed and the
ranges of time and distribution widths in which they are similar
to the incident ones are presented. For large widths and times
not very long, the adsorbed distributions are monotonically
decreasing. The pair correlation functions of the adsorbates
are also analyzed and may be used to distinguish cases of
narrow and broad incident size distributions.

The rest of this work is organized as follows. In Sec. II, we
present the RSA models, information on the simulations, and
the quantities to be analyzed. In Sec. III, we present results for
RSA of polydisperse mixtures of linear particles. In Sec. IV, we
present results for RSA of polydisperse mixtures of squares.
Section V summarizes our results and present our conclusions.

II. MODEL, SIMULATIONS, AND BASIC QUANTITIES

A. The RSA models

The substrate in which particles adsorb is a square lattice in
the xy plane. The edge of a lattice site is a, with corresponding
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FIG. 1. (a) Example of linear (left) and square (right) particles
with indication of their dimensionless sizes s and of the size a of the
lattice site. (b) Incidence of linear particles in a partially filled lattice
showing cases of accepted and rejected adsorption trials.

site area a2. Adsorption of two types of particles are separately
considered, namely linear particles and filled squares, which
are illustrated in Fig. 1(a).

The particles sequentially incide at randomly chosen
surface positions, moving in the z direction. A particle attaches
to the surface only if all target sites are empty, i.e., if all
positions (x,y) occupied by the incident particle correspond to
empty sites at the substrate. Otherwise, the adsorption attempt
is rejected. Accepted and rejected adsorption attempts on a
line are illustrated in Fig. 1(b).

The length of a linear particle is sa, where s is the number
of sites that it occupies. The size s is chosen from a Gaussian
distribution of average μ and width σ :

Q(s) = 1√
2πσ 2

exp

[
− (s − μ)2

2σ 2

]
. (1)

Note that s, μ, and σ are dimensionless quantities; alterna-
tively, they are lengths given in units of the lattice constant
a. Only integer values of s between s = 1 and s = 2μ are
chosen in our simulations, thus the normalization factor is
slightly different from that in Eq. (1). The width-to-average
ratio,

w ≡ σ/μ, (2)

is the main quantity to characterize the shape of Q(s) and
consequently the degree of polydispersity. Hereafter, Q(s) is
simply called incident distribution.

In the deposition of a square particle, a discretization of
Q(s) is also used to choose the lateral size s of the incident
square. This particle has s2 sites and area s2a2.

The basic time unit τ is the time necessary to fill the whole
substrate if all adsorption attempts are accepted. The complete
filling of the substrate would be achieved, for instance, if the
incidence of particles was ordered instead of random, so that no
holes remained between the adsorbed particles. In a lattice with
lateral size L (in lattice units), there are L2/μ attempts of linear
particle adsorption in the time interval τ , and L2/μ2 attempts
of square particle adsorption. The maximal adsorption rate (in
an empty lattice) is 1/τ , in number of monolayers per second.
Due to the rejection of adsorption attempts (excluded volume
effect), the actual adsorption rate is smaller than this value and
decreases in time.

The deposition time is denoted as t , but the model results
will be presented as function of the dimensionless time,

tD = t

τ
, (3)

where tD is the number of incident monolayers. Reference
to real time t will be usually left to discussion of possible
applications.

Our model does not consider diffusion of adsorbed particles
nor desorption. This static RSA assumption is supported by
works on submonolayer growth with collective diffusion of
adatoms at low temperatures [32]. The assumption may be
justified at higher temperatures if the linear or square particles
represent large molecules or colloidal particles whose energy
barriers for diffusion are much larger than those of metal or
semiconductor adatoms. The energy barrier for desorption
is usually larger than that for surface diffusion, thus the
no-desorption condition is also reasonable. A recent work on
electrostatic adsorption of silica nanoparticles onto Si wafers
also supports the use of irreversible RSA models [33].

For possible experimental tests, the model parameters can
be related to the average particle flux F , which is defined as
the number of incident particles per unit time and unit area.
The flux of linear particles is

Flin = 1

μτa2
. (4)

For square particles, the flux is

Fsq = 1

μ2τa2
. (5)

B. Basic quantities and simulation procedure

The simplest quantity to be compared with experimental
data is the surface coverage θ , defined as the fraction of the
surface covered with adsorbed particles. Letting m(�r,t) be the
occupation number of a site at position �r at time t , with m = 1
for occupied and m = 0 for unoccupied, we have

θ (t) = 〈m(�r,t)〉, (6)

in which the average is taken over all �r in the xy plane and
different realizations.

In experimental works, the surface coverage is usually given
as an areal density of particles ρ, which is the number of
molecules adsorbed per unit area. For linear particles, it is
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given by

ρlin ≡ N

A
= θ

μa2
, (7)

and for square particles, it is given by

ρsq ≡ N

A
= θ

μ2a2
. (8)

Information on the adsorption dynamics can also be
extracted from the size distribution of adsorbed particles,
P (s,t), which is defined as the fraction of adsorbed particles
with linear size s at time t . If the incident flux has no dispersion
(w = 0), we have P (s,t) = Q(s); however, in the polydisperse
case, those distributions are different. Hereafter, P (s,t) is
simply called adsorbed distribution.

