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Colloidal particles of two types, driven in opposite directions, can segregate into lanes [Vissers et al., Soft
Matter 7, 2352 (2011)]. This phenomenon can be reproduced by two-dimensional Brownian dynamics simulations
of model particles [Dzubiella et al., Phys. Rev. E 65, 021402 (2002)]. Here we use computer simulation to assess
the generality of lane formation with respect to variation of particle type and dynamical protocol. We find that
laning results from rectification of diffusion on the scale of a particle diameter: oppositely driven particles must, in
the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about
one particle diameter. This geometric constraint implies that the diffusion constant of a particle, in the presence
of those of the opposite type, grows approximately linearly with the Péclet number, a prediction confirmed by
our numerics over a range of model parameters. Such environment-dependent diffusion is statistically similar to
an effective interparticle attraction; consistent with this observation, we find that oppositely driven nonattractive
colloids display features characteristic of the simplest model system possessing both interparticle attractions
and persistent motion, the driven Ising lattice gas [Katz, Leibowitz, and Spohn, J. Stat. Phys. 34, 497 (1984)].
These features include long-ranged correlations in the disordered regime, a critical regime characterized by a
change in slope of the particle current with the Péclet number, and fluctuations that grow with system size. By
analogy, we suggest that lane formation in the driven colloid system is a phase transition in the macroscopic
limit, but that macroscopic phase separation would not occur in finite time upon starting from disordered initial
conditions.
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I. INTRODUCTION

Systems driven out of equilibrium display a rich variety
of patterns [1,2]. Here we study patterns formed by a
two-dimensional, two-component colloidal mixture of over-
damped particles in which one species (“red”) possesses a
bias to move persistently in one direction, and the other
species (“blue”) possesses a bias to move persistently in
the opposite direction. Löwen and co-workers have shown
that for large enough bias, such particles form persistently
moving lanes, extended in the direction of the bias, segregated
by particle type [3–6]. Lane formation is seen in three-
dimensional experiments of binary colloidal mixtures driven
by an electric field [7], and in driven binary plasmas [8,9].
Much is already known about the microscopic origin of
laning in model systems and its macroscopic manifestation.
On the microscopic side, Chakrabarti et al. used dynamic
density-functional theory to argue that Langevin dynamics
of oppositely driven particles implies laning via a dynamic
instability of the homogenous phase [4,5]; Kohl et al. showed,
using a many-body Smoluchowski equation for interacting
Brownian particles, that driven systems in the homogeneous
phase display anisotropic pair correlations that foreshadow
the onset of laning [6]. On the macroscopic side, Glanz
et al. used large-scale numerical simulations to show that
characteristic length scales in the model grow (at large drive
speed) exponentially or algebraically with drive speed [10].
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The authors of that work suggested that lane formation in two
dimensions is therefore not a true phase transition.

To assess the generality of lane formation, i.e., to determine
if laning persists upon changing the type of particle and the
dynamical rules used, we modeled oppositely driven particles
using three distinct numerical protocols. The first (Protocol I)
comprises soft particles in continuous space evolved by
Langevin dynamics, similar to protocols used by other authors
[3]. The second (Protocol II) comprises hard particles in
continuous space evolved by Monte Carlo dynamics. The
third (Protocol III) comprises lattice-based particles evolved by
Monte Carlo dynamics. Isolated particles under all protocols
move diffusively and possess a positive drift velocity V to
the left or to the right of the simulation box. Left-movers
(red particles) and right-movers (blue particles) are equally
numerous.

We used Protocol I to reproduce the basic phenomenology
of laning studied by other authors: for large enough V (or,
equivalently, Péclet number), persistently moving red and blue
lanes form. Protocol II can reproduce this phenomenology, but
only if the basic step size of the Monte Carlo protocol is a small
fraction of the particle diameter; otherwise, the protocol results
in jammed bands that point perpendicular to the direction of
biased motion. Under Protocol III, upon an increase of the
Péclet number, only jamming occurs.

From a comparison of these protocols, we draw three
conclusions. The first relates to the microscopic origin of
laning: because it occurs for soft and hard particles, and
under distinct dynamic protocols, laning can be considered to
be a statistical effect that results from the following simple
geometric constraint. In order not to overlap, oppositely
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FIG. 1. Rectification of diffusion on the scale of a particle
diameter underpins the laning transition. Red and blue particles
moving persistently in opposite directions (left-right) must diffuse
laterally (up-down) by about a particle diameter in the time taken to
encounter each other. Driven rightward diffusion of the blue particle
in the rest frame of the red particle (at center) shows the rectification
of lateral diffusion that occurs if red and blue particles exclude
volume (blue line); the large gray circle indicates the position of
closest possible approach of the centers of red and blue particles.
The green trajectory shows similar driven diffusive motion in the
absence of volume exclusion. Both trajectories were generated using
the dynamics described in Appendix A 1.

driven particles must, in the time taken to meet each other
in the direction of the drive, diffuse laterally (perpendicular
to the drive) by about a particle diameter. In other words,
diffusion on the scale of a particle diameter is rectified or
ratcheted in the manner demonstrated in Fig. 1. Particles then
possess a lateral diffusion constant that scales linearly with
drift speed V (or, equivalently, Péclet number) at large V ,
and approximately as the square root of the local density
of particles of the opposite type. This diffusion constant can
exceed that of a particle surrounded by particles of the same
type, implying a tendency to form lanes. Enhanced diffusion
of particles in the presence of oppositely moving particles
was identified to be the origin of laning in the simulations
and experiments of Ref. [7], and similar mechanisms have
been described for pattern formation in systems of agitated
particles [11]. Our first conclusion complements this work
by identifying the geometric origin of the phenomenon and
revealing the scaling of diffusion enhancement with Péclet
number.

