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We simulate the influence of a reversible isomerization reaction on the phase segregation process occurring
after spinodal decomposition of a deeply quenched regular binary mixture, restricting attention to systems
wherein material transport occurs solely by diffusion. Our theoretical approach follows a diffuse-interface model
of partially miscible binary mixtures wherein the coupling between reaction and diffusion is addressed within
the frame of nonequilibrium thermodynamics, leading to a linear dependence of the reaction rate on the chemical
affinity. Ultimately, the rate for an elementary reaction depends on the local part of the chemical potential
difference since reaction is an inherently local phenomenon. Based on two-dimensional simulation results,
we express the competition between segregation and reaction as a function of the Damköhler number. For a
phase-separating mixture with components having different physical properties, a skewed phase diagram leads,
at large times, to a system converging to a single-phase equilibrium state, corresponding to the absolute minimum
of the Gibbs free energy. This conclusion continues to hold for the critical phase separation of an ideally perfectly
symmetric binary mixture, where the choice of final equilibrium state at large times depends on the initial mean
concentration being slightly larger or less than the critical concentration.

DOI: 10.1103/PhysRevE.94.022605

I. INTRODUCTION

The objective of this research is to study numerically the
influence of a simple reversible isomerization reaction on the
phase segregation of a regular binary mixture, occurring after
it is deeply quenched from a single-phase equilibrium state
into the (two-phase) unstable range of its phase diagram.
Based on results of previous works showing that spinodal
decomposition of regular binary mixtures can be convection-
driven in low-viscosity systems [1–6], herein we further
restrict attention to cases in which material transport occurs
solely by diffusion, to be able to focus on the competition
between segregation and reaction in the absence of any
convection-driven coalescence. In fact, phase separation in
a number of reaction-diffusion systems occurs primarily by
spinodal decomposition, usually triggered by a thermal or
compositional quench. Actually, the necessary displacement
from a stable state in the one-phase region into the spinodal
range can also occur by reaction, e.g., polymerization of a
monomer when the polymer being formed is incompatible
with one or more of the other components in the system. Such
reaction-induced spinodal decomposition [7,8] is particularly
relevant to the design of new materials such as, e.g., monolithic
porous polymer or carbon materials [9], and consequently
has been studied extensively over the past few decades,
mostly by experiment [10–17]. In fact, the first attempt to
investigate instabilities in a binary mixture undergoing phase
separation induced by an autocatalytic reaction dates back to
Huberman [18] in 1976. On the other hand, early experimental
observations of the influence of chemical reactions on phase
separation include a study of pattern formation in a polymer
blend with segregation coupled to a transesterification reaction
[19], or the introduction of photo-cross-linking reactions to
binary and ternary phase-separating mixtures by Tran-Cong
and coworkers [20–25]. In fact, a number of works indicated
that chemical reactions may slow down the phase separation
in polymer blends; in particular, Glotzer et al. [26] studied
by Monte Carlo simulation the phase separation of a binary

mixture in the presence of a reversible A � B reaction,
showing that, unlike the nonreactive case, phase separation
proceeds only to a certain extent, until the system freezes into
a lamellar morphology, due to a suppression of low wave-
number composition fluctuations [27]. Ever since, a number
of similar studies have been conducted to further investigate
the influence of reversible reactions on binary and ternary
systems undergoing phase separation, based on alternative
numerical methods and model equations [28–35]. In particular,
Glotzer et al.’s [26,27] results were questioned by Lefever
and coworkers [36,37] as to the thermodynamic coupling
between reaction kinetics and diffusion, which cannot be
neglected particularly in the vicinity of the critical point. Using
nonequilibrium thermodynamics [38,39], Carati and Lefever
[37] presented a more general linear stability analysis showing
that there exist four possible cases that include the prediction
by Glotzer et al. [27] regarding a reaction-induced stabilization
of low wave-number composition fluctuations. Note that the
large amount of work in the area of phase segregation by
spinodal decomposition in the presence of chemical reactions
has been well reviewed by Desai and Kapral [40] (in particular,
Chaps. 5, 6, 18, and 30 therein). Herein, we further address
reaction and diffusion in a phase-separating regular binary
mixture within the frame of nonequilibrium thermodynamics,
focusing on the influence of a reversible isomerization reaction
as it affects both the linear regime of spinodal decomposition
and its late stage, based on a binary fluid diffuse-interface
model for regular mixtures with an asymmetric phase diagram.
We also address reaction coupled to phase segregation in an
ideally perfectly symmetric binary system.