Another important quantity is the pair correlation function

g(r,t) = 〈m(0,t)m(�r,t)〉 − θ2, r = |�r|, (9)

in which the average is taken over different origins 0 and
different realizations; the vector �r is taken only along the x

and y directions due to the symmetry of the square lattice. In
off-lattice RSA, g(r,t) is called radial distribution function
and averages are taken along all substrate directions. The
probability of finding an occupied site at distance r from
another occupied site is related to g(r,t), thus this quantity
measures the inhomogeneity of adsorbed mass distribution.
The pair correlation function is advantageous over the size
distributions for the applications of RSA because it does not
require the identification of the size of each adsorbed particle.

In our simulations, incident distributions with 4 � μ � 64
and 1/16 � w � 1/2 were considered for linear and square
particles. For each set of parameters, 103 different realizations
were used to calculate average values.

The simulation results for w � 32 presented here were
obtained in lattices with lateral size L = 4096 (in lattice units)
and periodic boundary conditions. Some simulations in larger
lattices (L = 8192) were also performed and showed very
similar time evolution of the coverage, which indicated that
finite-size effects were negligible. Thus, the results in lattices
with L = 4096 were representative of infinitely large lattices
with good accuracy. For w = 64, we present results in lattices
with L = 8192 because this was the size in which finite-size
effects became sufficiently small for linear particles. The
finite-size effects for square particle adsorption were always
smaller than those for linear particles with the same μ and σ ;
however, results for the same lattice sizes are presented for
both particle shapes.

Figure 2 shows the coverage evolution for linear and square
particles with μ = 64 and different values of σ in lattices with
L = 8192 and L = 16 384. The agreement of results in these
sizes indicates that the smaller one can provide representative
results for all large lattices.

III. ADSORPTION OF LINEAR PARTICLES

A. Adsorbate configurations and coverage evolution

Figures 3(a)–3(c) show snapshots of a part of the surface
at three different times during adsorption of particles with
μ = 16 and w = 1/16 (σ = 1), which is a case of low
polydispersity. At short times [Fig. 3(a)], spatial ordering
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FIG. 2. Check of finite-size effects by comparison of the coverage
evolution in lattices with L = 8192 and L = 16 384 of linear particle
RSA with μ = 64 and w = 1/16 and square particle RSA with μ =
64 and w = 1/2.

can be observed at length scales of the same order of the
average particle size μ, since series of particles are aligned at
neighboring rows or columns (constant x or y). The formation
of domains of aligned particles becomes clearer as time and
coverage increase [Figs. 3(b) and 3(c)].

At tD ∼ 1, the coverage typically exceeds 20%, thus a
particle adsorbed in a given direction creates a large zone
of exclusion for adsorption in the perpendicular direction.
On the other hand, adsorption of aligned particles is allowed
in that zone, which leads to the short-range ordering. In
on-lattice RSA models, the domains of aligned particles were
first observed by Manna and Svrakic [34] and were recently
illustrated in Ref. [35]. They were also shown in studies of
anisotropy effects [22,36] and in off-lattice RSA [37–39].
These configurations resemble the nematic ordering observed
for high densities in thermodynamic equilibrium adsorption of
linear particles [40–44]. However, no long-range order and no
phase transition is present in the irreversible RSA models.

Figures 3(d)–3(f) show snapshots of a part of the surface
during adsorption of particles with μ = 16 and w = 1/2
(σ = 8), which is a case of high polydispersity. Due to the
enhanced flux of small particles, the aligned particle domains
are smaller. As time increases, this short-range ordering is not
enhanced.

Figures 4(a) and 4(b) show the time evolution of the
coverage for w = 1/16 (low polydispersity) and w = 1/2
(high polydispersity), respectively, with several average sizes
μ in each case. These plots show the typical downward
curvature of irreversible RSA problems because the fraction of
the surface available for adsorption of new particles decreases
as t (and θ ) increases.

The asymptotic coverages are θ∞ = 1 because the
monomer flux is nonzero in all distributions, which will
eventually lead to complete filling. However, at the maximum
simulated time tD = 1000, the coverage is near 1 only for
the smallest μ (=8) and the largest w (=1/2) because this
condition provides a high monomer flux.

022802-3



R. C. HART AND F. D. A. AARÃO REIS PHYSICAL REVIEW E 94, 022802 (2016)

w=1/16  (a) tD = 1 (b) tD = 10 (c) tD = 100

w=1/2  (d) tD = 1 (e) tD = 10 (f) tD = 100

FIG. 3. Time evolution of adsorbate configurations with linear particles with: (a)–(c) μ = 16 and w = 1/16; (d)–(f) μ = 16 and w = 1/2.

