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Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order
transition in particle trajectories
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We use computer simulations to analyze the yielding transition during large-amplitude oscillatory shear of a
simple model for soft jammed solids. Simultaneous analysis of global mechanical response and particle-scale
motion demonstrates that macroscopic yielding, revealed by a smooth crossover in mechanical properties,
is accompanied by a sudden change in the particle dynamics, which evolves from nondiffusive motion to
irreversible diffusion as the amplitude of the shear is increased. We provide numerical evidence that this sharp
change corresponds to a nonequilibrium first-order dynamic phase transition, thus establishing the existence of a
well-defined microscopic dynamic signature of the yielding transition in amorphous materials in oscillatory shear.
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I. INTRODUCTION

A major effort in soft condensed matter physics concerns
the design of materials with well-controlled mechanical
properties [1]. Rheology thus represents a central probe,
and oscillatory shear measurements at finite frequency ω are
among the most commonly performed mechanical tests [2].
In this approach, a harmonic deformation is applied and the
stress response measured or vice versa. In the linear regime, the
complex shear modulus G∗(ω) = G′(ω) + iG′′(ω) provides
information about the nature and strength of the material at
a given frequency [3], while microscopic relaxation processes
can be probed by varying the frequency. At larger amplitude,
nonlinear mechanical properties are accessed.

This approach is well suited for amorphous materials,
which often display nontrivial response spectra in the linear
regime where they behave as soft elastic solids but flow as
the amplitude of the forcing is increased beyond a “yielding”
limit [4–6]. Whereas the storage modulus G′(ω) dominates the
elastic response at small deformation amplitude, irreversible
plastic deformations occur after yielding where the loss mod-
ulus G′′(ω) dominates instead. Oscillatory shear experiments
have been performed in a wide range of soft condensed matter
systems across yielding, such as granular particles [7–11],
emulsions [12–15], colloidal suspensions [16–18], and gels
[19], as well as in computer simulations [20–24].

In experiments, the change from elastic to plastic response
in macroscopic mechanical properties is often described as a
“yielding transition,” even though yielding appears as a smooth
crossover whose location cannot be unambiguously defined
[25]. Interestingly, recent experiments have provided evidence
that this macroscopic crossover corresponds to a qualitative
change in particle trajectories [9,11,12,18,26–28]. As expected
physically, particles are essentially arrested in the undeformed
solid but can diffuse due to irreversible plastic rearrangements
occurring at larger amplitude. There is, however, no consensus
about the nature of this crossover, which has been described
either as a smooth change [10], as a relatively sharp crossover
[12], or as a continuous nonequilibrium phase transition [18].
The last conclusion builds a qualitative analogy with the
continuous irreversibility transition observed in low-density
suspensions [7,8,29], which has been actively studied in
computer simulations [23,24] and attempts to borrow concepts

from the field of nonequilibrium phase transitions [30–32]. In
addition recent experiments argue that yielding corresponds to
a change in the microstructure of the system [27], by opposition
to the dynamic properties discussed here. A clear connection
between these microscopic changes and the macroscopic
rheology is lacking.

Here we use a model of a jammed material composed of
non-Brownian repulsive spheres to investigate the nature of
the yielding transition at the particle-scale level, in the simple
situation where thermal fluctuations and hydrodynamic forces
play no role. We reproduce standard mechanical signatures
of macroscopic yielding under oscillatory shear and obtain
two key results regarding particle trajectories. First, we
show that the onset of particle diffusion in steady state is
extremely sharp and occurs at a well-defined shear amplitude,
which unambiguously locates the yielding transition. Second,
we find that particle diffusivity emerges discontinuously at
yielding, thus demonstrating that yielding corresponds to a
nonequilibrium first-order phase transition. These findings
differ qualitatively from earlier suggestions of a continuous
irreversibility transition [18,24] but seem to agree very well
with recent experimental findings [10,12]. We also show that
this transition is dynamic in nature and is not accompanied by
discontinuous structural changes.