Our second conclusion relates to the macroscopic conse-
quences of laning, and it follows from the first conclusion via
a connection between environment-dependent diffusion rates
and effective interparticle attractions. Lane formation results
from the fact that particles possess environment-dependent
diffusion rates. One can show that a set of hard particles that
possess environment-dependent diffusion rates is equivalent
to a set of attractive particles (see, e.g., Ref. [12]) whose
interaction energies scale logarithmically with diffusion rates.
One can therefore consider the driven model to possess both
persistent motion and effective interparticle attractions. The
simplest model system possessing both features is the driven
Ising lattice gas (DLG), also known as the Katz-Lebowitz-

Spohn model [13,14]. We show here that the two models have
strong qualitative similarities. The DLG displays long-ranged
correlations in the disordered phase; we show numerically that
the same is true of the off-lattice model. The DLG also displays
a continuous order-disorder phase transition (in a non-Ising
universality class) between a disordered phase and a phase
characterized by lanelike structures [15–18]. This transition is
characterized by a break in the slope of particle current with
model parameters, and system-spanning fluctuations. We show
that the same is true of the off-lattice model.

Continuing this analogy to its conclusion, we expect lane
formation in a macroscopic version of the off-lattice driven
system to be a true phase transition. Although this conjecture
appears to contradict the conclusion of Ref. [10], namely
that laning should emerge only as a smooth crossover in
the thermodynamic limit, we believe that the two statements
are consistent. The simulations of Ref. [10] used disordered
initial conditions, and it has been shown that the time taken
for the DLG to relax to its steady state diverges with system
size upon starting from disordered initial conditions [16]. The
analogy we have drawn therefore suggests that macroscopic
domains in the off-lattice model would persist if built “by
hand” (provided that the aspect ratio of the system is chosen
“correctly,” see, e.g., Ref. [19]), but they would indeed
not be seen in finite time upon starting from disordered
initial conditions, consistent with the conclusion of Ref. [10].
We present numerical evidence to support this conjecture.
Considering that the off-lattice model [3] can reproduce the
basic phenomenology of lane formation seen in experiments
[7], the comparison we have drawn between the off-lattice
system and the DLG suggests that the latter may be applicable
to experiment (indeed, previous studies of related models were
done with ionic conductors in mind [20]).

Our third conclusion relates to numerical modeling of
driven systems: the qualitative outcome of our driven simu-
lations appears to be more sensitive to protocol than is the
simulation of undriven systems. It is well known that the
Monte Carlo dynamics of undriven particles, in the limit of
zero step size, is formally equivalent to a Langevin dynamics
[21,22]. As suggested by this equivalence, undriven systems
that are evolved under Monte Carlo dynamics with finite step
size often behave qualitatively like their Langevin-evolved
counterparts [21,23], even if not identical in all aspects of
their dynamics [24]. In the present study, the same is true only
if the basic step size of the Monte Carlo procedure (Protocol II)
is extremely small. As step size increases, the tendency to lane
is less strong—laning results from enhancement of diffusion
on scales less than a particle diameter, and such motion is
less accurately represented as step size increases—and the
tendency to jam is stronger. Monte Carlo protocols carried out
with step size above a certain value therefore show no laning at
all, in contrast to Langevin simulations. For the lattice-based
Protocol III, the tendency to lane is entirely absent, because
the basic step size is equal to that of the particle diameter. Our
results, therefore, highlight the subtleties of modeling driven
systems using different protocols.

In our model, the rectified flow of colloids results in pattern
formation. Similar flow effects result in effective attractions in
other driven models [25,26], and they can lead to the onset of
lanelike patterns [27].
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In Sec. II, we introduce the numerical protocols that we
have studied. In Sec. III, we compare their behavior, and there
and in Sec. IV we describe how this comparison implies the
conclusions stated above. We summarize our results in Sec. V.

II. NUMERICAL MODELS OF OPPOSITELY
DRIVEN PARTICLES

We considered three numerical protocols, two off-lattice
(Protocols I and II) and one on-lattice (Protocol III). In Protocol
I, particles were evolved using Langevin dynamics, while
in Protocols II and III, particles were evolved using Monte
Carlo dynamics. In all protocols we considered two types
of particle, labeled red and blue, which are confined to two
spatial dimensions and which interact repulsively. Particles
undergo diffusion bias such that red particles possess a drift
to the left and blue particles possess an equal drift to the
right. Our simulation boxes (generally) were periodic in both
directions, and we focused on patterns generated using equal
numbers of red and blue particles. We considered systems
over a range of densities and Péclet numbers (Pe). Density
is defined off-lattice as ρ = N

A
, where N is the total number

of particles and A is the system area, and on-lattice as the
fraction of occupied lattice sites. The Péclet number is defined
for Protocol I as the ratio of the magnitude of the biasing force
to the thermal energy, Fexσ/(kBT ), where σ is the particle
diameter. The Péclet number is defined for Protocols II and III
as the combination vxσ/D0 of the (bare) particle drift velocity,
diffusion constant, and particle diameter. All distances are
given in units of σ . Our protocols do not take into account
hydrodynamic interactions [28], which may have important
effects in experimental realizations of this system.

Protocol I: Langevin dynamics. The state of the system
is represented by the positions of all the particles {ri}.
Particles are disks with diameter σ . Each particle undergoes
overdamped Langevin dynamics governed by

ṙi = Dβ[Frep({ri}) + Fex] +
√

2Dηi(t). (1)

Here Frep is an excluded-volume repulsive force derived from
the WCA potential, which reads

V (rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6

+ 1

4

]
(2)

if rij < 21/6σ , and zero otherwise. We take ε as our unit of
energy. Fex is a constant force acting only in the x direction. For
red particles this force is βFex = − Pe

σ
êx , and for blue particles

βFex = Pe
σ

êx , where Pe denotes the Péclet number. D in Eq. (1)
is the bare translational diffusion constant (which we refer to
as the bare diffusion constant in the text), β ≡ 1

kBT
, and the

ηi = (ηx
i ,η

y

i ) are white noise variables with 〈ηi(t)〉 = 0 and
〈ημ

i (t)ην
j (t ′)〉 = δij δμνδ(t − t ′). Simulations had a maximum

time step of 10−5	t , where 	t ≡ σ 2/D was our unit of time.
We used LAMMPS [29] to integrate the equations of motion.

