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Nonaffine displacements and the nonlinear response of a strained amorphous solid
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We demonstrate that irreversible structural reorganization is not necessary for the observation of yield behavior
in an amorphous solid. While the majority of solids strained to their yield point do indeed undergo an irreversible
reorganization, we find that a significant fraction of solids exhibits yield via a reversible strain. We also demonstrate
that large instantaneous strains in excess of the yield stress can result in complete stress relaxation, a result of
the large nonaffine motions driven by the applied strain. The empirical similarity of the dependence of the ratio
of stress over strain on the nonaffine mean-square displacement to that for the shear modulus obtained from
quiescent liquid at nonzero temperature supports the proposition that rigidity depends on the size of the sampled
configurational space only and is insensitive to how this space is sampled.
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I. INTRODUCTION

The limit of rigidity of a material can be measured by
the decrease of the shear modulus as a function of the
magnitude of an applied strain. In crystalline materials, this
loss of the modulus has been shown to result from the motion
of defects, either preexisting or generated under strain [1].
The success of this microscopic description of nonlinear
mechanical response represents one of the cornerstones of
materials science [2]. Argon et al. [3] proposed an extension
of the idea of localized defects to account for the nonlinear
mechanical response of amorphous solids. In the absence
of an explicit structural definition, these defectlike objects,
referred to as shear transformation zones, were characterized
as localized irreversible reorganization events and, as such,
have been widely used to treat the mechanical response of
metallic glasses [4]. A number of groups [5,6] have challenged
the notion that the irreversible reorganization events in an
amorphous solid under shear are localized. Simulation results
of quasistatic shearing at zero temperature have reported
that the plastic reorganization events are extended, spanning
the length of the simulation cell [5,6]. If the microscopic
mechanisms responsible for stress relaxation in amorphous
solids are not localized, do they even need to be irreversible?
In this paper we present evidence that reversible strains can
account for the nonlinear response of an amorphous solid under
shear. We also demonstrate that instantaneous strains larger
than the yield strain result in the relaxation of stress and argue
that this relaxation is related to the magnitude of the nonaffine
motions in a manner quantitatively similar to that observed in
quiescent materials at nonzero temperatures. This latter result
allows us to establish a fundamental connection between the
shear-induced loss of rigidity and that achieved in the quiescent
material by heating.

II. MODEL

The model liquid used in this study is a two-dimensional
system of soft disks with a pair interaction potential ϕij (r) =
ε( aij

r
)12 between species i and j . We consider an equimolar

binary mixture with a11 = 1.0, a22 = 1.4, and a12 = 1.2 and
all particles with unit mass, a model that has been extensively
studied [7] in the context of the glass transition. The following

reduced units are used: ε/kB for temperature T and times are
reported in units of τ =

√
ma2

11/ε. Simulations were carried
out under constant NVT conditions using LAMMPS [8] with
a Nosé-Hoover thermostat at a reduced density 0.7468 with
a potential cutoff distance of 6.3a11. The system consisted
of a total of N = 1024 particles. We have generated 51
distinct local minima of the potential energy (referred to
here as inherent structures [9]). In each case the liquid was
cooled at a rate of 5 × 10−5 from T = 0.60 to T = 0.30 and
the resulting configuration was then subjected to a potential
energy minimization to obtain the final inherent structure
configuration. We note that increasing the rate of cooling or the
temperature of the parent liquid will give rise to a decrease in
the shear modulus and an associated increase in the nonaffine
displacements associated with applied strain [10].

III. NONLINEAR MECHANICAL RESPONSE BY
REVERSIBLE STRAINS

We apply an affine shear strain of magnitude γ in a
single step to an initial configuration (inherent structure)
corresponding to a local potential energy minimum with the
associated application of Lees-Edwards boundary conditions
[11]. Following this affine strain, the potential energy of the
strained configuration is then subjected to a conjugate gradient
minimization, under the constraint of the strained boundary
conditions, and the resulting shear stress σ is calculated. The
shear stress σ , averaged over the inherent structures, is plotted
against strain in Fig. 1. The nonlinear mechanical response is
clearly evident in the deviation of 〈σ 〉 from the initial linear
dependence on strain. The shear stress exhibits a maximum at
a yield strain γ ∗ = 0.05 followed by a steady reduction in the
stress with a further increase in γ .