II. MODEL AND NUMERICAL TECHNIQUES

We consider soft repulsive non-Brownian particles in a
simple shear flow geometry. We perform standard overdamped
Langevin dynamics simulations of a well-known model of
harmonic particles in three dimensions [33,34], using an
equimolar binary mixture of small and large particles with
diameter ratio 1.4. The equations of motion read

ξs

[
∂�ri

∂t
− γ̇ (t)yi(t)�ex

]
+

∑
j

∂U (rij )

∂�rij

= �0, (1)

where ξs is a friction coefficient, �rij = (xij ,yij ,zij ) = (xj −
xi,yj − yi,zj − zi), �ex = (1,0,0), and γ̇ (t) is the shear rate.
For particles i and j having diameters ai and aj , the pair
potential reads U (rij ) = ε

2 (1 − rij /aij )2�(aij − rij ), where ε

is an energy scale, aij = (ai + aj )/2, a denotes the diameter
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of small particles, and �(x) is the Heaviside function. The unit
length is a, the unit time τ0 = a2ξs/ε, the unit energy ε, and
so the unit stress is ε/a3.

We apply a harmonic deformation using Lees-Edwards
periodic boundary conditions [34], the strain evolving as
γ (t) = γ0[1 − cos(ωt)], where γ0 is the amplitude of the
imposed shear strain and ω = 2π/T is the frequency of the
oscillation. The period T is chosen very large to be close to
a quasistatic protocol; we use T = 104τ0. We have checked
that our results do not qualitatively depend on this choice.
We work at constant packing fraction ϕ = 0.80, much above
the jamming density ϕJ � 0.647 [35]. We checked that our
results are representative of the entire jammed phase, ϕ > ϕJ ,
but yielding could be more complicated in the limit ϕ → ϕJ

where the system loses rigidity [12]. The different regime
ϕ < ϕJ , where a yield stress does not exist, was analyzed
previously [29]. We solve Eq. (1) with a modified Euler
algorithm [34] using a discretization time step �t = 0.1τ0.
Numerical stability and accuracy were carefully checked. To
investigate finite-size effects, we perform simulations with
four different sizes, N = 300, 1000, 3000, and 10 000, where
N is the total number of particles. All simulations start from
fully random configurations. We analyze both the transient
regime after shear is started and steady-state measurements.
To improve the statistics, we perform at least four independent
runs for each pair (γ0,N ).

At the macroscopic level, our main observable is the time-
dependent response of the xy component of the shear stress,
defined by the usual Irving-Kirkwood formula [34]: σ (t) =
− 1

V

∑
xijF

y

ij , where V is the volume and F
y

ij represents the
y component of the force Fij . The kinetic part of the stress
is fully negligible in the present situation of low-frequency
oscillatory shear. To analyze the rheological response in steady
state, we fit the time series of the shear stress to a sinusoidal
form,

σ (t) = −σ0 cos (ωt + δ), (2)

where σ0 is the amplitude of the first harmonics at frequency
ω, and δ is the phase difference between strain and stress. In
practice, σ0 and δ are obtained by fitting Eq. (2) to steady-state
data lasting about 100T . Alternatively, we can transform the
two parameters (σ0,δ) into the more conventional quantities
G′(ω) and G′′(ω) using

G′(ω) + iG′′(ω) = σ0

γ0
eiδ. (3)

III. SMOOTH CROSSOVER IN MACROSCOPIC
RHEOLOGY

In Fig. 1(a) we show the evolution with the strain amplitude
γ0 of the storage and loss moduli at fixed frequency ω

measured in steady state. At very low γ0, G′ dominates the
response, G′/G′′ ≈ 10, indicating that the system responds in
the linear regime as a soft elastic solid. As γ0 is increased, the
moduli first evolve slowly for γ0 < 0.1, where little plastic
rearrangements are produced. As γ0 increases further, we
observe a crossing of G′ and G′′ at γ× ≈ 0.15 (dashed lines),
so that dissipation dominates γ0 > γ×. These mechanical
properties reproduce well-known behavior [1,2] and validate
our numerical approach. We notice further that they display
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FIG. 1. (a) Evolution of storage and loss moduli [Eq. (3)] with
strain amplitude for different system sizes. The crossing of G′ and G′′

at γ× (dashed lines) defines a characteristic strain scale. (b) Evolution
of amplitude and phase of the stress [Eq. (2)] with strain amplitude.
The amplitude has a maximum at γpl (dashed lines). (c) System size
dependence of all characteristic strain amplitudes.

virtually no finite-size effects. In this representation, γ× ≈
0.15 appears as the most relevant strain scale to characterize
yielding, although a smooth crossover can be qualitatively
detected near γ0 ≈ 0.1, where the γ0 dependence of the moduli
becomes somewhat steeper.