Although many previous works have addressed the com-
petition between segregation and reaction particularly in
phase-separating chemically reactive polymer blends, to our
knowledge the Damköhler-number dependence of segregation
statistics for a regular binary mixture undergoing phase sepa-
ration in the presence of a reversible isomerization reaction has
not been discussed in the literature before and constitutes the
principal result reported herein. An outline of the remainder
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of this paper is as follows. The governing equations and
numerical methods are briefly outlined in Sec. II. Then, in
Sec. III we show the results of numerical simulations of
a phase-separating chemically reactive binary mixture as a
function of the Damköhler number. Conclusions are then
presented.

II. MODEL DESCRIPTION

We restrict attention to partially miscible, regular binary
mixtures of two species A and B with molar fractions xA

and xB = 1 − xA, kept at constant temperature T and pressure
P . In previous works [1,4,41–44], such mixtures had been
assumed to have components with equal densities, viscosities,
and molecular weights (i.e., an ideally perfectly symmetric
binary system). Herein, we consider mixtures with component
species having different physical properties, corresponding to
an asymmetric phase diagram [45]. Now, when the mixture has
a uniform composition, the equilibrium state of the system is
described by the thermodynamic Gibbs free energy of mixing:

�gth = gth − (gAxA + gBxB), (1)

where gth is the molar free energy of the mixture at equilibrium,
while gA and gB denote the molar free energies of the pure
species at temperature T and pressure P . For regular mixtures,
the thermodynamic Gibbs free energy of mixing can be written
as the sum of an ideal (or entropic) part

�gid = RT (xA log xA + xB log xB) (2)

(R being the universal gas constant), which is proportional to
the entropy of mixing for an ideal solution, and an enthalpic
(so-called excess) part

�gex = RT xAxB(�AxA + �BxB), (3)

where �i denotes the Margules parameter for the ith species.
When the composition of the mixture is nonuniform, following
Cahn and Hilliard [46], spatial inhomogeneities in the com-
position can be accounted for by representing the generalized
Gibbs free energy of mixing as the sum of a thermodynamic
part and a nonlocal part, i.e.,

g̃ = gth + 1
2RT a2|∇φ|2, (4)

where a is a (coarse-grained) sub-micron-scale length, which
represents the typical interface thickness between the two
phases at equilibrium. Now, from the expression for the
chemical potential for species i for homogeneous solution at
constant T and P ,

μth
i = 1

RT

(
∂cgth

∂ci

)
cj �=i

, (5)

with ci = cxi denoting the mole density of species i while
c = cA + cB is the total mole density, we see that for a
binary system the chemical potential difference μth = μth

A −
μth

B is thermodynamically conjugated to φ ≡ xA, i.e., μth =
d(gth/RT )

dφ
. With the above definitions we obtain

μth = μ0 + log
φ

1 − φ
+ �+(1 − 2φ) − �−(1 − 6φ + 6φ2),

(6)

where μ0 = (gA − gB)/RT while �+ = (�A + �B)/2 and
�− = (�A − �B)/2. This relation was extended to inhomo-
geneous mixtures by Cahn and Hilliard [46] in terms of
the generalized (i.e., thermodynamic plus nonlocal) chemical
potential difference:

μ̃ = δ(g̃/RT )

δφ
= μth − a2∇2φ. (7)

Note that the phase diagram for this binary system can be
easily obtained by solving μth = const for the equilibrium
concentrations (after specification of temperature dependences
for �± and μ0) as a function of temperature. However, in the
rest of this paper we restrict our attention to cases where an
asymmetric phase diagram can be described solely in terms
of μ0 �= 0 (i.e., assuming that both species have the same
Margules parameter, �A = �B = �+).