Protocol II: Monte Carlo dynamics (off-lattice). Monte
Carlo (MC) simulations off-lattice employed single-particle
METROPOLIS moves with particle displacements chosen to
effect a drift of red and blue particles in opposite directions. We
determined the connection between displacement parameters
and an isolated particle’s Péclet number and diffusion constant

as described in Appendix A 1. The resulting mapping depends
on the basic displacement scale (step size). We ran simulations
for hard disks and for WCA pair particles for a range of step
sizes.

Protocol III: Monte Carlo (on-lattice). We considered
volume-excluding particles present at a range of densities on a
square lattice. The dynamics, which conserve particle number,
consisted of choosing a particle at random and moving it to
one of the four neighboring sites with biased probability in the
driven direction and equal probability in the lateral directions
(see Appendix A for more details). Moves that take particles
to already occupied sites were rejected. This lattice model was
originally studied in [30].

Order parameters. We characterized the dynamics and
structures within simulations using the averaged particle
activity,

A(τ ) ≡
〈

1

τNtot

Ntot∑
i=1

|xi(t + τ ) − xi(t)|
〉
, (3)

where Ntot is the total number of particles. We also used the
structural order parameter

φ ≡
〈

1

Nred

Nred∑
i=1

Nblue∏
j=1

θ

(
|yi − yj | − ρ−1/2

2

)〉
(4)

used by other authors to characterize laning [3,10]. φ in effect
counts the percentage of particles in a lanelike environment.
The brackets for both order parameters indicate a time average.

Systems were considered to be “jammed” if the average
activity at steady state dropped below half that of an isolated
particle. Systems were considered to be laned if (a) the average
activity was greater than half that of an isolated particle, and (b)
φ was greater than a particular value, usually 0.5 (see Fig. 10
for plots of these order parameters as a function of time).

III. COMPARISON OF NUMERICAL PROTOCOLS

A. Numerical protocols show a range of qualitative behavior

In Fig. 2 we identify the steady-state dynamic regimes
obtained using our three dynamic protocols in the space
of Péclet number versus protocol type. The limit of zero
step size, 	x = 0 on the horizontal axis, corresponds to
Langevin dynamics simulations, whose results are similar
to those published by other authors [3–7]: we observe a
transition from a disordered mixture to persistently moving
lanes of like-colored particles parallel to the driven direction
at a Péclet number of about 80. We shall refer to the value
of the Péclet number at the transition as the critical Péclet
number. Off-lattice Monte Carlo simulations with sufficiently
small step size show qualitatively similar behavior. For a
small step size, the critical Péclet number seen in these
simulations is similar to the Langevin value. As the step
size is increased, the Monte Carlo critical Péclet number
increases, and the laning transition eventually disappears:
simulations run using a basic step size above some threshold
show qualitatively different behavior to Langevin simulations,
forming “jammed” stripes perpendicular to the direction of
the external field [31]. This threshold corresponds to a basic
displacement of 1% of a particle diameter or less (10−3σ for
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FIG. 2. Steady-state dynamic regimes observed using our three
numerical protocols for systems with 2500 particles, starting from
disordered initial conditions at density ρ = 0.5. The vertical axis
is the Péclet number. The horizontal axis interpolates between the
Langevin simulations of Protocol I (at “zero step size,” i.e., 	x = 0)
and the lattice-based simulations of Protocol III (	x = 1), with the
results of off-lattice hard-disk Monte Carlo simulations (Protocol II)
shown for a range of intermediate step sizes 	x . Snapshots A, C, and
D were obtained using Protocol II; B was obtained using Protocol I;
and E was obtained using Protocol III. In the snapshots, the driven
direction is left-right. The lines show the approximate boundaries
between different steady-state behaviors: the black dashed line shows
the boundary between the jammed and flowing states, and the solid
red line shows the boundary between disordered and laned states (see
Appendix A for more details). Monte Carlo simulations reproduce
the results of Langevin simulations if the basic step size of the former
is small enough; otherwise, Monte Carlo and Langevin results differ
qualitatively. Lattice-based Monte Carlo simulations jam for a Péclet
number of order unity.

hard disks and 10−2σ for WCA particles), which is rather
small for Monte Carlo simulations: for undriven systems, one
can sometimes obtain approximate dynamical realism using
Monte Carlo simulations with a much larger basic step size
[32]. It is notable, given recent interest in modeling driven
and active systems, that small changes in dynamic protocol
can change the apparent steady state of a system of driven
particles. On-lattice Monte Carlo simulations (	x = 1) also
form jammed perpendicular stripes as Pe is increased, rather
than lanes parallel to the direction of driving.

B. Laning results from enhanced diffusion of particles
in the presence of particles of the other type

Figure 2 shows that Langevin simulations of soft particles
and Monte Carlo simulations of hard (and soft) particles, for
small enough step size, exhibit similar phenomenology. Such
similarities indicate that the origin of laning can be understood
without reference to fine details of the system under study. A
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FIG. 3. The lateral diffusion constant (perpendicular to the driven
direction) as a function of Pe for a test particle in the presence of
particles of the other type. We have normalized the diffusion constant
by the bare value. The longitudinal component of diffusion behaves
similarly; see Fig. 11. In these simulations, one blue particle is placed
in a box of red particles, and the blue particle’s diffusion constant is
measured. This enhancement of diffusion with Pe of one particle
in the presence of particles of the other type underpins the laning
transition, seen for Langevin simulations and off-lattice Monte Carlo
simulations with a sufficiently small basic step size. Off-lattice Monte
Carlo protocols with larger step sizes do show diffusion enhancement
with Pe, but tend to jam rather than to exhibit laning. On-lattice
Monte Carlo protocols show no enhancement of diffusion constant
with Péclet number, and they jam readily.