In Fig. 1(b) we replot this rheological evolution in the alter-
native representation offered by (σ0,δ). At small γ0, the phase
δ is very small while the stress amplitude increases linearly,
σ0 ≈ G′γ0, as expected for reversible elastic deformations in
a solid. Near γ0 ≈ 0.1 two changes are observed. First, σ0

ceases to be linear and displays an overshoot when γ0 is
increased, signaling that plastic events take place. We define
the onset of plastic events, γpl, as the location of the stress
overshoot [dashed lines in Fig. 1(b)]. Our interpretation for γpl

is reinforced by the evolution of the phase δ in Fig. 1(b), which
grows steadily above γpl, indicating the onset of dissipation.
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Note that the crossing of G′ and G′′ at γ× has no obvious
relevance in this representation where it simply corresponds,
by definition, to the strain scale where δ = π/4. In Fig. 1(c)
we confirm that γpl and γ× display virtually no system size
dependence, but that they differ quantitatively.

Whereas γ× is frequently quoted as “the” yielding point in
the literature, a stress overshoot also serves to identify yielding
in shear-start experiments [25]. A stress overshoot is reported
in some oscillatory shear experiments [19] but is absent in
others [12,13]. A possible explanation is that experiments are
typically performed at somewhat larger frequencies, where
additional contributions to the shear stress (lubrication forces,
hydrodynamic effects) might hide this behavior. In addition,
we have confirmed that the overshoot disappears and is
replaced by a monotonic increase seen in experiments [13]
when we use a substantially larger frequency, typically ω >

10−3. We emphasize that the presence of the dynamic transition
discussed below is independent of the existence of the stress
overshoot reported in Fig. 1(b).

IV. SHARP TRANSITION IN MICROSCOPIC DYNAMICS

We now turn to the evolution of single particle dynamics.
A first natural dynamic observable is the averaged particle
displacement after one deformation cycle [12,24],

�r(t,T ) = 1

N

∑
j

|�rj (t + T ) − �rj (t)|, (4)

where t is the time since shear is applied. In Fig. 2(a) we
show how �r(t,T ) evolves in the transient regime for various
amplitudes of the applied deformation. For small γ0, particle
displacements decay rapidly to zero. In the elastic solid at
small amplitude, there are rare rearrangements taking place
before the system settles near a stable energy minimum where
particles have nearly periodic motion (or quasiperiodic motion
with a period that is a multiple of T , as reported previously
[23,36]). As γ0 is increased, it takes more and more time
for �r(t,T ) to eventually vanish. When γ0 is larger than
γ ∼ 0.095, the average particle displacement never vanishes
in the explored time window, but instead fluctuates around a
well-defined finite value, which increases with γ0. This regime
corresponds to irreversible, nonperiodic particle trajectories.
In Fig. 2(b) we plot the time-averaged displacement for one
cycle 〈�r(T )〉 in steady states for various strain amplitudes
and system sizes. From 〈�r(T )〉, a very clear discontinuous
jump is observed between the irreversible and reversible states
near γc. Very close to the transition, the displacements exhibit
fluctuations around a well-defined value both above and below
γc. Whereas these fluctuations are infinitely long-lived above
γc, they are only metastable below γc, before the system
finds a reversible state where the displacements become very
small. We report the value of 〈�r(T )〉 for N = 10 000 for
these metastable states in Fig. 2(b). Overall, these fluctuations
appear qualitatively distinct from the algebraic decay observed
close to continuous irreversibility transitions [8] and are much
closer to the phenomenology observed near discontinuous,
first-order phase transitions where metastable phases can be
observed over long times. In particular, it appears impossible to
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FIG. 2. (a) Transient evolution of particle displacement �r(t,T )
[Eq. (4)] for various strain amplitudes for N = 3000. For γ0 �
0.090, the displacements drop to zero after a time scale τd. (b)
The time-averaged displacement for one cycle 〈�r(T )〉 for various
strain amplitudes and system sizes. The stable and the metastable
data are plotted with filled and open symbols, respectively. The
vertical dashed lines indicate γc for each system size. (c) The
average τd diverges algebraically, τd ∼ (γdyn − γ0)−α , interpreted as
the diverging lifetime of a metastable state near a discontinuous phase
transition. The vertical dashed lines indicate γdyn for each system
size.

describe the decrease of 〈�r(T )〉 with a continuous vanishing
at the critical value of γdyn.