This strain-induced stress relaxation is quite different from
the mechanical behavior found when a large shear strain
is applied quasistatically. In the quasistatic protocol [12],
the strain is applied in small increments δ (here we use
δ = 2 × 10−4). Each incremental strain is followed by a
minimization of the potential energy. The average shear stress
for the quasistatic strain is also presented in Fig. 1 as a function
of the accumulated strain. Instead of the relaxation of stress
found for large step strains, the average stress under quasistatic
strain approaches a constant nonzero value asymptotically
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FIG. 1. Plot of the average change in stress 〈σ 〉 vs γ for the step
strain and for the quasistatic strain. The yield strain γ ∗ is indicated
by the vertical dashed line.

in the strain [12]. The essential difference between the two
strain protocols is that the step strain protocol allows for
an unbounded affine strain energy from which to start the
energy minimization. The quasistatic strain, in contrast, tightly
constrains the amount of elastic energy that can be deposited
into the solid prior to minimization. The quasistatic treatment
clearly represents the more physically realistic scenario (i.e.,
one in which energy minimization occurs on time scales much
quicker than that of the straining procedure), so why employ
the step strain approach? There are two reasons. First, as
discussed below, we are interested in generating nonaffine
displacements of arbitrary magnitude in order to explore
the proposal that the rigidity of a solid is associated with
particle constraint. The step strain protocol allows us to
generate these nonaffine strains of a wide range of magnitudes.
The second virtue of the step strain is that it allows us to
establish reversibility of strain in a simple and explicit manner,
as we shall now discuss.

While the large strain behaviors of the step strain and
quasistatic strain differ markedly, the small strain behavior is
very similar (see Fig. 1), even up to strains just beyond the yield
value. This means that we can use the step strain calculations
to study the role of irreversibility as regards the same nonlinear
mechanical behavior observed in the quasistatic approach over
this range of strains.

A number of researchers have argued that nonlinear elastic
response arises as a consequence of irreversible plastic events
[12]. Our choice of a single step strain allows us to test directly
for irreversibility as follows. Consider the following cyclic
procedure: (i) Apply the affine strain, (ii) minimize the poten-
tial energy, (iii) reverse the affine strain, and (iv) minimize
the potential energy. If the final configuration satisfies the
condition that no particle lies more than a reduced distance
of 0.01 from its initial position, then we identify that process
as reversible. In Fig. 2 (inset) we plot the fraction frev(γ ) of
strains that are reversible for a shear strain of magnitude γ .
At the yield strain γ ∗ = 0.05, we find that frev(γ ∗) = 0.32,

FIG. 2. Plot of the shear stress 〈σ 〉 vs applied strain γ calculated
for the reversible strains (as explained in the text) (red squares)
compared with the value from the all strains (black circles) The insert
shows the probability frev(γ ) of a strain being reversible as a function
of the applied strain. The yield strain γ ∗ is indicated by a vertical
dashed line.

indicating that a third of the configurations reaches the yield
strain via a reversible deformation. It is possible, of course,
that the observed mechanical nonlinearity is entirely due to
the 68% of configurations that have undergone an irreversible
rearrangement when γ = γ ∗. To check whether this the case,
we have plotted, in Fig. 2, the stress averaged over only those
configurations that have exhibited a reversible strain at each
value of γ using the protocol described above. We find that the
reversible strains, while exhibiting a slightly larger yield stress,
do so at essentially the same value of yield strain. We conclude
that while irreversible reorganization at the yield strain does
indeed describe the situation for the majority amorphous
solids studied, irreversibility is not a necessary condition for
yielding behavior since reversible strains exhibit yield that
is quantitatively similar to that generated with the inclusion
of the irreversible strains. As is clear from Fig. 2, reversible
strains are still observed even after the strain has increased
past the peak in the stress. This result is consistent with the
recent observation by Jaiswal et al. [13] that the distribution of
the overlap between the strained and unstrained configurations
of an amorphous solid at the yield strain (as defined above)
exhibits a dominant peak at high values, indicating that the
yield point is not associated with large structural change.

We suggest that nonlinear elastic behavior simply requires
that the amplitude of particle displacement be large. While in
crystalline materials, to achieve large enough displacements
does indeed require irreversible reorganizations (i.e., defect
motion), this is not in general the case in amorphous solids
where the amplitude of nonaffine displacements is sufficient to
achieve nonlinearity without an energy barrier being crossed.
Nonaffine displacements, i.e., the particle displacements
resulting from the energy minimization of the configuration
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FIG. 3. Plot of the nonaffine 〈�r2〉 vs γ . The values of 〈�r2〉
for the reversible and irreversible strains are shown separately, along
with the overall value. The straight line is a fit corresponding to
〈�r2〉 ∝ γ 2.

under an affine strain, are particularly important for the
mechanical response of amorphous solids [14,15]. In Fig. 3
we plot the mean-square nonaffine displacement 〈�r2〉 against
γ . In the linear response regime, we expect 〈�r2〉 ∝ γ 2 [15].
As shown in Fig. 3, we find, empirically, that this γ 2 relation
applies well beyond the linear response regime. Just how large
the displacements need to be to generate yield behavior can
be read directly off Fig. 3. At the field strain γ ∗ we find that
the nonaffine mean-square displacement is 〈�r2〉 = 0.0478.
This value corresponds to an average displacement of ∼0.2 of
the small particle diameter. This is a substantial displacement,
well beyond that typically associated with thermal motion in
a stable solid. The demonstration here (see Fig. 3) that the
magnitude of particle movement can be accomplished by a
reversible strain underscores the remarkable magnitude of the
nonaffine motions accessed by amorphous solids.