A. The governing equations

We consider a reversible isomerization reaction, A � B.
Also, we assume isothermal conditions so that the energy bal-
ance is identically satisfied. Now, requiring mass conservation
for each species leads to well-known continuity equations for
the mole densities ci (i = A,B):

∂cA

∂t
+ ∇ · cAvA = rA, (8)

∂cB

∂t
+ ∇ · cBvB = rB. (9)

Here, vA and vB are the local mean species velocities for A

and B while rA(= −rB) denotes the molar consumption rate
of A per unit volume. As a rule, the above mass conservation
equations must be coupled to the Navier-Stokes equation;
however, in what follows we further restrict attention to
an isothermal reaction-diffusion system in the absence of
flow, i.e., wherein cAvA + cBvB ≡ 0. Therefore, denoting by
xA ≡ cA/c ≡ φ the mole fraction of A, Eqs. (8) and (9) reduce
to

∂φ

∂t
= −∇ · Jφ − R, (10)

where R = −rA/c is the reaction rate (expressed as a mole
rate), while c = ρ/MW is the molar density (a constant in this
case based on our assumption of equal molecular weights).
Note that, based on our derivation of the entropy equation
for a binary mixture [43], the entropy production rate for this
reaction-diffusion system is

σ

R
= −Jφ · ∇μ̃ − R

A

RT
, (11)

where the chemical affinity, A = −RT μth, depends solely on
the local part of the chemical potential difference [39]. The
constitutive equation for the diffusive volumetric flux can be
obtained by inspection of the first term on the right-hand side,
as the negative gradient of the generalized chemical potential
difference (corresponding to a positive contribution to the
entropy production), i.e.,

Jφ = −D∗∇μ̃, (12)
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where D∗ is an effective diffusivity. Now, imposing that this
constitutive equation reduce to Fick’s law in the dilute limit,
we see that the simplest way to express the effective diffusivity
is D∗ = Dφ(1 − φ) [45,47], where D is a constant. Similarly,
in a nonequilibrium thermodynamics approach to reaction rate
modeling [38], the reaction rate depends linearly on the affinity,
i.e.,

R = −k
A

RT
, (13)

where k > 0 is an Onsager coefficient which, in fact, can be
immediately identified as a reciprocal reaction time (i.e., k ≡
τ−1
r ). Accordingly, Eq. (11) can be recast in the form

σ

R
= Dφ(1 − φ)|∇μ̃|2 + k(μth)2. (14)

This relation emphasizes that gradients in the generalized
chemical potential difference are responsible for the entropy
production due to diffusion, since that is an inherently nonlocal
phenomenon [as already stated in Eq. (12)]. In contrast, since
reaction is inherently local, the associated entropy production
should depend solely on the local part of the chemical potential
difference [as already stated in Eq. (13)]. As we will see later
on, this locality of reaction (as opposed to a nonlocal diffusion)
has a dramatic impact on the late stage behavior of symmetric
phase-separating chemically reactive mixtures.

Although quite close to chemical equilibrium Eq. (13) is
expected to hold to a good approximation, large deviations
from a linear flux-force dependence are generally observed
for chemical reactions [38]. In fact, in nonequilibrium thermo-
dynamics of chemical reactions, the rate for an elementary
reaction is usually expressed in terms of Arrhenius-type
exponentials of the chemical potential (a.k.a. fugacity, or
the exponential transform of the chemical potential), so that
the relationship between reaction rate and affinity turns out to
be nonlinear [38,48]:

R = −k(1 − e−A/RT ), (15)

which obviously reduces to Eq. (13) for |A|/RT � 1. Since
all results reported herein have been based on Eq. (13), we
show in Fig. 1 both reaction rate models [Eqs. (13) and
(15)] as a function of composition. Now, since the range of
concentrations accessed by all of our simulations is 0.3 � φ �
0.7, we can safely conclude that both of the above reaction rate
models lead to identical results.

It should be acknowledged at the outset that the coarsening
behavior of phase-separating chemically reactive mixtures is
fundamentally different from that of nonreactive mixtures in
that the order parameter is no longer conserved during the
segregation process in the presence of reaction, similar to
model A (in the taxonomy of Hohenberg and Halperin [49])
dynamics. Note that the Hohenberg-Halperin classification
scheme is also addressed in the monograph by Desai and
Kapral [40] (in particular, Chaps. 5 and 6 therein). In fact,
as we will see later on in our discussion of numerical results
(Sec. III), that is especially evident for mixtures having an
asymmetric phase diagram, so that system location in the phase
diagram during the segregation process moves in such a way as
to converge to the absolute minimum of the Gibbs free energy.
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FIG. 1. Dimensionless reaction rates as a function of concentra-
tion from Eq. (13) (solid) and Eq. (15) (dashed).

