
PHYSICAL REVIEW E 94, 022616 (2016)

Insights from inside the spinodal: Bridging thermalization time scales with
smoothed particle hydrodynamics
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We report the influence of the strength of heat bath coupling on the demixing behavior in spinodal decomposing
one component liquid-vapor systems. The smoothed particle hydrodynamics (SPH) method with a van der Waals
equation of state is used for the simulation. A thermostat for SPH is introduced that is based on the Berendsen
thermostat. It controls the strength of heat bath coupling and allows for quenches with exponential temperature
decay at a certain thermalization time scale. The present method allows us to bridge several orders of magnitude
in the thermalization time scale. The early stage is highly affected by the choice of time scale. A transition from
exponential growth to a 1/2 ordinary power law scaling in the characteristic lengths is observed. At high initial
temperatures the growth is logarithmic. The comparison with pure thermal simulations reveals latent heat to
raise the mean system temperature. Large thermalization time scales and thermal conductivity are figured out to
affect a stagnation of heating, which is explained with convective processes. Furthermore, large thermalization
time scales are responsible for a stagnation of growth of domains, which is temporally embedded between early
and late stage of phase separation. Therefore, it is considered as an intermediate stage. We present an aspect
concerning this stage, namely that choosing larger thermalization time scales increases the duration. Moreover, it
is observed that diffuse interfaces are formed during this stage, provided that the stage is apparent. We show that
the differences in the evolution between pure thermal simulations and simulations with an instantaneously scaled
mean temperature can be explained by the thermalization process, since a variation of the time scale allows for
the bridging between these cases of limit.
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I. INTRODUCTION

The coexistence of separated phases, especially between
liquid and vapor, but also separation of liquid mixtures
or foam formation and growth, are fundamental dynamic
processes in our everyday life. However, it is not yet fully
clarified which physical processes are totally involved to
it. The understanding of the dynamics of phase separation
contributes to the understanding of even more complicated
systems, such as in colloidal suspensions or polymer solutions.
Still open issues concern the role of hydrodynamics and the
thermal evolution of the phases from the very beginning on,
when the fluid is still in the initial state and not separated.
For the purpose of demixing, an initially stable system is
quenched to an unstable state below the coexistence region.
The quench is typically driven by a temperature change via
coupling to an external heat bath, but also volume quenches
are technically feasible. The depth of the quench defines the
responding kind of demixing. Close beneath the coexistence
region the state becomes metastable, which is the case for
superheated liquids or supercooled vapor, and the separation
occurs as a rare event induced by statistical superposition of
fluctuations or by adding an external nucleus. As the quench
deepens the system becomes completely unstable and a special
type of phase separation takes place. It is called spinodal
decomposition, wherein the system isotropically initiates to
separate throughout the whole volume. A detailed review can
be found in Ref. [1].

Once separated, the type of coupling to an external heat
bath, computationally realized by so called thermostats [2], is
also a decisive factor in the further evolution of the system.
Thus, a very strong coupling results in isothermal systems [3]
or, at least, quasi-isothermal with thermal fluctuations [4].

However, there is strong evidence for nonisothermal behav-
ior [5,6]. Contrarily, very weak coupling allows for a pure
thermal treatment of the system, consequentially followed
by the latent heating of the system [5]. The comparison
between experimental practice [7,8] and numerical [5], but
also theoretical concepts [9], reveals a discrepancy. The limits
of both pure thermal and instantaneous scaling thermostats are
hardly realizable. Therefore, the most natural and closest to
experiment approach is to model a thermostat that allows for
time dependent temperature relaxation at a certain rate.

One approach for the theoretical description is to implement
all physical principles that are relevant to the dynamics
of phase separation. The demixing behavior of the system
naturally arises from the principles, such as the cohesive
pressure and covolume in the van der Waals (vdW) the-
ory [10] for liquid-vapor systems. These basic ideas of
vdW are further extended to binary mixtures, culminating in
the phenomenological Cahn-Hilliard (CH) equation [9,11].
The CH approach excellently reproduces the behavior of
isothermal systems, but it does not include hydrodynamic
interactions [12]. However, our approach is to describe the
fluid flow with the hydrodynamic equations, which are given
by a set of partial differential equations. The set is closed by
the vdW equation of state (EOS) [13,14]. This vdW approach
naturally provides surface tension and can intrinsically form
diffuse interfaces [6].

The dynamics of spinodal decomposition splits up in an
early and a late stage, even though they are not clearly
separated, and depends on the actual choice of system
parameters.

In the early stage spontaneous demixing occurs. The so
called “homophase fluctuations” arise and depend on initial
noise of density fluctuations. This growth of fluctuations
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happens very fast and is, therefore, hardly observable in ex-
periments. A discussion about the growth and the importance
of finite quench rates for realistic models can be found in
Ref. [1]. However, in the further evolution a stagnation in the
growth can occur, which is interpreted as an intermediate stage
[3,5,15–17]. The late stage manifests where the actually sepa-
rated domains begin to grow. The growth of the characteristic
length scale of the system can generally be described by
ordinary power law scaling. Various former theoretical studies
focus on predictions for the coarsening process in this late
stage and the driving physical processes [18–20], whereafter
the actual growth rates are given by the diffusion driven
Lifshitz-Slyozov (LS) growth [21] and the viscous (VH) and
inertial hydrodynamics (IH) growth regime [22]. A crossover
between regimes has been found [23]. Moreover, there is also
evidence for a connection between the actual local temperature
and the time of initialization of the hydrodynamic regime, such
that the regimes can even overlay each other [6]. Since many
investigations and comparisons exist concerning this late stage
and has become a well studied phenomenon, only few exist
for the early stage. Therefore, the main focus of our work will
be on the dynamics of the latter.

We use the smoothed particle hydrodynamics (SPH)
method for our simulations, which has several advantages in
the context of phase separation compared to other simulation
techniques. Thus, it allows us to directly follow the path of
the separated phases through the phase diagram. Furthermore,
the characteristic lengths of the domains are easily calculated
without difficult calculations via structure factor and Fourier
transforms [6]. Our simulation method expands the fund of
methods for realistic treatment of spinodal decomposition
and provides deeper insights to the physics involved in phase
separation processes.