IV. RELAXATION OF STRESS AT T = 0 VIA ATHERMAL
NONAFFINE DISPLACEMENTS

A striking feature of the stress vs strain curves plotted in
Fig. 1 is the steady decrease of 〈σ 〉 with increasing strain
beyond the yield value. Previously [16], we established that in
a quiescent (i.e., unsheared) material, the loss of rigidity (as
measured by the ratio of the shear and Born moduli Geq/G∞)
could be described by a function of only the magnitude of the
thermal fluctuations in particle position 〈�r2〉, independent of
either the temperature or the observation time used to carry
out the averages over the stress fluctuations. The conclusion
drawn from this result was that rigidity is a consequence of the
degree of configurational constraint experienced by a material
and that the origin of the constraint (low temperature or
short observation time) was not relevant. The stress relaxation
reported here for the step strain calculations offers us an
interesting opportunity to test this conclusion. We measure
the overall rigidity of a sample subjected to the single step

FIG. 4. Plot of the reduced mechanical response 〈σ 〉
G∞γ

vs 〈�r2〉
for the T = 0 solids subjected to strain (solid line). Also plotted is
the reduced shear modulus Geq/G∞ from Ref. [16], calculated over
a range of temperatures and averaging times in quiescent liquids.
The infinite frequency modulus G∞ = 〈σaffine〉/γ , calculated using a
strain of 10−4.

strain by the ratio 〈σ 〉/γ . In the linear response regime, this
ratio of stress over strain is simply the shear modulus Geq.
For γ > γ ∗, 〈σ 〉/γ no longer equals the shear modulus [17]
but still describes the overall relationship between stress and
strain. A characteristic of the step strain calculations is that
they can generate large-amplitude nonaffine displacements, as
shown in Fig. 3. In Fig. 4 we plot the reduced mechanical
response function 〈σ 〉/γG∞ vs the nonaffine mean-square
displacement 〈�r2〉 from our T = 0 calculations along with
the data for Geq/G∞ from the quiescent liquid calculations in
Ref. [16]. We find that the variation of the mechanical response
〈σ 〉/γG∞ with respect to the strain-induced 〈�r2〉 at T = 0
is very similar to the behavior of the modulus Geq/G∞ at
nonzero temperatures due to thermally driven particle motion.
This result provides significant support for the proposal [16]
that rigidity is determined by the size of configuration space
a system samples and that the details of how that space is
sampled are not important.

V. CONCLUSION

In this paper we have demonstrated that the nonlinear
response of an amorphous solid with respect to a steplike
shear strain can be completely accounted for by considering
a measure, the mean-square nonaffine displacement, of the
extent of the configuration space sampled. The importance
of the contribution of the collective strain in the nonlinear
mechanical response of an amorphous solid has been pre-
viously noted [18]. Whereas previous studies have regarded
plastic events as the essential drivers for these extended
strains, here we have presented evidence that these irreversible
reorganizations are not essential. We do not dispute that
certain states (e.g., crystals) and certain shearing protocols
(e.g., quasistatic shearing) constrain the magnitude of non-
affine motion so that the only means of the system to
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achieve the necessary amplitude of particle movement is
by irreversible rearrangements. Our argument is that it is
useful to separate the process required to generate nonaffine
motion from the consequences of that nonaffine motion once
generated. This is a powerful result in that it asserts that the
decrease in the shear modulus through nonlinear strain arises
from the same fundamental cause as does the decrease in
the modulus due to a temperature increase or an increase in
observation time. Our results support the proposition that what
matters is the magnitude of the nonaffine displacements, not
the means by which they are produced or constrained. We
have presented evidence that the yielding of the amorphous
solid is best described as a consequence of the shear-induced
increase of the configuration space that is sampled. This picture
includes, but is not limited to, the localized plastic events that
have dominated much of the discussion of yield behavior.
In our analysis, the significance of plastic reorganizations
lies not in their irreversibility, but rather in the fact that
they represent an effective mechanism for increasing the size

of the sampled configuration space (estimated here by the
magnitude of 〈�r2〉) and the only possible mechanism in
situations where nonaffine motions are suppressed, either by
high symmetry structure or by imposed constraints. A number
of papers [19–22] have demonstrated that the rate of slow
relaxation in glass forming liquids correlates strongly with
the mean-square displacement, irrespective of whether particle
motion is driven by thermal fluctuations [18,21] or an applied
strain [22]. Clearly, a fundamental relationship must connect
the origin of rigidity in configurational constraint, as discussed
in this paper, and these correlations between displacements and
dynamics, one that warrants further study.
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