B. Numerical methods

The governing equation (in dimensionless form) can be
rewritten as follows:

(∂t − ∇2)φ = −∇2

{
φ(1 − φ)

[
2�+φ + 6�−(φ2 − φ)

+
( a

L

)2
∇2φ

]}
+ ∇ ·

{[
2�+φ + 6�−(φ2 − φ)

+
( a

L

)2
∇2φ

]
(1 − 2φ)∇φ

}
− kL2

D
μth, (16)

where lengths and times have been scaled by L and L2/D,
respectively, with L denoting a macroscale length (which in
our case coincides with the periodicity length of the com-
putational domain). Now, since we consider phase-separating
mixtures with an asymmetric phase diagram (as it happens
when μ0 �= 0, which is the case with the simulation results
reported herein), the reaction term in Eq. (16) can be estimated
as O

(
kL2

D
|μ0|

)
, while the diffusion term is O

(
ψ

D(φ0)
D

L2

a2

)
. Here,

ψ is defined as ψ = − 1
2

∂μth

∂φ
|
φ0

, while D(φ0) ≡ Dφ0(1 − φ0).

[It turns out that D(φ0)ψ(φ0) is an estimate of the effective
diffusivity that arises in a linear stability analysis (see the
Appendix).] Therefore, we define the Damköhler number as a
reaction-to-diffusion flux ratio:

Da
L

= kL2|μ0|
D(φ0)ψ(φ0)

. (17)

Note that, even though a is the physically relevant length
scale for transport by molecular diffusion (as reflected in the
order-of-magnitude estimate above), our definition incorpo-
rates L2/[D(φ0)ψ(φ0)] as the time required for transport by
diffusion across the whole system size.

We assume periodic boundary conditions, which enables
a straightforward pseudospectral spatial discretization. In
pseudospectral methods, however, special care must be taken
to avoid aliasing errors in the computation of nonlinear terms.
Quadratic nonlinearities are usually made alias-free using the
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so-called padding method, consisting of collocating in physical
space on a refined grid with (3/2)2 as many grid points (in two
dimensions) as the number of active modes in the calculation.
Using the padding method, a refined grid with (5N/2)2 points
is required for dealiasing the quartic nonlinearities [50]. In our
production runs, the 3/2 rule has been employed for quadratic,
cubic, and quartic nonlinearities, since the remaining aliasing
errors were found to be negligible. The Fourier-transformed
Eq. (16) can be rewritten as follows:

d

dt

(
ek2t φ̂k

) = ek2t N̂k. (18)

Here, N denotes the sum of nonlinear terms on the right-hand
side of Eq. (16), while Fourier coefficients are denoted by
hats. Also note that an integrating factor has been employed
for the exact treatment of the purely diffusive term on the
left-hand side of Eq. (16). The grid spacing has been chosen
so that interface profiles are resolved with three collocation
points, i.e., �x = a/2. Equation (18) has been time integrated
using the standard fourth-order Runge-Kutta scheme [1], with
a variable time step determined by

�t = NC

�x

V
, (19)

where NC is a dimensionless parameter. Also, �x is the
dimensionless grid spacing, while V = max[|φ,x | + |φ,y |].
This makes our temporal scheme sensitive to the spatial
gradients of φ. In addition, NC was chosen such that the time
advancement scheme is numerically stable and the smallest
dynamical motions are accurately computed. Unfortunately,
the nonlinearity of the equation prevents a rigorous deter-
mination of the stability limit and imposes a trial-and-error
determination of the maximum NC . In our simulations, we
chose NC = N∗

C(Da) [with N∗
C(Da) = 10−3–10−2 depending

on our choice of Da], as we found values of NC > N∗
C(Da)

such that the scheme is numerically unstable.