II. METHOD

For this work a modification of Gadget-2 [24], a massively
parallelized tree based smoothed particle hydrodynamics
(SPH) code, is used, originally written for astrophysical
purposes. The modifications comprise a smoothing kernel, an
equation of state that provides phase separation, a thermal
conduction equation, and an SPH thermostat. Here, only a
brief summary of the governing equations and modifications
of the basic SPH algorithm is given. More detailed descriptions
of the concepts of SPH can be found in the latest reviews by
Springel [25], Price [26], and Monaghan [27].

A. Smoothed particle hydrodynamics

The SPH method is a Lagrangian based meshless particle
method, which means, that the interpolation grid is not fixed,
but given by comoving so called SPH particles, where every
particle is the origin of its own comoving reference frame. The
objective of SPH is to solve the hydrodynamic equations, a set
of partial differential equations. In Lagrangian formulation the
first is the continuity equation, which is described by

dρ

dt
= −ρ∇ · v, (1)

where ρ is the mass density, v is the velocity, and d/dt =
∂/∂t + (v · ∇) denotes the convective derivative. Depending

on whether viscosity is taken into account or not, the
momentum equation is called the Navier-Stokes equation, or
Euler equation, respectively, and is written as

dv
dt

= −∇P

ρ
, (2)

where P is the pressure. For the Navier-Stokes equation, P

can be understood as the stress tensor. It additionally has
viscous stress terms included. In contrast, in the case of the
Euler equation, P has only diagonal pressure entries. The
third equation corresponds to the first law of thermodynamics,
dU = δQ + δW , where δQ expresses the thermal exchange
with an external heat bath and δW is the work done in the
system, the energy equation. In hydrodynamics, it is mostly
described in terms of a specific internal energy u,

du

dt
= −P

ρ
∇ · v − 1

ρ
∇j, (3)

where j is the heat flux vector. Note that the traditional
formulation of SPH is adiabatic, and therefore there is no
heat exchange δQ = 0, although it is basically not obligatory
and will be used in this work for the implementation of a
thermostat. Thermal exchange within the simulation volume
is given by the heat flux vector j = κ∇T , where T is the local
temperature and the κ is the thermal conductivity.

Following the main idea of SPH, the simulation volume is
subdivided into a set of elements of a given constant mass m,
the SPH particles. Every SPH particle is spatially extended,
where a smoothing length h determines the width of the
smoothing profile, which is based on a Gaussian shaped kernel
function. In practice, the Gaussian distribution itself is not the
first choice, whereas normalized polynomials with compact
support are commonly used to enhance the computational
efficiency. Here, the Wendland C4 kernel

W (r,h) = 495

32π
(1 − r)6

+

(
1 + 6r + 35

3
r2

)
(4)

is used, where h is the smoothing length, r = |r|/h and
(·)+ = max(0,·) [28]. Thus the support of the kernel depends
only on h. The class of Wendland kernels has been shown to
yield excellent results and has outstanding features compared
to other common choices [29,30]. The smoothed particles
are penetrating each other and affect the behavior of their
neighboring particles, within the smoothing range. Instead of
integrating Eq. (1), the density is estimated by a summation
over all SPH particles, where the masses contribute to the
density with a weighting given by the kernel, thus, in practice,
only the neighboring particles need to be considered. The
estimation for a particle i reads as

ρi =
N∑

j=1

mjWij (hi), (5)

where Wij (hi) = W (ri − rj ,hi). One of the main advantages
of the method can be seen from Eq. (5). Since the number of
particles in the simulation volume is constant and the kernel
is normalized, the total mass of the system is conserved [26].
The smoothing length hi is usually adaptively chosen and
determined iteratively, such that the volume, defined by hi ,
encloses a constant mass [24], where the number of neighbors
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N has turned out to be a suitable initial parameter for this
calculation. Note that any physical quantity can be expressed
in an analogous way. The SPH expression of the spatial
derivatives from Eqs. (2) and (3), but also for any other physical
quantity, are also reduced to a sum, where the derivatives
only operate on the kernel function, since the quantity is only
scalar and the field properties are reduced to the kernel, of
which the derivative can easily be calculated analytically. In
the symmetrized formulation with adaptive smoothing lengths,
Eq. (2) reads as

dvi

dt
= −

N∑
j

mj

[
fiPi

ρ2
i

∇iWij (hi) + fjPj

ρ2
j

∇iWij (hj )

]
, (6)

where the fi are correction factors, defined by

fi =
[

1 + hi

3ρi

dρi

dhi

]−1

. (7)

The SPH expression for the change of internal energy in Eq. (3)
is subdivided into the work term,

dui

dt
= fiPi

ρ2
i

N∑
j

mj (vi − vj ) · ∇iWij (hi), (8)

and the heat term, which is the spatial derivative of heat
flux and, therefore, a second derivative of the tempera-
ture [6,31,32]. It is given by

dui

dt
=

N∑
j=1

mj

ρiρj

(κi + κj )(Tj − Ti)
rij

|rij |2 · ∇iW ij , (9)

where Wij = 1/2[Wij (hi) + Wij (hj )] is the arithmetic mean
between the two kernel values. The thermal conductivity κ is
modeled by a density dependency

κi = κ0ρi, (10)

where κ0 is a constant parameter [33]. The SPH method
is known to produce unphysical behavior in the presence
of shocks. In order to improve the method, the standard
implementation of artificial viscosity in Gadget-2 is used [24].
The main idea is to suppress unphysical behavior in shocks,
that arises when SPH particles approach each other. Artificial
viscosity acts like real physical viscosity by an interparticle
term

�ij = αv
sig
ij wij

2ρij

, (11)

which is added to the pressure in Eqs. (6) and (8), with the
artificial viscosity constant α = 1 and a signal velocity is
defined by v

sig
ij = ci + cj − 3wij with wij = vij · rij /|rij | (but

only if vij · rij < 0, otherwise wij = 0). The ci is an estimate
of the sound velocity and ρij is the arithmetic mean of ρi

and ρj . Note that artificial viscosity is only improving the
numerical stability and must not be confused with real physical
viscosity.