Stronger evidence of such a phase transition is obtained
from the evolution of the average lifetime of the metastable
irreversible phase τd, as depicted in Fig. 2(c) for various system
sizes. These data confirm that τd increases rapidly close to γ0 ≈
0.1. For larger γ0, trajectories remain irreversible. By contrast
to the rheology, a clear system size dependence is observed,
and larger systems take more time to settle in a global energy
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FIG. 3. (a) Mean-squared displacements [Eq. (5)] for N = 104

and various strain amplitude become diffusive at long time when
γ0 � γc ≈ 0.085. (b) The diffusion constant D decreases modestly as
γ0 decreases towards a critical value γc where it drops discontinuously
to zero. The vertical dashed lines indicate γc for each system size,
and the black one represents the large-N extrapolation of γc ≈ 0.0885
performed in the inset.

minimum. A diverging lifetime is typically observed close to
nonequilibrium phase transitions [8,30,31] and was reported
previously [23,24]. Such divergence is expected for either a
continuous or discontinuous transition (see Refs. [37,38] for
recent examples). Solid lines in Fig. 2(c) represent an empirical
fit, τd ∼ (γdyn − γ0)−α , with α ≈ 2.1–3.0 [39], suggestive of a
divergence of τd when approaching the dynamic transition at
γdyn. We notice that finite size effects can be felt even when
the system is not very close to the critical value, such that we
cannot observe the expected saturation of τd to a finite value
as N → ∞. The system size dependence of γdyn reported in
Fig. 1(a) is very modest and seems to extrapolate to a finite
value, γdyn ≈ 0.095, as N → ∞.

We now characterize the steady-state irreversible dynamics
at large γ0 using the mean-squared displacement,

〈�r(t)2〉 = 1

N

〈
N∑

j=1

|�rj (t) − �rj (0)|2
〉
, (5)

where the brackets indicate a time average. The results
are displayed in Fig. 3(a) for N = 104, for time delays
commensurate with the period. The dynamics is diffusive at

long times, 〈�r(t)2〉 ∼ 6Dt , where D is the diffusion constant.
We represent D (in units of a2/T ) for various γ0 and N

in Fig. 3(b). As expected, D = 0 below a critical value γc,
corresponding to the phase characterized by quasiperiodic
particle trajectories, and it increases with γ0 above γc. Both
D and �r(t,T ) in Eq. (4) could serve as order parameters
for the transition. By measuring γc for various system sizes,
we observe a modest change with system size [see inset of
Fig. 3(b)] suggestive of a finite limit γc ≈ 0.0885 for N → ∞.
The functional form of our extrapolation should be confirmed
by additional larger scale simulations.

A striking finding in Fig. 3(b) is the finite amplitude
of the diffusion constant at the transition. Near continuous
irreversibility transitions, D decreases by several orders of
magnitude and scales algebraically as γc is approached from
above [7,40]. We observe instead a modest decrease of D,
followed by a sudden jump to zero, which is robust against
finite-size effects. In particular we find that diffusive behavior
also persists for a finite amount of time below in the reversible
phase, as also described above for the one-cycle particle
displacement 〈�r(T )〉. It is more difficult, however, to measure
D in this region, because a careful determination of D

requires taking the long-time limit, which is not possible by
construction in the metastable region. We conclude therefore
that the discontinuous behavior of D in Fig. 3(b) appears
less convincing than the one of 〈�r(T )〉 shown in Fig. 2(b),
but the overall phenomenology reported in this work appears
inconsistent with a continuous transition.