III. RESULTS

A. Asymmetric binary mixture

Numerical results from two-dimensional (2D) simula-
tions of spinodal decomposition of a binary mixture with
a slightly asymmetric phase diagram in the presence of a
reversible isomerization reaction are now described. Sim-
ulations were run at different Damköhler numbers, Da

L
=

0.531, 5.31, 53.1, and 531, with �+ = 2.1 and �− = 0. Us-
ing a single Margules parameter, an asymmetric phase diagram
was described solely based on the term μ0 = −0.01. The
corresponding thermodynamic Gibbs free energy is shown in
Fig. 2. We took the initial system location between the spinodal
points φ

β
s = 0.39 and φα

s = 0.609, at the relative maximum
φ0 = 0.4457. In particular, at this location the results of
a linear stability analysis (see the Appendix) hold exactly.
Spinodal patterns at different (nondimensional) times and for
different values (noted above) of the Damköhler number are
shown in Fig. 3. As can be seen, initially (i.e., for times in
the range shown in Fig. 3) the phase segregation process at
Da

L
= 0.531 is controlled solely by diffusion. In other words,

the characteristic reaction time is so large compared to the
characteristic diffusion time that diffusion is hardly influenced
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FIG. 2. Thermodynamic Gibbs free energy for a binary mixture
with �+ = 2.1, �− = 0, and μ0 = −0.01. The absolute minimum
of the free energy is at φ∗

eq = 0.7046.

by reaction in the range of simulated times, leading to the
formation of pseudospherical nuclei of the minority phase
embedded in a continuous phase, which is typical of off-critical
spinodal decomposition. Eventually, though, reaction takes
over [i.e., for t > O(Da−1

L
)], driving a phase-separated system

towards its single-phase equilibrium state at φ∗
eq = 0.7046. On

the other hand, at Da
L

= 5.31, although reaction is still slow
compared to diffusion, at the late stage shown in Fig. 3, after the
appearance of the first nuclei, reaction takes over, effectively

FIG. 3. Mass fraction snapshots at different (nondimensional)
times t = 5 × 10−2, 5 × 10−1, and 2 (left to right) from phase-field
simulations of an asymmetric binary mixture with �+ = 2.1, �− =
0, and μ0 = −0.01 on a 5122 grid with Damköhler numbers Da

L
=

0.531, 5.31, 53.1, and 531 (top to bottom).
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FIG. 4. Temporal evolution of the characteristic length scale
of single-phase microdomains from phase-field simulations of an
asymmetric binary mixture with �+ = 2.1, �− = 0, and μ0 =
−0.01 on a 5122 grid and different Damköhler numbers.

arresting the phase separation and driving the system towards
the absolute minimum of the free energy at φ = φ∗

eq. Similar
behavior is observed for Da

L
= 53.1 and 531, though reaction

tends to kick in sooner due to a smaller characteristic reaction
time as compared to the smaller Damköhler number cases. This
competition between reaction and diffusion is also reflected in
the temporal evolution of the characteristic length scale of
single-phase microdomains (see Fig. 4), defined as

Lφ(t) = 1

φ2
rms

∑
k

|φ̂k|2
|k| . (20)

As can be seen, after an incubation time [51], a diffusive type
of scaling is apparent for the characteristic length scale for
Da

L
= 0.531, i.e., Lφ(t) ∼ tα , with α � 1/3, reaction being

too slow to have any effect. However, as previously noted,
at larger Damköhler numbers reaction effectively arrests the
phase separation, by first accelerating the phase separation in
terms of an overshoot in the growth of the characteristic length
scale; subsequently, the characteristic length sharply decays to
a constant value, corresponding to a single-phase equilibrium
state.