The set of hydrodynamic equations are closed by an
equation of state (EOS). In the context of phase separation
of one-component fluids, it is appropriate to follow the van
der Waals (vdW) approach [10,13,14], which is given by two

EOSs, namely the mechanic

Pi = ρikbTi

1 − bρi

− aρ2
i , (12)

and the caloric equation

ui = kbTi − aρi, (13)

where kb = 1, a = 2.0, and b = 0.5 are the reduced units
of the Boltzmann constant, the cohesive pressure, and the
covolume, respectively. The vdW theory predicts a certain
unstable region, of which a system, quenched into this region,
initiates to separate in liquid and vapor phases, where thermal
equilibrium is reached on the so called binodal curve of
phase coexistence. A quenched fluid becomes more and more
inseparable with increasing temperature culminating in the
critical point (Pc,Tc,ρc), where the state of the phase becomes
undefinable. The covolume and cohesive pressure can also be
expressed in terms of the critical point; see, e.g., Ref. [6].
The vdW EOSs have already been applied to SPH for droplet
formation, deformation, and coalescence [34–38]. All former
studies have in common that appropriate results were only
produced if the force calculation was split in long and short
ranging components, with unequal smoothing lengths. From
the SPH point of view, there is no explanation for this choice.
It is also one of the advantages that must be addressed to the
Wendland kernels, that produce excellent results without the
splitting procedure [6].

The time integration is done by the kick-drift-kick al-
gorithm. An adaptive time-stepping leapfrog scheme with
excellent conservation properties is used, where the time steps
are chosen individually, based on a binary hierarchy [24],
bounded by a maximum step size 	tmax. A detailed description
of the time-step conditions, used herein, can be found in
Ref. [6]

B. Thermalization by heat bath coupling

As mentioned in Sec. II A, it is not necessary to treat
the simulations as adiabatic, where δQ = 0, but to model
thermal exchange with an external heat source. These so called
thermostats are common methods to treat temperature realistic
in microscopic simulations, such as molecular dynamics (MD)
or Monte Carlo [2]. The transfer of thermostats from MD to
SPH is obvious, since the methods are very similar [39] and a
simple scaling thermostat has already been applied to SPH [6].
The time-scale thermostat, used in the present work, is inspired
by the Berendsen thermostat [40], a very common choice in
molecular dynamics simulations. The thermal evolution of the
mean temperature is given by the solution of the ordinary
differential equation

dT

dt
= 1

τ
(T0 − T ), (14)

where T is the arithmetic mean, τ is a constant that defines
the thermalization time scale, and T0 is the desired final mean
temperature. For the calculation of T , Eq. (13) is used to assign
a temperature to each SPH particle. The solution of Eq. (14)
depends on the integration time step 	t and is given by

T new = (T old − T0)e−	t/τ + T0, (15)
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where 	t = maxi 	ti and T new(t) = T old(t + 	t). The new
temperature T̃i of a particle i is then obtained by

T̃i = Ti

(
T new

T old

)
. (16)

Due to energy conservation in the time integration the particles
are only collectively updated according to Eq. (16) only at the
maximum size of time steps 	t .

Note, that for molecular dynamics (MD) the Berendsen
thermostat is known to suppress thermal fluctuations, which
is true for microscopic simulation methods, but for our
mesoscopic scheme, where only the overall mean temperature
is scaled by the exponential factor to the desired value, thermal
fluctuations are conserved.

If latent heat is released, then τ defines the half time of the
process where the heat is conducted to the heat bath.

C. Domain size analysis

The quenched system instantaneously initiates to separate
in two phases, the liquid and the vapor phase, respectively. A
quantity of interest is how the domain sizes evolves in time, that
expresses the extent of decomposition. A common method,
that is well established for spinodal decomposition of binary
mixtures, is the analysis via the structure factor [1], where
the mean domain size can be extracted from its first moment.
This is indeed an acceptable method when the density of the
phases is roughly the same and the concentration of two liquid
species is considered. However, liquid-vapor systems differ
in density and, therefore, the growth rates are also expected
to differ. Moreover, the mean domain size is not efficient
to characterize the dynamics of the system [41], especially
for liquid-vapor systems. Therefore, the characteristic length
shall be considered separately for each phase [6]. A natural
ansatz for the SPH method is to define a threshold density
value, usually the critical density ρc = 2/3, and divide in
liquid and vapor particles, il and iv , respectively. The mean
of minimum distances to the opposing phase is used to define
the characteristic lengths, that belong to the certain phases.
Thus, the characteristic length ξl for the liquid phase reads as

ξl(t) = 1

Nl

Nl∑
il

min
iv

[|ril (t) − riv (t)|], (17)

where Nl is the total number of liquid particles. Note that
the characteristic lengths obtained from this definition leads
to smaller values than those from conventional methods. For
example, a spherical liquid droplet in a vapor medium had
only a length of 1/4 of its diameter. However, the growth
rates are not affected by this fact and it is only a linear effect.
Furthermore, the analysis results are found to be in excellent
agreement with theoretical predictions [6].

D. Initial conditions

The particles are initially glasslike distributed. For this
purpose, a repulsive body force is applied to randomly
distributed particles, which evolve in time until a relaxed
state is obtained. Thereupon, the particles are further re-
laxed by applying the SPH algorithm to the particles at

a supercritical temperature, where the system is expected
to be stable. The initial configuration is distributed in the
described way with Ntot = 105 SPH particles, and T0 = 1.5.
The resulting homogeneous initial density ρ0 = 0.5 is used for
all simulations. This procedure has the advantage of very small
fluctuations with a standard deviation of σρ = 3.5 × 10−4.
Periodic boundaries are applied to a cubic box with side
lengths L = 1. Thus, the total mass is Mtot = ρ0 ∗ L3 = 0.5
and the particle mass is given by mi = Mtot/Ntot. The density
specific thermal conductivity is set to κ0 = 0.05, which causes
the restriction κ(ρ) = κ0ρ ∈ [0,0.1], because ρ � 2.0 due to
the vdW theory. In order to reduce numerical errors, it is
found that a reasonable maximum integration time step is
	tmax = 5 × 10−4, evolving up to tmax = 50, where all runs
are eventually in local equilibrium. The number of smoothing
neighbors for the kernel interpolation is set to N = 250.

III. SIMULATION RESULTS

The evolution of the early stage of spinodal decomposition
is usually described by the rise of fluctuations. So far, the
early stage received little attention compared to the late stage
of domain growth and coarsening. The time scale of the
thermalization shows to be responsible for the type of growth
in the early stage. Therefore, it indirectly affects also the
late stage. The process of thermalization also influences the
evolution of the mass fraction between the phases, where
shorter time scales lead to a faster mass allocation to the phases.
The density evolution is also affected. A slow thermalization
causes the once separated heated phases to evolve along the
coexistence curve, as long as the relaxation to the desired
temperature is in progress.