V. NO CHANGE IN MICROSCOPIC STRUCTURE

It was recently argued that the yielding transition in
oscillatory shear can be detected through the static structure of
the system [27]. Such a behavior would differ qualitatively
from our conclusion that yielding is revealed through the
dynamic evolution of the system. Our analysis of the pair
correlation function across the yielding transition did not
reveal any change in the static properties of the system in
the two phases, which seems to contradict the results of
Ref. [27]. To reinforce this conclusion, we have measured
the exact same quantity that was detected experimentally. In
detail, we resolve the radial dependence of the static structure
factor S(�q) = 1

N
〈ρ(�q)ρ(−�q)〉 in the (x,z) plane [27], where

ρ(�q) is the Fourier component of the density at wave vector
�q. Thus we define the angle α from tan α = (qz/qx) and
follow the α dependence of the static structure, as proposed in
Ref. [27].

To obtain statistically reliable data close to the dynamic
transition, we perform an extensive time average over 100 well-
separated times for the diffusive phase at γ0 = 0.12. For the
nondiffusive phase at γ0 = 0.10, time averages are not useful,
and we obtain instead 100 independent configurations starting
from independent initial conditions. Error bars are defined
from the resulting sample-to-sample fluctuations. Because the
stress is close to a sinusoidal form, we measure the structure
either when the stress is zero (“undeformed” states) and when
it is maximal σ (t) = ±σ0 (“deformed” states). Thus, we obtain
four measures of the structure at two shear amplitudes, for both
deformed and undeformed states.
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FIG. 4. Averaged static structure factors for “deformed” (when
the stress is maximal) and undeformed (when the stress is zero) states
in the reversible phase at γ0 = 0.10 and in the diffusive phase at
γ0 = 0.12, for N = 103. (a) Wave-vector dependence of the structure
with spherical average over all directions. (b) Angular dependence of
the structure factor for |�q| near the first peak as a function of the angle
α defined the (x,z) components of �q. Error bars are shown for γ0 =
0.10, to indicate that our relative resolution is very good (about 2%).

In Fig. 4(a) we show the q dependence of the averaged
structure factor S(q = |�q|) for these four cases and for
N = 1000. We observe that neither the particle reversibility
nor the deformation seem to affect much the structure factor.
We now resolve the angular dependence of S(q0,α) using
wave vectors in the (x,z) plane having an amplitude close

to the first peak in the range q0 = 5.9 − 7.0. In Fig. 4(b) we
show that the α dependence of the structure factor for the four
situations defined above is essentially nonexistent. Impor-
tantly, we do not observe any difference for reversible and
irreversible regimes across yielding. In particular we do not ob-
serve the oscillations that were detected in the experiments for
the arrested phase. Furthermore, we also checked that average
values of other static quantities (such as the energy density
and pair correlation functions) are similarly insensitive to
the underlying dynamic transition. These conclusions contrast
with the results in Ref. [27], which are perhaps due to the
larger shear rates employed in the experiment. Another major
contradiction with that work is our finding that yielding does
not correspond to the crossing point of G′ and G′′. Our results
show that yielding is best interpreted as a loss of reversibility in
the particle trajectories, which is a purely dynamical concept.

VI. CONCLUSION

Together, our results suggest that the yielding transition
of jammed solids under large-amplitude oscillatory shear is
accompanied by a first-order nonequilibrium phase transition,
rather than a continuous one. It marks the abrupt emergence
of irreversible nonaffine particle motion. The characteristic
strain amplitudes obtained from rheology (γ×, γpl) and from
microscopic dynamics (γdyn, γc) are compiled in Fig. 1(c). To a
good approximation, we find that γpl ≈ γdyn ≈ γc, whereas γ×
is significantly larger, corresponding to a large amount of dis-
sipated energy. The dynamic phase transition revealed by the
discontinuous evolution of single-particle dynamics produces
a smooth crossover in mechanical properties at a critical strain
amplitude that appears unrelated to the crossing of G′(ω) and
G′′(ω). Our conclusions contrast with earlier claims of a con-
tinuous transition [18,24] but appear in very good agreement
with observations in a sheared emulsion [12]. We hope our
study will trigger further work in a broader variety of numerical
and experimental systems to fully establish its generality.
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