detail-insensitive mechanism for lane formation is suggested
by Ref. [7], which showed that particles undergoing lane
formation experience time-dependent diffusion constants that
are large when the system is disordered, and they become
smaller when the system forms lanes. To understand how
particle mobilities are affected by a driven environment in
a more controlled setting, we measured the diffusion rates of
particles at steady state by measuring the diffusion constant of a
blue “test” particle placed in a periodic simulation box in which
only red particles are present. Such pseudo-single-particle
simulations allowed us to isolate the effects of the drive without
the complication of attendant pattern formation. In Fig. 3 we
show the lateral component of the blue particle’s diffusion
constant for our three numerical protocols. An enhancement
of the diffusion constant with the Péclet number is seen in
all cases except for the on-lattice Monte Carlo simulations. In
Fig. 4 we show for Langevin simulations that this enhancement
of diffusion, measured in a steady-state, quasi-single-particle
simulation, correlates approximately with the onset of laning
measured in an equimolar mixture of red and blue particles.

C. Enhanced diffusion follows from simple
geometric constraints

Figure 3 demonstrates that enhanced diffusion of particles
in the presence of those of the opposite type occurs for different
interaction potentials and dynamic schemes. Such robustness
suggests a simple geometric origin for the effect, summarized
graphically in Fig. 1, which we quantify in the following way.
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FIG. 4. The enhancement of lateral diffusion as a function of
Péclet number for one particle in the presence of particles of the op-
posite type (bottom panel) correlates approximately with an increase
in an order parameter φ for lane formation in equimolar mixtures
(top panel). Both calculations used Langevin dynamics (Protocol I).
The bottom panel comes from the steady-state simulations of Fig. 3,
in which a test particle is placed in a simulation box containing only
particles of the other type. The top panel comes from the equimolar
red-blue mixture simulations of Fig. 2.

To avoid overlapping, two oppositely colored particles must
diffuse laterally by about one particle diameter in the time
taken for them to encounter each other in the direction of
drift. Such avoidance implies an enhancement of a particle’s
diffusion constant. To see this, consider the equation of motion
of the x coordinate of a particle undergoing driven Brownian
motion,

ẋ(t) = V +
√

2Dη(t). (5)

Here V and D are the drift velocity and diffusion constant of
the particle, and η is a Gaussian white noise with zero mean
and unit variance. For a particle initially at the origin, we have

〈x(t)2〉 = (V t)2 + 2Dt, (6)

where 〈·〉 denotes an average over noise. Let the characteristic
distance in the driven direction between the center of the test
particle and one of the opposite color be  [we expect roughly
−1 ∝ √

ρ(1 − χ ), where ρ is the mean number of particles per
unit area and χ is the fraction of particles in the test particle’s
neighborhood of its own type]. The characteristic encounter
time τ of the two particles can be found from (6) by setting
〈x(τ )2〉 = (/2)2, giving

V 2τ 2 + 2Dτ − (/2)2 = 0. (7)

If in time τ we require our test particle to diffuse laterally
by a distance of order one particle radius, σ/2, so as to avoid
overlap, then it must have an effective lateral diffusion constant
of order Deff(V ) = σ 2/(8τ ), i.e.,

Deff(V ) = σ 2

8

V 2√
D2 + 2V 2/4 − D

, (8)

upon solving (7) for τ .
For large V , we have

Deff(V ) ≈ σ 2

4
V + σ 2

22
D. (9)

Assuming that the drift speed V of the particle is equal to
its bare drift velocity V0 (which our numerics indicate is
approximately true under conditions for which lanes form),
we have V = V0 ≡ D0Pe/σ and

Deff(Pe) ≈ σ

4
D0Pe + σ 2

22
D. (10)

Thus we predict that rectification of diffusion in the presence
of particles of the opposite type results in an effective diffusion
constant that increases, at large Péclet number, linearly with
Péclet number (here we assume that D does not vary with
Pe). In Fig. 5 and Fig. 13 we show that the linear dependence
of the diffusion constant with Pe predicted by Eq. (10) is
indeed seen in our steady-state simulations across a range of
model parameters. In physical terms, Eq. (10) indicates that
particles experience a net flux that takes them from a domain
of oppositely colored particles to a domain of like-colored
ones. Such a flux implies a basic tendency for the formation
of domains of persistently moving like-colored particles, i.e.,
lanes, although this equation does not indicate for which Pe
this will happen.

For weak driving (small V ≈ V0) we expect linear scaling
to break down; there, we can expand (8) to get

Deff(Pe) ≈ σ 2

2
D + 1

16
D0(Pe)2, (11)

suggesting that for small Pe the effective diffusion constant of
a particle in the presence of those of the opposite type increases
quadratically with Pe [we might expect the observed diffusion
constant of a particle to be the larger of (11), and D]. Such a
breakdown of linear scaling at weak driving is consistent with
our simulations; see Fig. 13.

Note that this argument presumes that the nonequilibrium
steady state is fluid, with currents V on the order of the bare
drift velocity V0. It therefore does not apply at conditions
where jamming occurs, e.g., at large ρ. There, Deff increases
less rapidly than linearly with the Péclet number; see Fig. 13.
To address this case, one could return to (8) and consider V

and D to have a nontrivial dependence upon Pe. [As an aside,
we note that if in (8) we assume D to depend linearly on Pe,
which the data of Fig. 13 suggest is true for some range of Pe,
then Deff is linear in Pe.]