The simulations begin right after the instantaneous quench,
which is realized by setting both thermostat parameters,
namely the initial and the desired temperature T0, to a value
lower than the critical temperature, such that the system is
completely unstable. First, the deep quenches with T0 = 0.8
are presented, where the time scales τ , defined by Eq. (14),
are varied by several orders of magnitude between 10−4 and
101. Additionally, a pure thermal (PT) simulation without any
thermostat and a simulation with a scaling thermostat (ST)
are also performed to facilitate the comparison. Due to the
expectation that the dynamics are affected by the actual system
temperature, it is further examined by a comparison of several
off-critical quenches of varying depths. For this purpose, simu-
lations with the desired temperatures T0 = 0.6, 0.7, 0.8, 0.9,

and 1.0 are performed. For each temperature the time scale τ

is varied from 10−4 to 101 by factors of 10.
In Fig. 1 a comparison of the rendered densities of cross

sections from snapshots of the early stage of decomposition
for the T0 = 0.8 quench is shown up to t = 3.0, when the
phases are expected to already be separated and the late stage
of domain growth has started in all simulations. The snapshots
already reveal several features, which will be focused on in
more detail later. It becomes apparent that all simulations
are very similar in the early evolution, whereas the further
evolution can generally be distinguished between two different
types. This can mostly be seen by a comparison between the
snapshots at t = 1.5 and 3.0, where the interfaces are still
diffuse for the larger time scales τ � 1, such as τ = 101
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t = 0.2

PT

t = 0.4 t = 0.6 t = 0.8 t = 1 t = 1.5 t = 3

τ=101

τ=100

τ=10-1

τ=10-2

τ=10-3

τ=10-4

ST

= 3

0

0.5

1

1.5

ρ

FIG. 1. Density rendered cross section slices (with thickness 0.02 in z direction and only half of the box in y direction is shown) of the
early stage at the times t = 0.20, 0.4, 0.6, 0.8, 1.0, 1.5, 3.0. Exemplarily the simulations with τ = 101, 100, 10−1, 10−2, 10−3, 10−4 (from top
to bottom), compared with the runs of pure thermal evolution (PT) and scaling thermostat (ST), are shown with a side length of size of the box
L = 1. Note that the actual shapes of the 3D structures can not be determined in this 2D representation.

and 100 and the PT simulation. In contrast, sharp interfaces
are formed for the shorter time scales τ � 1, particularly
τ = 10−3 and 10−4 and the ST simulation. A transition point
between these contrary images can qualitatively be placed at
τ ≈ 10−1. This particular run seems to start similar to the
τ � 1 simulations, but eventually evolves similar to the τ � 1
runs. Despite the respective evolution, all simulations have in
common that the phases, once separated, undergo a coarsening
process driven by surface tension, where the domains initiate
to grow. Already at this point, a differentiation between liquid
and vapor phase is reasonable, since the respective domains
do not coincide in their sizes. A more detailed discussion on
the requirement of distinction can be found in Appendix A.

In Fig. 2 the phase diagram for the T0 = 0.8 runs is
shown, wherein the median of the density values and the
mean temperatures for the respective phase are plotted in steps
of 	t = 0.05. The calculation starts with the exceed of the
threshold density at ρc = 2/3, whereby this point in time is
0.35 and unaffected by the actual choice of τ . The use of
the median of the density values, instead of the commonly
used arithmetic mean, has some advantages. Mainly, it is the
robustness to single strong density deviations, which is usually
present, when diffuse interfaces are formed [6]. The respective
similarities in the evolution between PT and large time scales
τ � 1, and between ST and short time scales τ � 1, are
further assured by the evolution of the separated phases in
the temperature-density phase diagram. The simulations ST,
τ = 10−4 and 10−3, almost perfectly coincide. Also the early
evolution of PT and 101 evolve roughly equal. So far, it is
clear that the late evolution of the τ = 101 run must diverge
from PT, because of the time-scale thermostat that decreases

the temperature. However, the process is very slow and these
simulations do not reach the desired final temperature within
the simulated time range. Note that the discrepancy between
the end up vapor density values and the theoretically predicted
binodal value mainly belongs to the resolution, since the vapor
phase has only very few particles. However, it also belongs
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FIG. 2. Evolution in the temperature-density phase diagram for
T0 = 0.8. Data sets are connected by lines. The pure thermal PT,
several thermostat time scales τ , and the scaling thermostat ST (from
top to bottom, in steps of 	t = 0.05) are shown. PT and ST are
highlighted by open dots. The gray lines represent the binodal (solid)
and spinodal (dashed line) curves from vdW theory and Maxwell
construction.
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to the choice of mean, because the median is namely very
robust, but does not coincide with the peak value of the density
distribution.

A. Early stage demixing

The behaviors of PT and ST are well examined [5,6,42],
more precisely, the quasi-isothermal ST behavior, where the
vapor and liquid phase are observed to contrarily cool down or
heat up, respectively. This phenomenon becomes clear from
Eq. (13), where the thermal conductivity is finally responsible
for the equilibration of the system. In contrast, in PT simula-
tions both phases, liquid and vapor, are observed to heat up,
but with the vapor temperature temporally lagging behind the
liquid temperature. It can be explained by conduction, which
is responsible for the heating of the vapor by the hotter liquid.
This leads to a stagnation of heating of the liquid phase until the
vapor is heated up to thermal equilibrium, which is followed
by an increase of the overall mean temperature. The results
from the PT and ST simulations in this work slightly differ
from those obtained in Ref. [6]. This must be addressed to the
physically more accurate formulation of the density dependent
thermal conductivity κ(ρ), given by Eq. (10).

Both the τ = 101 and 100 runs show the stagnation of heat-
ing, which is actually characteristic for thermal simulations.
The coexistence density of the liquid phase that is reached
corresponds to a higher temperature than the predicted T0.
Later in progress, in the simulations with thermostat, the
temperature decreases and evolves along the coexistence curve
to the desired temperature. Solely, the PT run persists in that
heated state.

The demixing process and the growth of the domains can be
investigated by means of the characteristic lengths ξ , defined
in Eq. (17). The lengths are shown in Figs. 3 and 4 for the
liquid and vapor phase, respectively. For the reason of better
comparability the curves are each shifted by factors of 100.1.
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FIG. 3. The characteristic lengths of the liquid phase ξl for
T0 = 0.8, plotted in steps of 	t = 0.05, additionally connected by
lines. PT and ST are highlighted by open dots. The data sets are each
vertically shifted by factors of 100.1 due to a better comparability. The
factor is also shown true to scale. The black lines indicate power laws
to guide the eyes.
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FIG. 4. The characteristic lengths of the vapor phase ξv for
T0 = 0.8, plotted in steps of 	t = 0.05 connected by lines (coding as
in Fig. 3). The data sets are each vertically shifted by factors of 100.1

due to a better comparability. The black lines are shown to guide the
eyes. The inset shows a nonlogarithmic plot of the τ = 10−2 curve in
the early stage.