B. Time scaling of the coverage

For tD 
 1, the coverage is very small, thus almost all
adsorption attempts are accepted. For tD ∼ 1, the coverage
reaches values between 0.1 and 1; in this case, the increase
of coverage is slower due to the rejection of many adsorption
attempts. For tD � 1, the coverage is large (of order 1), thus
adsorption of new particles is rare and θ increases very slowly.
The linear plots of Figs. 4(a) and 4(b) highlight the third
regime; the first two regimes are hidden in a very narrow
region near the vertical axis.

The exactly solvable problem of RSA of monomers show
the same regimes [1]. The coverage in monomer RSA is
θ (tD) = 1 − exp (−tD). In that case, plots of θ as function

of log (tD) are more helpful to distinguish the different scaling
regimes discussed above. The slope of a θ × log (tD) plot is

S ≡ dθ

d(log tD)
= tD

dθ

dtD
. (10)

In RSA of monomers, we obtain S = tD exp (−tD), which has
a peak at tD = 1 (t = τ ). Thus, the largest slope of that plot
may be used to estimate τ , which in turn is related to the
molecular flux.

Figures 5(a) and 5(b) show the same data of Figs. 4(a)
and 4(b) for linear particle RSA with the abscissa replaced by
log (tD). Figures 5(c) and 5(d) show θ as function of log (tD)
for μ = 8 and μ = 64, respectively, with four different values
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FIG. 4. Coverage evolution of linear particle RSA with (a) w = 1/16 and (b) w = 1/2, for several values of μ.
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FIG. 5. Coverage evolution of linear particle RSA in log-linear scale with fixed w and variable μ (a, b) and fixed μ and variable w (c, d).
The insets show the time evolution of the slope S of the main plots.

of w in each case. The time evolution of S is shown in the
insets of Figs. 5(a)–5(d) for the same parameters of the main
plots.

The dimensionless time tS is defined as that of the maximal
value of S. The insets of Figs. 5(a)–5(d) confirm the conclusion
that tS is always of order 1, similarly to the RSA of monomers.
A careful inspection of the peaks of S gives

0.2 < log (tS) < 0.7 (11)

for all values of μ and w.
The corresponding real times of the peaks of S are denoted

as tM ≡ τ tS ; they are approximately in the range 1.5τ < tM <

5τ . The extreme values of this range are characteristic of the
broadest distributions (w = 1/2). For fixed μ, the increase of
w leads to a small shift of tS to larger values; for fixed w, the
increase of μ also leads to that shift.

The range of the coverage in which the peak of S is
observed is between θmin ≈ 0.2 and θmax ≈ 0.5. In most cases,
the coverage at tS is near θS ∼ 0.3.

The universal location of the peaks of the slope S is a
remarkable feature of these RSA models and may be explored
in applications. For instance, consider an adsorption process
in which the peak of dθ/d(log t) is measured at (real) time t =

tM = τ tS . Equation (11) may be inverted to give an estimate
of τ as

0.2tM < τ < 0.7tM. (12)

Now τ can be related to the molecular flux and to the sticking
coefficient by Eq. (4). If the average size μ and the lattice
constant a are also known, then Eq. (4) gives an estimate
of Flin.

If this estimate differs from the value of Flin predicted by
the properties of the surrounding gas or solution, a possible
explanation is the existence of a sticking coefficient c < 1.
This coefficient is the probability that the adsorption of the
incident particle actually occurs when it is not forbidden by
the excluded volume condition; in our simulations, c = 1 was
assumed.

The estimate θS ∼ 0.3 can be used with Eq. (7) to find
an order of magnitude of the adsorbed mass. From Eq. (7),
the total number of adsorbed particles in a substrate area A is
N ∼ 0.3A/(μa2). Thus, if the total adsorbed mass is M and the
average particle mass is MP , we obtain M ∼ 0.3MP A/(μa2)
at t = tM .

Note that these results are valid for any average particle size
μ and relative width w. Although they do not predict accurate
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FIG. 6. Long time evolution of the coverage for (a) w = 1/16 and (b) w = 1/2 for several values of μ.

values, the knowledge of orders of magnitude of the quantities
involved may be a first step to improve experimental work or
modeling of a given process.

C. Extrapolation of the surface coverage

The convergence to the asymptotic coverage θ∞ = 1 is
expected to be exponential, similarly to other irreversible RSA
problems on lattices [1,20,46]:

θ = 1 − C exp (−tD/tR), (13)

where C and tR are constants.
Figure 6 shows log (1 − θ ) as function of tD for some values

of μ and w. An approximately linear decrease of log (1 − θ ) is
observed at the longest times, typically starting at tD between
500 and 700. We estimated the parameters tR and C in Eq. (13)
from linear fits and show the values of tR in Table I; the values
of C (not shown) are in the range [0.276,0.416].

These data clearly show that the relaxation time tR increases
as w decreases and μ increases. The constant C has the same
dependence on w and μ, but with much smaller variation. In
all cases, a faster relaxation is expected for a larger flux of
monomers and other small particles, since they are able to fill
the narrow gaps between the previously adsorbed particles.
Also note that tR is much larger than the maximal simulated
time tD = 1000 in most cases; this is consistent with the large
differences from full coverage in most of our data. However,
this also means that the uncertainties in the estimates in Table I
become larger; this is the probable reason why the trend of tR

TABLE I. Relaxation time tR of linear particle RSA.