Previous work has shown that a microscopic analysis of
the oppositely driven particle system implies laning via a
dynamic instability [4,5] or the development of anisotropic
particle correlations in the disordered phase [6]. Our approx-
imate argument complements those approaches, suggesting a
general and detail-insensitive origin for lane formation. It also
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FIG. 5. (a) Trajectories of the y coordinate of a single blue particle placed in a periodic box of red particles present at density ρ = 0.5
(see Fig. 3), for Pe = 0 and 160. Particles are driven in the x direction. These trajectories show visually the enhanced diffusion in the presence
of the drive. (b) Histograms of the lateral fluctuations for various Pe can be collapsed (c) by rescaling 	yτ by (a + b Pe)−1/2, where a and b

are constants, as suggested by Eq. (10). This collapse indicates that the simple physical argument that gives rise to Eq. (10) captures, in this
parameter regime, the microscopic origin of enhanced diffusion.

motivates the analysis of the following section, in which we
discuss the macroscopic consequences of lane formation.

IV. A POSSIBLE LATTICE-BASED REFERENCE SYSTEM
FOR LANE FORMATION

A. Particle drift induces effective interparticle interactions

Laning occurs because the diffusion constant of a particle
can be larger when surrounded by particles of the opposite
color than when surrounded by particles of the same color. In
Sec. III we argued that this enhancement of diffusion results
from the geometric constraint that oppositely moving particles
must, in the time taken to drift into contact, diffuse laterally
by about a particle diameter. Supporting this argument, the
scaling of diffusion rate with Péclet number in quasi-single-
particle simulations is consistent with our numerics across a
broad range of parameters (Figs. 5 and 13). The lattice-based
model (Protocol III) shows no tendency to lane because particle
motion on scales less that a particle diameter is not represented,
and so no enhancement of particle diffusion constant can occur.
However, we argue in this section that there does exist a lattice-
based system that one could use as a reference for the off-lattice
model, thus clarifying the macroscopic behavior of the latter.

The starting point for this analogy is the observation that
hard particles with environment-dependent diffusion rates
resemble interacting particles. Consider Fig. 6, which indicates
the movement of a shaded particle between two positions,
labeled “initial” and “final.” Suppose that particles in this

initial
position

final 
position

FIG. 6. Diagram used to demonstrate the statistical equivalence
between hard particles with environment-dependent hopping rates f

and hard particles with environment-independent hopping rates and
interactions of strength kBT ln f .
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picture possess only hard-core repulsions, and that particles
hop uniformly to any location within a specified range of their
starting position. Let this rate of hopping be proportional to a
function f of the environment of the particle prior to its hop,
provided that the hop causes no hard-core overlaps. The ratio
of rates at which the shaded particle moves between its initial
(i) and final (f) positions is fi/ff . For hard particles the ratio
of Boltzmann weights between initial and final microstates is
unity, i.e., hopping rates do not satisfy detailed balance with
respect to the energy function of the system. However, we
can consider that hopping rates satisfy detailed balance with
respect to some energy function H, i.e., we are free to write

fi

ff
= exp (−β[Hf − Hi]). (12)

In other words, H is the particle-particle interaction potential
that would—in thermal equilibrium and for particles that pos-
sess hopping rates insensitive to their environment—effect the
ratio of hopping rates specified on the left-hand side of Eq. (12).
Therefore, hard particles with environment-dependent hop-
ping rates f are equivalent to hard particles with environment-
independent hopping rates and interactions of strength

H = kBT ln f (13)

in thermal equilibrium.
A recent paper by Sear [12] demonstrated this equivalence

for a lattice model with diffusion rates f (n) = e−αn, n being
the number of nearest neighbors of a given particle. The
equivalent equilibrium system is the Ising lattice gas with
coupling constant α.

The connection made by Eq. (13) has significance for
the present problem because the opposing drift of particle
types generates environment-dependent diffusion rates (in
addition to causing persistent motion): blue particles diffuse
more rapidly when near red particles than when not near
red particles. One can therefore consider the opposing drift
of opposite particle types to generate an effective red-blue
repulsion, because blue particles have a tendency to spend
more time in the vicinity of blue particles than in the vicinity
of red particles. This repulsion must be strongly anisotropic,
because only particles in danger of colliding head-on must
diffuse unusually rapidly [33]. Given the emergence of an
effective interparticle interaction and the presence of persistent

particle motion, it is natural to consider the simplest model
that possesses both features, the driven Ising lattice gas (DLG)
[13]. In this model, Ising spins move under the influence
of an “electric field” E that drives spin types (or particles
and holes in lattice-gas language) in opposing directions.
The half-full DLG displays a continuous order-disorder phase
transition, with non-Ising exponents, at a critical temperature
that increases with E and saturates as E → ∞ at about 1.4
times the Ising critical temperature [14,15,17].

It is likely that the off-lattice model resembles the DLG
most closely under incompressible conditions, i.e., when the
off-lattice model does not exhibit large density fluctuations.
Our simulations indicate that while the off-lattice model
does exhibit large density fluctuations in a certain parameter
regime, lane formation can be seen under approximately
incompressible conditions. Under such conditions, a red-blue
repulsion is equivalent to red-red and blue-blue attractions
that are more favorable than the red-blue interaction, similar
to the ferromagnetic Ising model interaction hierarchy. We
then suggest that an appropriate DLG representation of the off-
lattice model is one in which the electric field E ∝ Pe, the Ising
magnetic field is zero (appropriate to red-blue equimolar con-
ditions), and the horizontal J (driven-direction) and vertical J ′
(lateral) Ising couplings are unequal, and scale approximately
logarithmically with Péclet number (see Appendix C).

This analogy suggests that the emergent behavior of the
off-lattice model of lane formation should be similar, as the
Péclet number is increased, to that of the DLG as temperature
is decreased and electric field increased. Consistent with this
suggestion, we found the following qualitative similarities
between the two models.