It is due to the initial density ρ0 = 0.5 that per definition the
one-component fluid is vapor in the initial state. That means
in effect ξv(0) = 1, followed by a rapid decrease, whereas
the liquid phase initiates at ξl(0) = 0, which further strongly
increases. The initial state also determines the composition
that eventually manifests in the separated system [4]. Here, a
minor liquid phase in a major vapor phase is expected, which
is why the main focus is on the liquid phase, whereas the vapor
is only considered as the solvent.

The early stage takes place right after the instantaneous
quench, and the very early dynamics are dominated by the
rise of so called “homophase fluctuations” [1], which arise
from the initial noise of the density field. The point in time
of demixing is unaffected by the choice of τ . Therefore, it
appears to suggest it also for the rise of fluctuations. However,
the further evolution of the ξl curves in Fig. 3 differ. It can be
distinguished between the two beforehand mentioned different
procedures. First, for ST and τ � 1, the initial growth has
rather more exponential growth character, which is followed
directly by a power law scaling in the late stage. In contrast,
for PT and for τ � 1, the initial growth seems to scale with an
ordinary power law, which is followed by a plateau, where the
growth of ξl stagnates, also followed by the ordinary power
law scaling of the late stage. It is obvious that the type of
initial growth, whether it is described by an exponential or an
ordinary power law, depends on the choice of τ . The change is,
as already qualitatively mentioned, placed at τ ≈ 10−1, more
precisely, between τ = 10−2 and 10−1.

Since this growth behavior in the early stage is also expected
to be strongly affected by the actual temperature of the system,
it will now be discussed in more detail by comparison of several
quench depths.

The type of growth of the domains in the early stage is found
to differ between the simulations. Interfaces become diffuse,
unless the interfaces will not be formed before the intermediate
stage. These are the simulations with slow thermalization
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FIG. 5. The early and, if apparent, the intermediate stages of ξl

for τ = 10−4 (open symbols) and 101 (filled symbols) for different
quench depths at T0 = 0.6, 0.7, 0.8, 0.9, and 1.0. Overlaying curves
(red) belong to least square fits with the parameters presented in
Table I.

τ � 1.0, which increase the temperature, or apparently those
with the temperature already above the threshold, i.e., T0 �
1.0. In Fig. 5 a comparison of the early stages of the char-
acteristic lengths ξl for different quench depths is shown. As
discussed in Appendix A, the ξv are not suitable to realistically
capture the growth behavior in the early phase, which is
due to the initial rapid decrease of the curves. Therefore,
only the lengths of the liquid phases are evaluated here.
Representatively chosen for the fast and slow thermalization
are the simulations with τ = 10−4 and τ = 101, respectively.
The ξl in the very early stage are used for a least square
regression. It turns out that the best fitting regression function
strongly depends on both the actual depth of the quench
and thermalization time scale. The fitting parameters, which
belong to the overlaying straight curves in Fig. 5, are listed
in Table I. The corresponding functions, that are used for the

TABLE I. The parameters β (with asymptotic standard errora δβ)
are obtained via least square fitting of the ξl in Fig. 5 within suggested
best fit intervals. The expected types of growth are exponential (exp),
power law scaling (scale), or logarithmic (log). The appearance of an
intermediate stage is synonymous to the plateau in the ξ curve.

T0 log10(τ ) Type Fit interval β(±δβ) Plateau

0.6 −4 exp 0.15 - 0.30 6.88(43) no
0.7 −4 exp 0.20 - 0.40 4.56(25) no
0.8 −4 exp 0.35 - 0.70 2.23(4) no
0.9 −4 exp 0.90 - 1.60 0.73(1) no

0.6 +1 scale 0.15 - 0.40 0.43(1) yes
0.7 +1 scale 0.20 - 0.45 0.460(8) yes
0.8 +1 scale 0.35 - 0.65 0.46(1) yes
0.9 +1 scale 0.90 - 1.45 0.52(3) yes

1.0 −4 log 4.05 - 5.55 0.401(3) no
1.0 +1 log 4.10 - 5.25 0.436(5) yes

aAsymptotic standard error expresses the accuracy in accordance to
the calculated characteristic lengths.
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FIG. 6. Phase diagram for several quench depths for the thermal-
ization time scales τ = 101 (open) and τ = 10−4 (filled) up to the
simulation time tmax = 50.

regression, are as follows. Three different types of growth can
be distinguished. An exponential increase ξ ∼ eβt is observed
for τ = 10−4 and deep quenched systems with T0 = 0.6, 0.7,
0.8, and 0.9. As τ becomes larger, the growth rates successively
alter and follow an ordinary power law scaling, given by
ξ ∼ tβ . The best fitting values for this range of τ appear
to suggest an exponent β ≈ 1/2. For higher T0 values, e.g.,
the T0 = 1.0 run, the growth of fluctuations seems to be
unaffected by the choice of τ . Furthermore, the type of growth
of the ξl curves has changed to logarithmic scaling of the
form ξ ∼ log10(βt), for both, τ = 10−4 and 101, not least
qualitatively, but also supported by the fitted values.

The differing behavior in the early stage can be clarified
with a view on the temperature-density plane of the phase
diagram, which is shown for all quenches in Fig. 6 for the
simulations with τ = 101 and 10−4. Note that the τ � 1
simulations are very similar to the corresponding ST runs,
for which, as recently described in Ref. [6], both phases
evolve in different directions, forced by the caloric vdW
EOS in Eq. (13). The volume expansion of the vapor phase
causes a temperature decrease of the phase, and the liquid
temperature increases, caused by the increase of ρl . Eventually,
thermal conductivity forces the system to thermal equilibrium.
However, the τ � 1 simulations show contrary behavior,
because the mean temperature of the system is allowed to
deviate from T0, which is an effect of the slow thermalization.
Therefore, the mean temperature is expected to finally evolve
in the same direction of that phase that accretes most of the
mass. Therefore, it depends on the initial ρ0. In our setup,
the liquid becomes the mass rich phase, whereas the vapor
phase still tends to decrease the temperature. Therefore, the
vapor phase gets heated through thermal conduction, which
affects the vapor temperature to generally lag behind the
liquid phase in relation of the total heating of the system.
A stagnation of heating in the liquid phase is observed for
all initial temperatures except for the T0 = 1.0 simulations.
Note, that the exceptional role of the latter also manifests in
the differing type of scaling of ξl , which is logarithmic. It can
be explained by the prolongation of the dynamics with higher
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system temperatures [5,6], in the way that thermal conductivity
already directly affects the demixing in the very early stage.
Moreover, T0 = 1.0 is above this temperature, where the heat
stagnation can be observed in the remaining simulations.