μ\w 1/16 1/8 1/4 1/2

8 9530 2790 450
16 22 700 10 500 4150 1270
32 23 700 11 100 5050 2260
64 23 600 11 400 5500 3090

increasing with μ apparently fails for the largest particle sizes
with w = 1/16.

Better fits of 1 − θ may be obtained with stretched
exponential decays similar to those proposed in Refs. [21,45].
However, the present problem fits the theoretical approach
of Ref. [46], which supports the simple exponential form in
Eq. (13). For this reason, we understand that the deviations
from the linear behavior in Fig. 6 are indicative of scaling
corrections to Eq. (13). Such corrections may help to explain
the deviations from the expected trends in the estimates of long
times tR discussed above.

For fixed w, the average size μ has a significant effect
on the coverage at tD ∼ 1 or longer, as shown in Figs. 5(a)
and 5(b). At tD � 1, the general trend is that θ decreases
as μ increases. This effect is more pronounced for broad
distributions (Fig. 5(b); w = 1/2).

For fixed tD and w, limμ→∞ θ = θn is finite, where θn

is the coverage of infinitely long needles. This limit is not
equivalent to off-lattice aggregation of needles because here
the adsorption is restricted to the x and y directions. In order
to estimate θn(t), we assume that

θ = θn + C ′μ−α (14)

for fixed w and tD . In Figs. 7(a) and 7(b), we show θ as function
of μ−α for different values of w and tD , with exponents α

chosen to provide the best linear fits of each data set. Those
fits give the coverage θn in the limit μ → ∞ (μ−α → 0).
Table II shows the estimates of θn and the fitting exponents α

for various w and times tD = 10 and tD = 100.
The coverage for the maximal simulated size μ = 64 is

also shown in Table II for comparison with θn. The relative
difference between them ranges from 5% to 20%. Since the
above extrapolations considered a restricted range of values of
μ, the estimates of θn may also have a large uncertainty. Thus,
the coverage for the largest simulated size, μ = 64, may be
very different from that of larger μ.

On the other hand, in the region of the peaks of S (Fig. 5),
the changes in the coverage are much larger than 20%. Thus,
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FIG. 7. Extrapolation of coverage as function of particle size at fixed tD and w according to Eq. (14). The fitting exponents α are shown in
Table II.

the value of log tS in Eq. (11) (and consequently the order of
magnitude of tS) is not expected to have significant change for
other values of μ and w.

D. Adsorbed particle-size distributions

Figures 8(a)–8(c) show the adsorbed distributions P (s,t) as
function of the particle size s at several times for μ = 64 and
three values of w.

If the incident distribution has small width (w = 1/16;
Fig. 8(a)), the difference from the adsorbed distribution is
small up to long times. The coverage at tD = 1000 is θ ≈ 0.7.
Possibly there will be significant changes in P (s,t) when θ

is close to 1, but this regime is expected to be observed

TABLE II. Estimated coverage θn of infinitely long lattice
needles, fitting exponents α, coverage θ (μ = 64) of the largest
simulated linear particles, and relative difference �θ between those
coverages, for the indicated distribution widths w and times tD .

tD 10 100

w 1/2 1/4 1/16 1/2 1/4 1/16
θn 0.3698 0.4227 0.4330 0.5961 0.6432 0.6165
α 0.58 0.54 0.45 0.67 0.69 0.49
θ (μ = 64) 0.4419 0.4894 0.5147 0.6559 0.6792 0.6667
�θ (%) 16.3 13.6 15.9 9.1 5.3 7.5

at times longer by several orders of magnitude. For an
intermediate distribution width (w = 1/4; Fig. 8(b)), a small
shift of the adsorbed distribution peak to s < μ is observed
at tD = 1; at tD ≈ 100, broadening of the distribution begins,
still accompanied by the shift of the peak to smaller s. For
the largest width (w = 1/2; Fig. 8(c)), a significant shift of
the distribution peak is observed at tD ≈ 1. Subsequently,
a secondary peak at s = 1 (monomers) appears and the
distribution acquires a monotonically decreasing shape at
tD � 100.

The shift of the peak to smaller sizes and the broadening
of the distribution (here observed for w � 1/4) parallel the
features reported by Meakin and Jullien [25] for RSA of disks
and by Adamczyk et al. [26] for RSA of spheres with Gaussian
distributions of incident sizes. Recently, Marques et al. [27]
studied the RSA of polydisperse disks on patterned substrates,
showing adsorbed distributions with a secondary peak in small
s at short times and a monotonically decreasing shape at long
times. This is similar to our findings for w = 1/2. However,
in lattice RSA, the monotonic decay was formerly observed
only with uniform incident distributions [18,20,28] and was
independent of the distribution width and deposition time.