B. The off-lattice model exhibits long-range
correlations in the homogeneous phase

The DLG exhibits long-range correlations in the homoge-
neous phase: structural two-point correlations decay as r−2

in two dimensions [34,35]. We note that structural two-point
correlations in the off-lattice driven model show power-law
decay consistent with r−2 scaling [6]. To demonstrate that
dynamic quantities also show long-range behavior in the
homogeneous phase, we applied to the off-lattice driven model
an order parameter designed to measure velocity correlations
between particles separated by the vector (	x,	y),

CRR(	x,	y) ≡
〈

1

N

NR−1∑
i=1

NR∑
j=i+1

vi(xi,yi)vj (xj ,yj )δ(|xi − xj |,	x)δ(|yi − yj |,	y)

〉
−

〈
1

NR

NR∑
i=1

vi(xi,yi)

〉2

. (14)

Here N is the normalization,

N ≡
NR−1∑
i=1

NR∑
j=i+1

δ(|xi − xj |,	x)δ(|yi − yj |,	y). (15)

In Eq. (14), the subscript RR indicates correlations between
red particles (by symmetry, the blue-blue correlation function
shows similar behavior); vi is the coarse-grained velocity of
(red) particle i over time τ (time over which a particle at

low Péclet number in vacuum will drift on the order of σ );
the sums run over red particles (NR is the total number of
red particles); δ is the Dirac delta function; and averages
〈·〉 are taken over dynamical trajectories. In Fig. 7 we show
that velocity correlation functions in driven- and nondriven
directions reveal the emergence of correlations that are of
substantial range, of order that of the simulation box, for values
of the Péclet number below the critical value (note that the
critical value of Pe varies with simulation box size and shape).
Velocity correlations that oscillate in the nondriven direction
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FIG. 7. Velocity correlation functions, Eq. (14), along (a) and against (b) the direction of the drive, measured in a simulation box of size
336σ × 84σ at ρ = 0.5. Long-range correlations in panel (a) are evident well below the critical Péclet number of 90. Above this value, the
function plotted in (b) acquires an oscillatory structure, signaling the formation of lanes parallel to the driven direction.

reflect the incipience of persistent lanes that become stable
above critical driving.

In the ordered phase, we estimate that the drive-induced
effective interparticle interactions alone imply the emergence
of structures whose sizes grow algebraically with Péclet
number (in a finite simulation box); see Appendix C. This
estimate is rough, because this scaling is presumably modified
by the presence of persistent particle motion, but in a way that
is currently not known.

C. The off-lattice driven model exhibits system-spanning
fluctuations and a change of slope of particle current

with Péclet number

The half-full DLG displays a continuous phase transition
characterized by system-spanning fluctuations and a disconti-
nuity in the rate of change of particle current with temperature
[14,36]. By analogy, we expect the off-lattice driven system to
show a regime of system-spanning fluctuations as Pe is made
large, and a change of slope of particle current with Péclet
number. In Fig. 8 we show that both features are seen. Current
is defined per particle as 	xi(τ ) ≡ xi(t + τ ) − xi(t), where τ

is a coarse-graining time over which a particle at low Péclet
number in vacuum will drift on the order of σ .

D. Macroscopic consequences of lane formation

The emergence of an effective interparticle attraction
and the DLG analogy strongly suggest the potential for
macroscopic phase separation in the off-lattice driven system.
However, under conditions for which macroscopic phase
separation is viable, the time to establish phase separation
in the DLG diverges with system size [16]. By analogy, we
conjecture that macroscopic phase separation in the off-lattice
driven model is in principle viable, meaning that macroscopic
domains would persist once formed, but they would not be seen
in finite time upon starting from disordered initial conditions.
The latter conclusion is consistent with the conclusion of
Ref. [10], namely that lane formation begun from disordered
conditions does not look like a phase transition.

50 70 90 110 130
3

5

7

9

11

13

1 N

N i

Δ
x

i(
τ
)

Pe

(a)

N = 14112

50 70 90 110
0

1

2

3

4

Pe

va
r(

Δ
x

i(
τ
))

(b)
N = 32768

N = 14112

N = 2048

N = 512

FIG. 8. The off-lattice model displays (a) a change of slope of
particle current with Pe (the dashed black line shows a linear fit to
the current values for Péclet numbers 50–85 in order to highlight the
change in slope) and (b) system-spanning current fluctuations, similar
to the behavior of the driven lattice gas at its critical point. N indicates
the number of particles present in the simulation box. Fluctuations of
individual particle diffusion constants behave similarly (see Fig. 12).
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(a) (b)

t = 10−4Δt t = Δt t = 2 × 102Δt t = 8 × 103Δt

FIG. 9. The off-lattice model displays, in the two-phase region, a slow coarsening process similar to that seen in the driven lattice gas. Panel
(a) shows a coarsening process starting from disordered initial conditions (	t is the Langevin time step). Panel (b) shows a snapshot obtained
by choosing as the initial condition two lanes, which persisted upon simulation.

To support our conjecture, we show in Fig. 9 time-ordered
snapshots of the off-lattice driven model above the critical
Péclet number. Two lanes persist if built “by hand,” but they do
not emerge on the time scale of simulations that are begun from
disordered initial conditions. The slow coarsening process seen
in our simulations is qualitatively similar to that seen in the
DLG [16] (see Fig. 2 of [37]), and so we expect it to proceed
to completion over a time ∼LxL

3
y [16], where Lx is the driven

direction. To see this, note that the characteristic time scale
for one stage of coarsening, two bands of width y merging,
is t ∼ 3

yLx (see Ref. [16]). The coarsening time is dominated
by the last stage, when y is on the order of Ly , which gives a
total time ∼LxL

3
y .

Other authors have noted macroscopic features held in
common between the DLG and off-lattice driven models.
In particular, interfaces between phases in the DLG can
be statistically flat [14,38] even in two dimensions, unlike
interfaces in the Ising model, which are rough [39]. Similarly
flat interfaces have been observed [40] in an off-lattice model
of driven particles that shares some basic ingredients with the
model studied here.