The equilibration of the temperature imbalance in the
early stage can be expected to be mainly driven by thermal
conductivity, which is certainly true for τ � 1 and for large
T0. For the τ � 1 range it is found that also convective heat
transfer plays a decisive role for spinodal decomposition [8].
Convective heat transfer is also responsible for the τ dependent
reduction of the growth rate in Fig. 5. This can be seen from
the liquid mass fraction, which is defined by

μl = Ml

Mtot
, (18)

where Ml is the total mass of the liquid phase. It is due to our
definition of the threshold density ρc = 2/3, that the liquid
mass fraction initializes with μl = 0, which is followed by a
strong increase. A comparison of the liquid mass fractions for
several quenches is shown in Fig. 7. Again, only the curves for
τ = 10−4 and τ = 101 are exemplarily shown, for τ � 1 and
τ � 1, respectively.

For the latter, a comparison with the temporal evolution in
the phase diagram reveals an unexpected coinciding feature.
Mass becomes not only reduced, but a backflow from liquid
to vapor is observed in the μ curves. It takes place at exactly
the same time, when the stagnation of heating is observed
for the deep quenched simulations T0 = 0.6,0.7,0.8 in the
phase diagram. The strength of this convection driven mass
flow increases with the depth of the quench. The μl of the
deep quenches further undergo local minima, followed by
a slow increase until equilibrium is reached, whereas for
T0 = 0.9,1.0 the backflow diminishes and only a halted
increase is observed. The minima are found to take place
at exactly the same time, where the liquid density starts to
decrease in the phase diagram (see Fig. 6) at the reflection
point. Moreover, the further evolution of the μ curves coincide
with the time interval, where the plateau appears in the
characteristic lengths.
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FIG. 7. Liquid mass fractions μl for several quench depths over
time t for the thermalization time scales τ = 101 (filled symbols) and
τ = 10−4 (open symbols).

However, for high temperatures the morphological evolu-
tion slows down and droplet nucleation dominates spinodal
decomposition and the diffuse interfaces are formed simul-
taneously with the separation of the phases [6]. This leads
to the instantaneous formation of spherical shaped droplets.
The mass backflow in the evolution of μ vanishes, e.g., at
the T0 = 1.0 curve, as it can be seen in Fig. 7. Additionally,
a prolonging behavior of the dynamics is also observed for
larger τ , which must be mainly due to the rapid increase in
temperature. In contrast, the thermal relaxation, back to the
desired temperature T0, in these systems is slow. Therefore,
the temperature is allowed to exceed a certain threshold value,
which is at Tth ≈ 1.0, as it can be seen in Fig. 6.

B. Intermediate stage and diffuse interfaces

The physical origin of the stagnation of growth in the
characteristic lengths ξl in Fig. 3 temporally placed at t ≈ 1
has been a basis for discussion. Thereby, this growth stagnation
is expected to depend on several system parameters, such as
surface tension, quench depth, thermal conduction, or intensity
of the initial noise [3,5,16,17,43]. This growth stagnation will
be further on referred to as plateau. However, the appearance
and, therewith related, the duration of this plateau in the ξl

curves is strongly connected to the actual choice of τ . It is not
observed for τ � 10−2 and ST. Furthermore, it is associated
with the beforehand described change in the type of scaling
behavior of the early stage. The plateau becomes observable
at τ = 10−1 and achieves longer durations for larger τ values.

An explanation for the plateau can be given by taking a
closer look at the phase diagram in Fig. 2. It is placed right
after the stagnation of heating at the reversal point of the liquid
density. At this point the density is about to decrease and the
temperature starts to increase again. For both runs, the τ = 101

and PT, the density reaches a local maximum value at t = 0.7
and does not further increase until t ≈ 2.0. The distinctness
of the two reflection points in time appear to suggest it as
an intermediate stage. During the time interval both phases,
the liquid and the vapor, simultaneously decompress, which
could plausibly be explained by two reasons. One is that both
phases expand their volume. However, this is not possible due
to the finite size of the simulation box. The second is that
at least one phase excludes mass to form diffuse interfaces.
Exemplarily, the density histograms of the τ = 101 and 10−4

runs for T0 = 0.8 at different times are compared, as shown in
Fig. 8. It reveals that the latter explanation is more reasonable.
A movement of the peaks in the direction of lower densities
is accompanied by the broadening of both the vapor and the
liquid density distribution in the τ = 101 data in Fig. 8(a). In
the τ = 10−4 simulation in Fig. 8(b), the density peaks drift
apart and the interface remains sharp even at late times. This
can be seen in more detail from the inset box in Fig. 8(b),
where a zoom to the vapor phase is shown. The expectation
that the phases are excluding mass to form interfaces for
large τ and PT is supported by the inset box in Fig. 8(a),
where the zoom to the liquid phase is shown. Along with the
process of phase separation, the liquid peak is rising (light-red
arrow), and moves in the following to a lower density value
(dark-red arrow). Simultaneously, a second peak arises at the
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corresponding coexistence density (black arrow) as indicated
by the arrows.

Therefore, the duration of the plateau in Fig. 3 is not
only affected by the rapidity in achieving the coexistence
density, but also by forming diffuse interfaces. As it is shown
in Fig. 1, diffuse interfaces are only formed in simulations
with large τ and PT, in contrast to the evolution of the
remaining simulations. Thus, only for high temperatures
T � 1.0, interfaces become diffuse [6]. This is why the
plateau can only be observed for simulations that exceed this
temperature threshold. This even applies for simulations with
higher initial temperatures but also for large τ values, since the
latter allow for latent heating of the system. The temperature
dependency will now be discussed in more detail.