Size distributions with a peak at small sizes or showing a
monotonic decrease are frequently observed in temperature-
driven coarsening. This is illustrated, for instance, in one-
dimensional island coarsening without deposition [47] and in
submonolayer growth dominated by surface diffusion [48].
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FIG. 8. Solid curves are adsorbed distributions of linear particles
with incident average size μ = 64 and several values of width w and
time tD . The dotted curves are the incident distributions Q(s).

In general, high temperature favors those features, thus they
may be interpreted as disorder effects. In the athermal RSA
models, disorder is represented by the width w of the incident
distribution.

Since the peak of the coverage derivative S is located at
the universal region 1.5 < tS < 5 [Eq. (11)], it is interesting
to investigate the adsorbed distributions in this time interval.
For w � 1/8, that distribution is still very close to the incident
one. For w = 1/4, P (s,tS) has an approximately Gaussian
shape, but with a small shift of the peak to s < μ [Fig. 8(b)].
For w = 1/2, significant broadening and formation of a peak
at small s is observed in that time range. In real adsorption
processes, incident and adsorbed distributions at t = tM may
be compared and used to check the applicability of this model.
However, estimating P (s,t) may be a difficult task because it
is necessary to measure the individual sizes of tightly packed
particles. Moreover, the size distribution statistics is frequently
poor due to the small number of samples and small image sizes.

Our simulations are limited to tD � 1000, but we may
speculate about the distributions at much longer times. The
jamming coverages θjam(μ) for RSA of linear particles of fixed
size μ [49] are helpful for this discussion: θjam(2) ≈ 0.91,
θjam(8) ≈ 0.75, θjam(16) ≈ 0.71, θjam(32) ≈ 0.689, θjam(64) ≈
0.68. Inspection of Fig. 4 shows that all these values have been
exceeded in RSA of our polydisperse mixtures at tD = 1000,
thus it is very difficult that particles with size s ≈ μ can adsorb
at longer times. Adsorption at longer times is consequently

dominated by small particles, with s 
 μ, which will cover
the remaining empty sites (20% to 30%). Since the jamming
coverage for dimers (μ = 2) is ∼ 10% below the full coverage,
we expect that full coverage occurs with a monomer fraction
of this order.

In cases of broad incident distributions, e.g., w = 1/2, we
expect that the monotonic decay shown in Fig. 8(c) is enhanced
at much longer times. In cases of narrow incident distributions,
e.g., w = 1/16, the densities of large adsorbed particles at
tD = 1000 is large (P ≈ 0.1 and half-width �s ≈ 10). Thus,
we expect that the peak of the adsorbed distribution in Fig. 8(a)
is slowly shifted to smaller s as time increases, but it is not
expected to disappear. Instead, near full coverage, this peak
is expected to exist together with a monotonically decreasing
region beginning at s = 1.

E. Pair correlation function

Figures 9(a)–9(c) show g(r,t)/g(0,t) as function of the
scaled distance r/μ for several times and several values of
μ and w. The results for μ = 8 are quantitatively similar,
thus the results in Figs. 9(a)–9(c) are representative of linear
particles of all lengths. Those plots highlight features for r

on the same order of magnitude of μ, similarly to works on
models with continuous size distributions [2].

For w = 1/16 [Fig. 9(a)], g monotonically decreases at
short times and acquires a minimum at r ≈ μ at tD ≈ 10. This
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FIG. 9. Scaled pair correlation as function of the scaled distance
for linear particles with average incident size μ = 64 and several
values of width w and time tD .
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minimum remains at longer times, up to coverages near 70%
that are obtained at tD = 1000. The typical size of blocks of
ordered particles is close to the average length μ, as illustrated
in Figs. 3(a)–3(c). This is the typical distance between regions
of filled and empty sites, thus the minimum of g(r) is a
consequence of the ordering of adsorbed particles. The typical
distance between the first minimum of g and the subsequent
maximum is �r ∼ 0.5μ because the depleted regions range
from one lattice site to the average incident size μ. Similar re-
sults are observed in adsorption of monodisperse particles [36].

For w = 1/4 [Fig. 9(b)], the correlation function has a very
shallow minimum at tD ≈ 10. The shift of this minimum to
smaller r/μ is significant as time increases, but the depth is
still very small. For w = 1/2, shallow minima of g with faster
displacement to smaller r/μ are observed.

In the time range of tS [Eq. (11)], the minimum of
g is beginning to be formed if w � 1/8. Inspection of g
at tD = 10tS is necessary to confirm the presence of this
minimum. This feature may be used to identify a narrow
incident distribution, with an upper bound for the width close
to 1/8. For w � 1/4, it is very difficult to identify some
oscillatory structure in g at times of order 10tS or longer. In
this case, this flat shape of g(r,tS) gives a lower bound ≈1/4
for the width of the incident size distribution.

The study of the pair correlation function is suitable for this
type of investigation because it does not require identification
of sizes of individual adsorbed particles, in contrast to the
comparisons of size distributions. g(r,t) is also advantageous
over the coverage because it probes spatial organization.