Since 〈φ〉 is no longer conserved during the segregation
process in the presence of reaction, in Fig. 5 we show the tem-
poral evolution of a suitably normalized mean concentration,
i.e.,

〈φ̃〉 =
〈

φ(r) − φ0

φ∗
eq − φ0

〉
, (21)

where φ0 is the initial composition, while φ∗
eq denotes the

composition of the final single-phase equilibrium state (with
the brackets denoting volume and ensemble averaging). Note
that this definition is the same (barring a single-phase final
equilibrium state) as the separation depth which had been
introduced in previous works [1,52,53] for measuring the
distance of single-phase microdomains from their (two-phase)
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FIG. 5. Normalized mean concentration vs time (reaction time
units) from phase-field simulations of an asymmetric binary mixture
with �+ = 2.1, �− = 0, and μ0 = −0.01 at different Damköhler
numbers.

local equilibrium state. However, as can be seen, even with
the smallest Damköhler number the temporal evolution of the
separation depth (for this reactive situation) is fundamentally
different from that exhibited in the absence of chemical reac-
tions [1], wherein after the (delayed) onset of phase separation
local equilibrium is reached well after the appearance of
microdomains with sharp interfaces, through a process of
composition relaxation that is concomitant to their temporal
growth. In the presence of chemical reactions and, in particular,
for large Damköhler numbers, instead, there is no time for
the mixture to phase separate by diffusion as reaction takes
over, driving the system to a single-phase equilibrium state
corresponding to 〈φ̃〉 = 1.

Note that the equilibrium points (denoted in previous works
as φ

α,β
eq ) corresponding to locations on the tangent to the free

energy curve in Fig. 2 and representing two coexisting phases
are not relevant to the present simulations, since, after an initial
transient wherein as a result of diffusion two phases might
be coexisting for some time, due to the skewness of the phase
diagram the system eventually converges to the single-phase
(equilibrium) steady state at φ = φ∗

eq.

B. Symmetric binary mixture

The argument above regarding the final equilibrium state
for a binary mixture with a skewed phase diagram can be
questioned for a perfectly symmetric binary mixture, since
in this case it is not obvious that the final equilibrium state
should be characterized by a single phase. This was further
investigated by first running simulations with a rectangular
strip of the minority α phase embedded in a continuous β

phase (with both φα
eq and φ

β
eq obtained from an equilibrium

calculation assuming phase coexistence) using μ0 = 0, the
same Margules parameter as above and a large value of the
Damköhler number. In these simulations, although the reaction
rate is essentially zero within the single-phase microdomains,
reactions still occur at the α/β interfaces. In fact, with the
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FIG. 6. Mass fraction snapshots at different (nondimensional)
times t = 4 × 10−3, 2.4, 3.1, 12, 17, and 28 (left to right and top to
bottom) from phase-field simulations of a perfectly symmetric binary
mixture with �+ = 2.1, �− = 0, μ0 = 0, and Da = ka2

D(φ0)ψ(φ0) =
4.76 on a 2562 grid.

strip bounded by initially straight interfaces, we saw that
nothing happens except for the interfacial thickness tending
to become smaller and smaller, since ideally the system would
want to minimize the Gibbs free energy by getting rid of the
additional energy cost incurred by the presence of interfaces
in the computational domain (i.e., by reaching a single-phase
homogeneous equilibrium state). Clearly, this cannot happen
in this one-dimensional situation. So we ran additional cases
with a rectangular strip having corrugated interfaces, such as
those obtained using a sinusoidal variation in the y direction
to specify the initial interface location. In these cases, we saw
that the system tends to get rid of the corrugations, i.e., with
a final equilibrium state characterized by straight interfaces.
However, for a perfectly symmetric binary system consisting
of phase-separated domains initially at equilibrium, interfacial
curvature plays a crucial role in driving the system to its final
single-phase equilibrium state. This is apparent in simulations
with a circular droplet of the minority α phase surrounded by a
circular crown of the same phase and embedded in a continuous
β phase. Again, since reaction is only taking place at the α/β

interfaces, we saw a cascade of concentric drops collapsing
towards the center of the computational domain, with the final
equilibrium state consisting solely of a homogeneous β phase.
As can be seen in Fig. 6, at Da = 4.76, it takes a relatively
short time for the inner drop to get eroded by reaction and
disappear. However, the time it takes for the circular crown to
disappear is more than twice as long, since its initial (inner)
curvature is more than twice as small as the initial curvature
of the inner drop.