As already mentioned above, the subsequent dynamic
growth behavior is directly connected to the heating. It is
characterized by two possible scenarios. Due to the actual
choice of τ the late stage can directly follow the early stage.
The domain growth in the late stage can then be described
by theoretically predicted scaling laws. A detailed discussion
can be found in Appendix B. In the second scenario, an
intermediate stage occurs, which manifests in the formation
of a plateau in the ξl curves. The intermediate stage is placed
right between the early stage, where homophase fluctuations
arise, and the late stage, where coarsening and domain growth
are the dominant processes. It shall be clarified here how
the occurrence and the duration of this intermediate stage is
affected by both quench depth and the choice of τ .

It has already been clarified in the previous section that the
plateau can only be observed for a certain range of parameters,
such as τ � 1. This is assured by the ξl curves in Fig. 5,
where the plateau is only apparent for the τ = 101 curves.
The appearance of the plateau is correlated to the formation
of diffuse interfaces. A further quantification is given with
the phase diagram in Fig. 6. The plateau starts exactly at the
reflection point t1, where the density value of the liquid phase
ρl begins to decrease. The end of the intermediate stage is
given by the second reflection point t2, where ρl initiates to
reincrease. The corresponding time interval, defined by the two

reflection points, gives a duration 	tτ,T0 , which depends on the
actual choice of τ and T0. The values for those simulations,
where the intermediate stage is apparent, are summarized in
Table II. They are additionally visualized in Fig. 9, where
the relevant region in the phase diagram is shown. It can
be seen that this phenomenon only occurs in the metastable
region, between the spinodal and binodal curves. Moreover, it
is an effect of slow thermalization, where the largest 	tτ,T0 are
found for the PT runs and become smaller with decreasing τ .
Note that the first inflection points t1, obtained via the phase
diagram, are all consistent with the end times of the fit intervals
of the early stage scaling analysis, given in Table I. The
PT and τ = 101 have identical t1 values. The intermediate
stage becomes smaller with shorter thermalization time scales
and eventually vanishes at τ = 10−1. That shows that the
intermediate stage is a phenomenon of systems of weak heat
bath coupling.

TABLE II. The table gives the time interval 	tτ,T0 , that corre-
sponds to the two reflection points t1 and t2 in the evolution of the
liquid phase. Listed are only the simulations where the intermediate
stage exists.

T0 log10(τ ) t1 t2 	tτ,T0

0.6 PT 0.50 2.35 1.85
+1 0.50 1.75 1.25

0.7 PT 0.55 2.35 1.80
+1 0.55 2.10 1.55
+0 0.7 0.90 0.20

0.8 PT 0.65 2.75 2.10
+1 0.65 2.65 2.00
+0 0.90 1.35 0.45

0.9 PT 1.55 4.25 2.70
+1 1.55 3.40 1.85
+0 2.00 2.50 0.50

1.0 PT 6.20 9.70 3.50
+1 6.25 7.15 0.90
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FIG. 9. Evolution in the phase diagram for several quench depths
and thermalization time scales, where the intermediate stage is
apparent. Color coding as in Fig. 6. The time intervals 	tτ,T0 are
highlighted.

IV. CONCLUSION

Our investigation mainly focuses on the dynamics in the
early and intermediate stages of spinodal decomposition. The
late stage is expected to only slightly influence the actual
separation process, since it is dominated by the growth of
domains of the already separated phases. Moreover, the late
stage is probably the already best investigated of these three
stages. The therein involved physical processes are well
understood and can be described by scaling laws for the growth
of the characteristic lengths. However, the dynamics through
the meta- and unstable regions, which lie below the binodal
and spinodal curves, respectively, are placed in the early and
intermediate stages of the separation process. There is a lack of
knowledge concerning the thermal evolution and its effect on
the dynamic evolution in that stage. Moreover, the respective
temperature evolution is also influenced by the strength of
coupling to an external heat bath.

The SPH method, which is herein used for the simulations,
can give deeper insights to the thermal evolution of the early
phase. Moreover, it is easy to follow the evolution of the
separated phases in the phase diagram, and characteristic
lengths can easily be calculated by the use of the SPH method.
Besides, the computational effort is very modest, as a typical
single simulation with 105 particles on 48 cores only takes
about 15 h.

An exponential decaying thermostat is introduced that
allows for the predefinition of a thermalization time scale,
on which the heated system relaxes to a desired temperature.
The comparison to an instantaneous scaling thermostat shows
that the respective choice of the thermostat has a serious effect
on the resulting dynamics of the phase separation process.
Moreover, the scaling thermostat can be understood as a system
with very fast thermal relaxation, as well as in the opposing
limit a very slow relaxing system can be understood as a pure
thermal simulation. This is shown by a successive variation
of the time scale. Note that the matches with these limits are
observed to be independent from the actual temperature of the
system. The final equilibrated states are in excellent agreement

with vdW theory and unaffected by the strength of coupling.
The meaningfulness of varying the thermalization time scale
is clarified by a closer view on these limits. Isothermal
simulations are close to theoretical approaches, which have
mostly only phenomenological nature and are, therefore, hard
to put into practice. In contrast, a pure thermal evolution
is experimentally unrealizable, since already the quench to
the spinodal region must be performed. Therefore, it is more
realistic to consider systems in between, which allow for both
latent heating and thermal relaxation at a certain time scale.

In contrast to the common analysis methods, the require-
ment for a separated analysis of the liquid and vapor phase is
stated. A comparison of the evolution of fast thermalization
systems in the phase diagram shows that the two phases evolve
contrarily in both density and temperature.

In the early stage, the type of growth of the characteristic
lengths differs by the actual choice of thermalization time
scale. Short time scales show a fast exponential increase in the
characteristic length, whereas at long time scales the lengths
grow slower, which is described by an ordinary 1/2 power law.
The slower growth rate arises from a mass transfer between
the phases which is directed contrary to the expected demixing
behavior. The mass flow, which is directed backwards from
the arising liquid phase to the vapor phase, is interpreted as
thermal convection. In systems with high temperatures the
type of growth is independent of the time scale, where the fit
calculations suggest a logarithmic scaling behavior.

In slow thermalization systems, the system temperature
initially increases due to latent heat followed by a stagnation
of that increase in temperature in the liquid phase, while the
density further increases. This is not observed at short time
scales. By comparison, the nearly identical evolution of pure
thermal simulations shows that the stagnation of heating is
no effect of the thermostat. It is rather driven by thermal
conduction, where the colder vapor phase tends to retard the
increase in temperature. Additionally, an intermediate stage
appears in systems with slow thermalization, where the growth
of the characteristic lengths is reduced and forms a plateau.
This halted growth is explained by the formation of diffuse
interfaces between the separated phases. They only form at
high temperatures, which explains that the plateau appears
either at systems that already reached high temperatures or at
systems that heat up.