IV. ADSORPTION OF SQUARE PARTICLES

A. Adsorbate configurations

Figures 10(a)–10(c) show snapshots of a part of the surface
at three different times during adsorption of particles with

μ = 16 and w = 1/16 (σ = 1), which is a case of low
polydispersity. The short-range structure differs from that
of linear particles because there is no alignment. However,
the inhomogeneity of mass distribution is similar: there are
depleted regions with lateral sizes between 1 and μ in which
particles with the average size cannot adsorb.

Figures 10(d)–10(f) show snapshots of a part of the surface
at three different times during adsorption of particles with
μ = 16 and w = 1/2 (σ = 8), which is a case of high
polydispersity. The much higher flux of small particles fills
the gaps between particles of average size, thus the adsorbate
is more homogeneous, particularly for the longer times.

B. Coverage evolution

Figures 11(a) and 11(b) show the time evolution of the
coverage for w = 1/16 and w = 1/2, respectively, with
various average sizes μ in each case. Figures 11(c) and 11(d)
show the time evolution of θ for μ = 8 and μ = 64, respec-
tively, with various widths w in each case. The plots with
logarithmic timescale also show regions of maximal slopes
for tD ∼ 1, similarly to the adsorption of linear particles. This
is confirmed in the insets of Figs. 11(a)–11(d), which show the
evolution of the slope S.

If w is fixed and μ increases, a small shift of tS to shorter
times is observed, in contrast with the linear case. The same
shift is observed if μ is fixed and w increases. However, the S

peaks are also located in a narrow range of tD in logarithmic
scale; for all values of μ and w studied here, we obtain

−0.5 < log (tS) < 0. (15)

The coverages in this time interval range from ≈ 0.1 to ≈ 0.3,
thus the typical value of the coverage at tS is of order θS ∼ 0.2.

w=1/16  (a) tD = 1 (b) tD = 10 (c) tD = 100

w=1/2  (d) tD = 1 (e) tD = 10 (f) tD = 100

FIG. 10. Time evolution of adsorbate configurations with square particles with: (a)–(c) μ = 16 and w = 1/16; (d)–(f) μ = 16 and w = 1/2.
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FIG. 11. Coverage evolution of square particle RSA in log-linear scale with fixed w and variable μ (a, b) and fixed μ and variable w (c, d).
The insets show the time evolution of the slope S of the main plots.

If this model is applied to an adsorption process in which
the peak of d(θ )/d(log t) is measured at real time tM ≡ τ tS ,
then Eq. (15) leads to 0.3τ < tM < τ . This relation can be
inverted to give the estimate

tM < τ < 3tM. (16)

The time τ can be related to the molecular flux by Eq. (5); if
this flux is known, then a sticking coefficient may be estimated.

The above estimate of θS and Eq. (8) give the total number of
adsorbed particles in a substrate area A as N ∼ 0.2A/(μa)2

at t = tM . If the total adsorbed mass is M and the average
particle mass is MP , we obtain M ∼ 0.2MP A/(μa)2. These
results are valid for any μ and w, but again they relate only
the orders of magnitude of those quantities.

Figure 12 compares the coverage evolution with linear and
square particles with the same incident size distributions Q(s).
At short times (tD ∼ 1), θ is larger with squares. In this regime,
most of the substrate is empty, thus the adsorption of a single
square of s2 particles is highly probable and instantaneously
blocks a region of lateral size s for future adsorption. On the
other hand, in linear particle adsorption, the same increase
of the coverage in the same region requires adsorption of s
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FIG. 12. Comparison of the coverage evolution in linear and
square particle RSA with average incident size μ = 32 and small
and large distribution widths.
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TABLE III. Relaxation time tR of square particle RSA.

μ\w 1/16 1/8 1/4 1/2

8 12 500 5160 2120
16 25 200 13 900 7190 4220
32 25 600 15 200 8450 5870
64 27 800 15 700 9200 6900

aligned particles of size s, which occurs after rejection of
several adsorption attempts (e.g., rejection of particles aligned
in the orthogonal direction). At long times (tD ∼ 10 or larger),
the opposite trend is observed: linear particle deposition gives
larger θ . In this case, it is easier for several linear particles to
find room for adsorption if compared to a square of the same
lateral size.

C. Extrapolations of surface coverage

The simple exponential decay of Eq. (13) is also expected
to describe the coverage variation at long times because the
square particle RSA is consistent with the theoretical approach
of Ref. [46]. However, the deviations are larger than those of
linear particle adsorption up to tD = 1000, which indicates the
presence of huge scaling corrections to the form in Eq. (13).

Despite these concerns, we estimated the relaxation times tR
from linear fits of log (1 − θ ) × tD and show them in Table III.
We observe that tR increases with μ and decreases with w,
which is again consistent with a faster relaxation when the flux
of monomers and other small particles increases. However, all
tabulated values of tR are larger than the maximal simulated
time, which suggests the possibility of deviations at much
longer times.