V. CONCLUSIONS

We have studied lane formation in a system of oppositely
driven model colloidal particles using a combination of
simulation methods and approximate physical analogies. We
argue that the microscopic origin of laning, several aspects
of which have been determined previously [4–6], can be
understood from a simple geometric argument that implies
an environment-dependent particle mobility scaling linearly
with Péclet number. Given that one can equate environment-

dependent mobilities with an effective interparticle attraction,
we conjecture that the basic features of pattern formation
in the off-lattice driven system should be similar to those
of the driven lattice gas, whose coupling constants grow
approximately logarithmically with Péclet number. Consistent
with this conjecture, we see in simulations of the off-lattice
driven model long-range correlations in the homogeneous
phase; critical-like fluctuations and a change of slope of
particle current with Péclet number; and phase separation at
large Péclet number that persists once formed but takes a long
time to develop from disordered initial conditions. There are
likely to be important differences between the DLG and the
off-lattice driven model, particularly where the latter exhibits
large density fluctuations or jamming, but there also exist
clear similarities between the two models. It will be valuable
to determine the extent to which the DLG can be used as
a reference model for other driven systems. Note that lane
formation is also seen in three-dimensional systems [3], and it
would be interesting to look for evidence of DLG-like behavior
there. In addition, the identification that laning results from
rectification of diffusion suggests an intriguing connection
between the emergent phenomena of driven molecular systems
and those of social dynamics, which have been described in
similar geometric terms [41].
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APPENDIX A: SIMULATION DETAILS

1. Biased off-lattice Monte Carlo simulations

Protocol II described in the main text is a METROPOLIS

Monte Carlo simulation in which particle displacements are
drawn uniformly from within a square of side 2L centered at
(±c,0) (the upper and lower sign applying for blue and red
particles, respectively). For an isolated red particle, we then
have, for unit time,

〈x〉 = 1

2L

∫ L−c

−L−c

x dx = −c. (A1)

Thus vx = −w0c, where w0 is a basic rate. In the perpendicular

direction, we have 〈y〉 = 0 and vy = 0. Thus v ≡
√

v2
x + v2

y =
w0c.

The mean-squared displacement of an undriven particle (or
of a driven particle in its rest frame) in either direction in unit
time is

〈x2〉0 = 1

2L

∫ L−c

−L−c

x2dx = L2

3
, (A2)

giving a bare diffusion constant D0 = w0L
2/6.

We define the Péclet number as

Pe ≡ vσ

D0
= 6cσ

L2
, (A3)

where σ is the particle diameter.

2. Biased lattice simulations

Our lattice simulations consist of hard particles (equal in
size to the lattice site) with volume exclusion. Monte Carlo
moves are local hops with probability γ in the ±y (nondriven)
directions, probability γ + 	 in the + (−)x direction for blue
(red) particles, and probability 1 − (3γ + 	) in the − (+)x
direction for blue (red) particles. A hop attempt is rejected if
the chosen site is already occupied. No particle swap moves
are allowed. These dynamics preserve the number of red and
blue particles in the simulation box. We constrained the bare
diffusion constants in the x and y directions to be the same. For
these simulations, the Péclet number is Pe = √

1 − 4γ σ/γ .
We confirmed that measurements of 〈x〉σ/〈δx2〉 gave us the
expected Peclet number for an isolated particle.

3. Steady-state regimes

The activity A(τ ) and φ were used to characterize the
steady states. Off-lattice MC simulations were run at a
range of step sizes. Structures were labeled “jammed” when
A(τ )/A(τ )bare < 0.5, where A(τ )bare is the activity of an
isolated particle. For Langevin simulations and Monte Carlo

simulations with step sizes larger than 0.005σ , structures were
labeled “laned” when φ was larger than 0.5. For step sizes
smaller than this, simulations equilibrated extremely slowly
and often did not reach a stable value of φ over the course of
5 × 1010 Monte Carlo sweeps. To approximate the boundary
between laned and disordered states for these step sizes (the
solid red line in Fig. 2), we used the criterion that φ (without
time-averaging) reach a value of 0.4 or larger at some point
during the trajectory.

We found that Monte Carlo simulations of WCA particles
showed similar behavior to Langevin dynamics (laning above
Péclet 80 and no jamming) at step sizes 	x/σ < 0.01. Hard
disks required a smaller step size, 	x/σ < 0.005, to show
behavior similar to Langevin dynamics. Figure 2 shows the
steady-state regimes for hard disks; the diagram would look
similar for WCA particles, but with the jammed/flowing
boundary shifted to higher step sizes.

APPENDIX B: THERMODYNAMIC PERTURBATION
THEORY, WCA PARTICLES TO HARD DISKS

In Fig. 2 of the main text, we compare the results of
Brownian dynamics simulations of soft (WCA) particles and
Monte Carlo simulations of hard disks. We chose a hard disk
radius such that the thermodynamics of the two systems are
equivalent (in the sense described below). We verified that little
difference is seen in MC simulations upon small variations of
disk diameter.