The thermalization thermostat excellently closes the gap
between the pure thermal and scaled temperature simulations.
This is not only assured by a comparison of the snapshots,
but also by the evolution in the phase diagram and by the
comparison of the characteristic lengths. At short time scales
the results are nearly identical to the scaling thermostat even
up to the late stage. The large time scales converge to the pure
thermal simulation only in the early and intermediate stages.
The late stage must differ, which is due to the absence of a
thermal relaxation process in PT simulations. However, it is
clear that simulations with even larger time scales will also
excellently match with the late stage.

For a realistic dynamic behavior, the time scale must be
chosen carefully in between the range of the two limits. It is
shown that the strength of coupling has a serious impact on
the dynamics while the system is in a completely unstable or,
at least, metastable state. Moreover, this argumentation is also
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shown to be supported by the qualitative comparison with both
experimental and numerical results of other studies. Thus, the
SPH method equipped with the time-scale thermostat provides
a powerful instrument for the simulational modeling of phase
separation dynamics.
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APPENDIX A: DISTINCTION BETWEEN LIQUID
AND VAPOR

It is not only the initial density, but also the involvement of
temperature and, therewith associated, the strength of coupling
to the heat bath that are observed to affect the scaling of the
domains. The direct comparison between ξv and ξl of the same
τ value further emphasizes the requirement for a distinction
between the two phases, e.g., the different power law scalings
in the late stage or the differing final equilibrium lengths,
where the ξv is generally larger than the belonging ξl . The latter
fact is more distinctive in the curves for τ � 1 and PT. The
differences in the curves is also mainly due to the asymmetry
of the quench and the resulting density distribution.

Note that the plateau can also be observed in the ξv curves
of the weakly coupled systems, plotted in in Fig. 4. It is due
to the assumption that both phases are involved to interface
formation, as it can be seen in Fig. 8(a). The characteristics
of the vapor ξv curves are generally very similar to that of ξl ,
but less distinctive than the characteristics of the ξl curves.
Due to the rapid decrease of the ξv in the early stage, the type
of scaling of initial rise of fluctuations can hardly be worked
out from the vapor phase. Moreover, for the large τ and PT
simulations, the plateau, where the interfaces are formed, is
less distinctive in the ξv than it is in the ξl curves.

Nevertheless, it must be noted that the characteristic lengths
are in excellent qualitative agreement with observations from
experiments of spinodal decomposition of binary mixtures
by Poesio et al., where the effect of the quenching rate on
the demixing process is investigated [7]. The inset in Fig. 4
exemplarily shows a linearly scaled part from the early stage
of demixing of the τ = 10−2 curve, which can be qualitatively
compared. Even the initial rapid decrease of the curve and
a plateaulike stagnation in growth, which is due to their
evaluation method via structure factor, can be confirmed by
our data. Poesio et al. postulate a linear growth law for the
late stage regime, which indeed might be suggested for the
small time range, where the growth process is observed. Our
simulation method allows us to evolve the system much longer
in time, which allows us for a better estimation of the late stage
scaling behavior.

APPENDIX B: LATE STAGE DOMAIN GROWTH

Theoretical predictions for late stage domain growth rates
are mainly given for symmetric quenches in binary mixtures

and have recently been shown by simulations to deviate in
asymmetric quenches [44]. Moreover, the similarity between
binary mixture and liquid vapor is only valid for such
symmetric quenches. However, a symmetric mass distribution
can hardly be preset in liquid-vapor systems, which is contrary
to binary mixtures, where a critical quench predetermines
the end up composition. Therefore, the resulting growth rates
differ from theoretical expectations. Also, the yielded growth
exponents strongly depend on the size of the respective
choice of fit intervals [4]. For these reasons, it must be
emphasized that we do not claim the observation of new growth
exponents, but rather use the existing predictions for our
interpretation.

The late stage, where the phases are eventually fully
separated, is dominated by the coarsening and the coalescence
of droplets. It is expected that the time evolution of the
characteristic domain size ξ can be described by a scaling
law ξ ∼ tα . The value of α gives rise to the actual physical
process, that is responsible for the respective growth behavior.
The driving processes are namely the diffusive LS regime
(α = 1/3), the VH (α = 1), and the IH regime (α = 2/3) [22].
Note that our simulations have no physical viscosity included,
hence, the VH regime is none of the expected regimes here.
Thus, it is only expected to observe exponents localized
between 1/3 and 2/3. As it was already mentioned, we do
not claim new exponents. Therefore, only slope expectations
are shown in Figs. 3 and 4 to guide the eyes. However, for
large τ and PT, for which the mean temperatures significantly
increase, the physical processes that are responsible for the
scaling regimes, are expected to overlap. They give rise to a
variation of the exponents, because the IH regime becomes
relevant earlier at higher temperatures [6]. Furthermore, it has
recently been shown that growth rates are strongly connected
to the actual temperature of the system [5,6]. In comparison
with our earlier works the exponents from this work are in
very good qualitative agreement. Both the type of growth in the
early stage and the formation of the plateau must be considered
to affect the late stage scaling behavior.

The respective choice of τ affects the final mass distribution
between the phases. For τ � 1, the mass separates instanta-
neously and also the ρl and ρv reach their final coexistence
values. In the case of τ � 1, the demixing process lasts much
longer, so that the masses do not reach the final fraction at the
end of the simulations. This prolonged demixing behavior is
also in qualitative agreement with the results of other numerical
simulations [5]. Moreover, mass transfer is apparent even in
the late stage, indicating that the growth processes in the late
stage are overlayed by early stage processes. This is one more
reason for the difficulty in using theoretical predictions for
the late stage, when thermal processes are taken into account.
Note that the very final mass fraction in the totally equilibrated
state is hard to predict from the beginning. It is not only
predefined by ρ0, but also by the T0 and τ . Since thermal
conduction is present in both the simulations with small and
large τ , the thermal balance for the latter must be rather driven
by convection than by conduction. Furthermore, the character-
istic mass transfer, which is given by μl , is not observed in the
τ � 1 simulations. Thus, convection only appears if the latent
heat from the phase separation process is not led away fast
enough.
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