Next, we looked at an initially phase-separated mixture at
equilibrium consisting of a monodisperse array of drops of
the minority α phase embedded in a continuous β phase. The
top panel in Fig. 7 shows a total of 150 drops of the minority
phase (having a radius of 8a) resulting in 〈φ〉(0) = 0.48; as
can be seen, at Da = 0.62 a few drops have time to coalesce
by diffusion and only afterwards do such larger domains get
eroded by reaction so that the system eventually converges
to a homogeneous β phase. In fact, this conclusion remains
valid even when the total number of drops is increased to 176,
so that the initial mean concentration is 〈φ〉(0) = 0.515. In
this case, too, we saw that the continuous phase wins, i.e., the
final equilibrium state consists of a single-phase homogeneous

FIG. 7. Mass fraction snapshots at different (nondimensional)
times t = 0.01, 1,and 2.5 (left to right) from phase-field simula-
tions of a perfectly symmetric binary mixture consisting of a
monodisperse array of α-phase drops embedded in a continuous
β phase (at the initial time) with �+ = 2.1, �− = 0, μ0 = 0,
and Da = ka2

D(φ0)ψ(φ0) = 0.62 on a 5122 grid with 〈φ〉(0) = 0.4864
(top) and 〈φ〉(0) = 0.5150 (bottom).

β phase. However, for a perfectly symmetric binary mixture
at critical concentration, perturbed by delocalized (random)
composition fluctuations, with a value of the Damköhler
number slightly larger than that for the initially monodisperse
drops, after the initial diffusion-driven stage of spinodal
decomposition, the late stage evolution in the presence of
reaction was very sensitive to initial disturbances in the
composition that would make the initial mean concentration
either slightly larger or less than the critical concentration,
〈φ〉 = 1/2. This bias (which can be controlled using the seed
for the random number generator) determines the subsequent
evolution towards either the high (with the final equilibrium
state being α) or low end (with the final equilibrium state being
β) of the composition range (see Fig. 8).

In conclusion, in spite of some previous studies suggesting
that phase separation is somehow arrested by the chemical
reaction, with the stationary solution characterized by a
lamellar morphology, within the frame of our model we find a
different result, i.e., in all cases the system tends to minimize
its free energy by reaching a single-phase stationary state
after all two-phase interfaces have been eliminated (since

FIG. 8. Mass fraction snapshots at different (nondimensional)
times t = 0.02, 1, and 80 (left to right) from phase-field simulations
of a perfectly symmetric binary mixture at critical concentration
(with random noise superimposed at the initial time) with �+ = 2.1,
�− = 0, μ0 = 0, and Da = ka2

D(φ0)ψ(φ0) = 2.44 on a 2562 grid with
〈φ〉(0) = 0.50017 (top) and 〈φ〉(0) = 0.49994 (bottom).
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their presence would entail an additional energy cost). In
fact, had we assumed a reaction rate depending on both the
local and nonlocal parts of the chemical potential difference, a
two-phase stationary state could be the final equilibrium state.
In this case, the two-phase stationary solution corresponding
to a purely diffusive process (having perhaps a lamellar type
of morphology) would entail zero thermodynamic force for
both reaction and diffusion. On the other hand, since in this
work the reaction rate depends solely on the local part of
the chemical potential difference, the two-phase stationary
solution corresponding to a purely diffusive process cannot
be the final equilibrium solution.

IV. CONCLUSIONS

We have discussed numerical results from 2D simulations
of spinodal decomposition of a regular binary mixture with
component species having different physical properties (cor-
responding to an asymmetric phase diagram) in the presence
of a reversible isomerization reaction. Our attention has been
restricted to systems such as, e.g., polymer melts and alloys,
wherein material transport occurs solely by diffusion. Also,
the thermodynamic coupling between reaction and diffusion
has been addressed within the frame of nonequilibrium
thermodynamics, leading to a linear dependence of reaction
rate on affinity. We emphasize that, ultimately, the reaction rate
should depend solely on the local part of the chemical potential
difference, since reaction is an inherently local phenomenon.
On the other hand, diffusion is modeled using a phase-field
approach, considering the nonlocal character of this process.
Using this model, a linear stability analysis for an equilibrium
state located in the spinodal range of the phase diagram shows
that the effect of reaction is always destabilizing on the linear
regime of spinodal decomposition. Furthermore, we discussed
the competition between segregation and reaction from spin-
odal decomposition simulations in 2D at different Damköhler
numbers. In particular, we have shown that, due to the
skewness of the phase diagram for a mixture with component
species having different physical properties, in all cases the
system converges at long times to a single-phase equilibrium
state, corresponding to the absolute minimum of the Gibbs free
energy. This conclusion is still valid for a perfectly symmetric
binary mixture; in fact, since there is no skewness in the phase
diagram in this case, at steady state the system converges
to either the α or β phase (obtained from an equilibrium
calculation assuming phase coexistence) depending on the
initial mean composition being slightly larger or less than the
critical concentration, which is ultimately controlled by the
seed for the random number generator. All these effects can be
considered as consequences of the interplay between locally
controlled reactions versus nonlocal mixing thermodynamics.
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APPENDIX: LINEAR STABILITY ANALYSIS