Figures 11(a) and 11(b) show that the average size μ has
a small effect on the coverage if the ratio w is constant and
tD � 10. The general trend is θ to decrease as μ increases, for
fixed t and w. Comparison of data for constant μ and varying
w [Figs. 11(c) and 11(d)] also show a small effect of w up
to tD ∼ 100. These results contrast with the RSA of linear
particles, in which a significant dependence of the coverage
on μ and w was observed at tD ∼ 1 or longer.

For fixed time and fixed w, the dependence of θ on μ

also fits Eq. (14), with θn(t) interpreted as the coverage of
infinitely large squares at time t . Table IV shows the estimates
θn obtained in the extrapolations performed for various w

and times tD = 10 and tD = 100. The fitting exponents α

TABLE IV. Estimated coverage θn of infinitely large squares,
fitting exponents α, coverage θ (μ = 64) of the largest simulated
square particles, and relative difference �θ between those coverages
for the indicated distribution widths w and times tD .

tD 10 100

w 1/2 1/4 1/16 1/2 1/4 1/16
θn 0.4634 0.4815 0.4840 0.5719 0.5823 0.5550
α 1.01 1.06 0.99 1.05 1.04 0.98
θ (μ = 64) 0.4709 0.4878 0.4911 0.5837 0.5918 0.5636
�θ (%) 1.6 1.3 1.4 2.0 1.6 1.5

[Eq. (14)] are also shown in Table IV. The small variation
of θ with μ indicates that results for the largest size μ = 64
represent quantitatively the RSA of squares with much larger
sizes. This is an important result to justify the generalization
of our estimates of tS and θS to any w and μ.

Estimates of jamming coverages in lattice RSA of squares
of fixed size (monodisperse) are provided in Refs. [50–52]:
for size μ = 30, it is θjam = 0.574, and for infinitely large
squares, extrapolations give θjam = 0.564. This shows a small
dependence on the size μ, similarly to our results. In RSA of
parallel squares in the continuum, the jamming coverage is
θcont = 0.562 [53]. At tD = 100, our estimates of θn for w =
1/4 and w = 1/2 exceed the jamming limit of infinite squares
in the lattice and of parallel squares in the continuum. For w =
1/16, our estimate is slightly smaller than that value, but the
difference is below 2%. Thus, even with small polydispersity,
a coverage near the jamming limits of lattice or continuum
squares of fixed size is reached at times of order 100τ .

D. Adsorbed particle-size distribution

Figures 13(a)–13(c) show the evolution of the adsorbed
distribution for μ = 64 and three values of w. The distributions
for smaller values of μ are approximately the same.

For a small width (w = 1/16; Fig. 13(a)), the difference
from the incident distribution is small up to long times. At
tD = 1000, only a small shift of the peak to s < μ is observed;
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FIG. 13. Solid curves are adsorbed distributions of square parti-
cles with incident average size μ = 64 and several values of width w

and time tD . The dotted curves are the incident distributions Q(s).
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the coverage at this time is θ ≈ 0.6. Again, the shape of the
adsorbed distribution may change at much longer times due to
the very slow adsorption of small particles. For width w = 1/4
[Fig. 13(b)], a small shift of the distribution peak is observed at
tD = 1. The shift is enhanced at longer times and broadening
of the distribution is clear at tD = 100. For the largest width
(w = 1/2; Fig. 13(c)), a significant shift of the distribution
peak is observed at tD ≈ 1, but it still has a shape similar to a
Gaussian; for tD ≈ 10, the monomer peak (s = 1) is formed,
and for tD ∼ 100, the distribution is monotonically decreasing.

In RSA of disks with Gaussian radius distributions [25], a
different shape of adsorbed distribution is observed for large
width-to-average ratio. For instance, for w = 0.175 and long
times, the initial peak is shifted to s slightly smaller than the
average radius 〈R〉 and a second, higher peak is developed
at s ∼ R/3. This peak is present because the available space
between the first adsorbed disks can be filled by other disks
whose radii are not much smaller than the average. This is
a particular feature of particles with rounded shapes. On the
other hand, in the RSA of squares on a lattice, the excluded
volume condition has a much more drastic effect, so that only
monomers (s = a) and other small squares can be adsorbed in
a dense region. This preferential adsorption of the minimum-
sized particles was formerly observed in continuum models
with uniform incident distributions [18,26].

The adsorbed size distribution at tS is similar to the incident
distribution for all values of μ and w up to w = 1/4 (recall
that tS < 1 for squares; Eq. (15)). Broadening and formation
of the peak at the monomer size are observed only for times
much longer than tS or for larger w (e.g., w = 1/2; Fig. 13(c)).

E. Pair correlation function

Figures 14(a)–14(c) show g(r,t)/g(0,t) as function of the
reduced distance r/μ for μ = 64, three ratios w, and several
times. The results for smaller values of μ are approximately
the same.