The free energy of a collection of interacting particles is a
functional of the pair potential:

A[u(r)] = −kBT ln
∫

drNe−β 1
2

∑
i �=j u(ri,j )

= −kBT ln
∫

drN
∏
i,j

f (ri,j ), (B1)

where f (r) is the Meyer f -function

f (r) = e−βu(r). (B2)

Referring to the WCA pair potential with the subscript “o”
and the hard disk pair potential with the subscript “d,” we want
to make their free-energy functionals as close as possible, i.e.,

Ao = Ad + 	A, (B3)

with d chosen such that 	A ≈ 0.
We can define

fλ(r) = fd(r) + λ	f (r) (B4)

with 	f = fo(r) − fd(r). Then

	A = A(λ = 1) − A(λ = 0) =
∫ 1

0
dλ

∫
dr δA

δfλ(r)	f (r)

(B5)

where
δA

δfλ(r)	f (r)
= −kBT

1

Q

∫
drN 1

2
N (N − 1)

×
⎡
⎣ ∏

i,j �=(1,2)

f (ri,j )

⎤
⎦δ(r − r1,2). (B6)
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Choose particles i and j as 1 and 2,

= −1

2
kBT N2 1

Q

∫
drN

⎡
⎣∏

i,j

f (ri,j )

⎤
⎦eβu(r1,2)δ(r − r12)

= −1

2
kBT N2 〈δ(r − r2)δ(r1)〉

〈δ(r1)〉 . (B7)

Using

〈δ(r − r2)δ(r1)〉
〈δ(r1)〉 = g(r)ρ̄

N
, (B8)

where ρ̄ is the average density of the system, leaves us with

δA

δfλ(r)	f (r)
= −1

2
kBT Nρ̄eβu(r)g(r). (B9)

Note that eβu(r)g(r) = y(r), the cavity distribution function.
This gives

	A =
∫ 1

0
dλ

∫
dr

[
−1

2
kBT Nρ̄

]
yλ(r)δf (r), (B10)

which we want to set to 0. If d is chosen well, yλ(r) ≈ yd(r),
so we only need to worry about∫

dr yd(r)	f (r) = 0. (B11)

This brings us to Perkis-Yevick theory:

h(r) = c(r) + ρ̄

∫
dr ′c(r − r ′)h(r ′), (B12)

where h(r) = g(r) − 1, and c(r) is the direct correlation
function. As shown in [43],

y(r) − 1 ≈ ρ̄

∫
dr ′c(r − r ′)h(r ′) = h(r) − c(r). (B13)

For r < d, h(r) = −1 so y(r) = −c(r), leaving us with∫
dr yd(r)	f (r) = 0, (B14)

where 	f (r) = e−βuo(r) − θ (r − d).

Percus-Yevick theory predicts a form for c(r) that has been
solved analytically in three dimensions, but to the best of
our knowledge not in two dimensions, so we numerically
calculated yd(r). It turns out that a hard-disk diameter of σ

is a good approximation for WCA particles of diameter σ , at
least when comparing the free-energy functionals.

APPENDIX C: OFF-LATTICE MODEL-DLG ANALOGY,
AND APPROXIMATE LENGTH SCALES

IN THE ORDERED PHASE

The analogy drawn in the main text suggests that the off-
lattice model can be related to the DLG, whose Ising couplings
scale roughly as

2J ∝ kBT ln(1 + Pe) (C1)

and

2J ′ ∝ kBT ln(1 + λPe) (C2)

for bonds running in driven and nondriven directions, respec-
tively. Here λ < 1 is a geometric parameter that could be fixed
by requiring the model to be critical at a particular value of
Pe. At the level of the Ising model, we can follow Onsager’s
analysis [44] to show that such couplings imply in the
ordered phase the emergence of structures whose characteristic
length scales grow algebraically with Pe. Assume that the
simulation box dimensions are Lx and Ly in driven and
nondriven directions. The Ising model surface tension in driven
and nondriven directions is σ ′ = 2J ′ + kBT ln tanh(βJ ) and
σ = 2J + kBT ln tanh(βJ ′). The free-energy cost required
to create a vertical boundary of length Ly is σLy , and
so the characteristic length lx between such boundaries is
the exponential of this quantity multiplied by β, i.e., lx =
[e2βJ tanh (βJ ′)]Ly [this result is Eq. (124) of Ref. [44]; note
that the version of this result quoted in the abstract of that
paper appears to have a spurious factor of 2 within the tanh
function]. Inserting into this expression the couplings (C1)
and (C2), with constants of proportionality taken to be unity,
we find the characteristic domain length in the driven direction
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FIG. 10. Activity (scaled by the average activity for an isolated particle) and the laning order parameter φ as a function of MC sweep for
WCA particles at three different step sizes.
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FIG. 11. The longitudinal mean-squared displacement (in the
driven direction) of a test particle in the presence of particles of
the other type, normalized by the test particle’s bare mean-squared
displacement, as a function of Péclet number, for different dynamic
protocols.

to be

lx =
(

(1 + Pe)
λPe

λPe + 2

)Ly

. (C3)

For large Pe this length grows as a power law, lx ∼ PeLy [taking
nonunit constants of proportionality in (C1) and (C2) modifies

Pe
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Δ
y
2 τ
)

FIG. 12. Lateral mean-squared displacement [here 	yτ = y(t) −
y(t + τ )] distributions broaden near criticality in a manner similar to
distributions of particle currents; see Fig. 8.

the exponent, but it does not change the fact that the length
scale goes as a power of Péclet number].

The characteristic length of domains in the nondriven
direction, i.e., the equilibrium lane width, can be found in
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FIG. 13. Measured diffusion constants for a range of densities and Peclet numbers. The linear scaling of the lateral diffusion constant with
Pe suggested by Eq. (10) is evident for a range of Pe and ρ (top right panel), and it breaks down at a large packing fraction and a small Pe.
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a similar fashion; it is

ly =
(

(1 + λ Pe)
Pe

Pe + 2

)Lx

, (C4)

which for large Pe grows as ly ∼ (λ Pe)Lx .
These results are consistent in a general sense with the

results of Ref. [10], whose authors measured a length scale
within the off-lattice driven model that for large Pe grows
with Pe either exponentially or as a power law. However, the
connection is not a precise one because that length scale is

neither of the Onsager lengths stated here. In addition, the
above analysis concerns the undriven Ising model, and the
driven version (the DLG) possesses anisotropy of domains on
account of the drive, even for identical couplings J = J ′ [15].
Interfaces in the DLG are also statistically smoother than those
in the Ising model [14,39].

APPENDIX D: ADDITIONAL FIGURES

Figures 10–13 supplement those in the main text.
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