We study the short-time behavior of a regular binary
mixture with an asymmetric phase diagram, which is suddenly

quenched into the unstable range of its phase diagram at a
uniform concentration φ = φ0 such that μth(φ0) = 0, in the
presence of a reversible isomerization reaction. (Note that
near-critical conditions are not assumed.) First, we linearize
the Cahn-Hilliard equation [Eq. (10)] defining

u ≡ φ − φ0

φ0
, ψ = �+ − 3�−(1 − 2φ0) − 1

2φ0(1 − φ0)
.

(A1)

With |u| � 1 and 〈u〉(0) = 0, we obtain

∂u

∂t
= −2ψ∇2u − ∇4u + 2ψDa0u, (A2)

where the spatial coordinates and time have been made
dimensionless based on a and a2/D(φ0), respectively, while

Da0 ≡ ka2

D(φ0)
(A3)

is a Damköhler number. Equation (A2) follows from a Taylor
series expansion for the chemical potential difference around
u = 0 as

μth = −2ψφ0 u + . . . . (A4)

Using an integrating factor, Eq. (A2) can be rearranged to the
form

∂u′

∂t
= −2ψ∇2u′ − ∇4u′, with u′ = u exp(−2ψDa0t),

(A5)

which is the same as the linearized Kuramoto-Sivashinsky
equation of the nonreactive case [45]. Now, assuming a
periodic perturbation,

u′ = u′
0e

ik·xeσ ′t , (A6)

we find for the original disturbance

σ (k) = k2(2ψ − k2) + 2ψDa0. (A7)

Hence we see that

k < ψ
(
1 +

√
1 + 2Da0/ψ

)
(A8)

corresponds to unstable growth of the disturbance. It follows
from Eq. (A7) that the wave number which maximizes the
exponential growth, kmax = √

ψ , is the same as for the
nonreactive case. However, since σ (0) > 0, the zero mode
of the disturbance (i.e., its mean value) is always unstable, in
agreement with 〈φ〉 not being conserved in the presence of
reaction.

Finally, we comment on the large-time behavior of a regular
binary mixture with an asymmetric phase diagram converging
to a single-phase equilibrium state. In this case, too, the Cahn-
Hilliard equation can be linearized by first introducing u and
ψ as above [Eq. (A1)], with φ0 = φ∗

eq denoting the uniform
concentration of the final equilibrium state. With |u| � 1 and
〈u〉(∞) = 0, we obtain, once again,

∂u

∂t
= 2ψ−∇2u − ∇4u − 2ψ−Da0u, (A9)

where ψ− denotes the negative part of ψ (note that ψ− = −ψ

is positive since gth is convex in the neighborhood of φ0).
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Again, this is the same as a linearized Kuramoto-Sivashinski
equation. Now, based on our assumption of periodic bound-
aries, the solution to Eq. (A9) can be written down by
inspection:

u(x,t) =
∑

k

ûk(0)e−(2ψ−k2+k4)t eik·x e−2ψ−Da0t . (A10)

Hence, assuming a small value of the Damköhler number,
in the final approach to a homogenous equilibrium state
inhomogeneities in the composition are smoothed out on
a diffusive time given by a2/De, where De = 2ψ−D(φ0)
represents an effective diffusivity, and, simultaneously, on a
hyperdiffusive time given by a2/D(φ0), while a2D(φ0) acts as
a hyperdiffusivity. Subsequently, reaction kicks in, driving the
perturbation to zero on a reaction time scale given by (kψ−)−1.
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