For w = 1/16 [Fig. 14(a)], a mininum of g begins to form
at tD ≈ 1 and is deeper at tD = 10, which is one order of
magnitude longer than tS . As t increases, the depth of this
minimum is reduced; this means that ordering of neighboring
filled and empty regions is reduced. On the other hand, the
maximum of g increases in time and is located at r ≈ 1.5μ; this
occurs because squares of size ≈ μ are separated by distances
ranging from 0 to μ, whose average is μ/2, similar to the case
of linear particles.

For w = 1/4 [Fig. 14(b)], a shallow minimum of g is
observed at tD = 1. The maximum is also reduced due to
the adsorption of particles of smaller sizes, particularly at long
times. For w = 1/2, the oscillatory structure of g disappears.

Since tS < 1, a minimum of g may be observed only for
very small w at tS (e.g., w = 1/16; Fig. 14(a)). The clear
oscillatory structure of g may be observed for w � 1/8, but at
times of order 10tS and longer.

V. DISCUSSION AND CONCLUSION

We studied RSA of particles on square lattices with
incident sizes following discretized Gaussian distributions
and with conditions of no diffusion and no desorption. The

-0.25

0

 0.25

 0.5

 0.75

1

0 1 2 3

g(
r)

/g
(0

)

r/μ

(a) w=1/16
tD=0.1

tD=1
tD=10

tD=100
tD=1000

-0.25

0

 0.25

 0.5

 0.75

1

0 1 2 3

g(
r)

/g
(0

)

r/μ

(b) w=1/4
tD=0.1

tD=1
tD=10

tD=100
tD=1000

-0.25

0

 0.25

 0.5

 0.75

1

0 1 2 3

g(
r)

/g
(0

)

r/μ

(c) w=1/2
tD=0.1

tD=1
tD=10

tD=100
tD=1000

FIG. 14. Scaled pair correlation as function of the scaled distance
for square particles with average incident size μ = 64 and several
values of width w and time tD .

RSA of linear particles and square particles were separately
considered.

We observed that plots of coverage as function of the
logarithm of time are suitable to determine the order of
magnitude of the monolayer deposition time τ . Those plots
have maximal slopes S at real time tM ∼ τ (dimensionless
time tS ∼ 1), similar to the exactly solvable case of RSA of
monomers. A detailed analysis of the peaks of S, including
effects of particle size and polydispersity, shows that 1.5τ <

tM < 5τ for linear particles and 0.3τ < tM < τ for square
particles. These particle shapes may be viewed as limiting
cases of the cross section of a large variety of nanostructures.
From the estimates of τ , the orders of magnitude of molecular
fluxes and/or sticking coefficients may also be estimated.

Extrapolations of coverage data show that results obtained
for average linear particle size μ = 64 are qualitatively similar
to those expected in much larger sizes, with possible discrep-
ancies up to 20%. For square particles, results for the largest
studied particle size μ = 64 are quantitatively reasonable for
any larger size. This suggests that square particle results may
be used as a first approximation in adsorption studies of
particles with other compact shapes and aspect ratios close
to 1.

The adsorbed particle-size distributions slowly change in
time for small relative widths w of the incident distribution
(w � 1/8) with both particle shapes. At long times (t ∼ 100τ
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or longer) and w = 1/4, a significant shift of the distribution
peak and broadening are observed. For w = 1/2, a monotoni-
cally decreasing distribution is observed at t ∼ 100τ because
most adsorbed particles are small.

Comparison of incident and adsorbed distributions at tS
(maximum of S) shows that they are similar for w � 1/8.
For w = 1/4, the adsorbed distribution is slightly shifted to
the left, and for w = 1/2 there are significant differences in
those distributions even at short times. The reliability of the
model for a given application may be tested by checking the
consistency with these features.

The pair correlation function g(r,t) is also able to distin-
guish small and large widths w in the RSA of linear and
square particles. For small incident widths (w � 1/8), the
minimum of g is beginning to be formed at tS . A clear
oscillatory structure, with a minimum at r ≈ μ and maximum
at r ≈ 1.5μ, is observed at times typically of order 10tS . For
linear particles, this structure is enhanced at much longer times
due to alignment effects, but the opposite trend is observed with
square particles.

Previous works have analyzed effects of polydispersity in
RSA models. Some of them considered Gaussian distributions
of incident particle size [25–28] in off-lattice RSA. However,
the present work is not a simple lattice extension of those RSA

models of Gaussian mixtures. It also advances by showing
how the properties of the coverage evolution can be combined
with the study of other quantities (e.g., size distributions and
correlation functions) to estimate characteristic times and sizes
and, possibly, physicochemical parameters such as molecular
flux and sticking probabilities. For this purpose, our analysis
focused on the model features at times of order τ instead of
long time features.

We believe that our approach may be useful for future
experimental work because it suggests a procedure to identify
the characteristic time τ and shows how the adsorbate features
at times of this order are related to polydispersity. Our results
may also be useful in future RSA studies, for instance, to
models including particle interactions, particle mobility, and
other particle shapes and substrate structures [54,55]. The
detailed study of features at times of order τ may also
be interesting in off-lattice (continuum) RSA, for instance,
considering the variety of particle shapes studied in recent
works for modeling compact and branched structures [56,57].
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