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Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on
colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system.
DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating
the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly
known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating
techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination
of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can
determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that
gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in
well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients
and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their
contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity
field. Our extended theoretical model was found to be in good agreement with experimental measurements.
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I. INTRODUCTION

Dynamic light scattering (DLS) relies on the statistical
fluctuations of intensity when coherent light interacts with
a colloidal suspension to obtain information on the suspended
particles, such as their diffusion dynamics, electrophoretic
mobility, and the progress of chemical reactions [1]. DLS
makes use of the autocorrelation function of the signal
intensity, and its theory relates the shape and time constants
of this function to the parameters of interest. An important
application of DLS theory is the noncontact study of mass
transport in rheological systems, such as those presenting
deterministic translational motion in addition to diffusion.
When such mass transport is interpreted as flow and heterodyne
detection is used, DLS techniques are typically described
as laser Doppler flowmetry (LDF) [2]. In LDF, the Fourier
conjugate of the autocorrelation function, the power spectrum
of the signal, is usually the figure of interest. A different but
related set of techniques make use of the speckle contrast and
are sometimes included in the definition of LDF [3], but we do
not consider them here as they make only indirect use of the
DLS theory. There are many inceptions of LDF, some of which
use the basic Doppler principle for detecting line-of-sight
movement [4,5], while some exploit the full potential of the
autocorrelation analysis [2]. In any case, LDF has been broadly
adopted for the study of blood flow in vascular networks in
biological systems [6,7]. In these systems, DLS measurements
can be localized in three dimensions by making use of confocal
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microscopy, which allows the determination of high-resolution
spatially resolved blood flow speeds via confocal gating.

Another common method for localizing DLS is the recent
development of DLS optical coherence tomography (DLS-
OCT) [8]. In the case of OCT, coherence gating localizes
the sampling volume in the axial direction, while the beam
width constrains the lateral dimensions. Several applications
of the DLS-OCT technique have been actively discussed
recently [8–12], including a derivative technique that uses
only the intensity of the OCT signal. Termed intensity-based
DLS-OCT (iDLS-OCT) [13], this approach extends DLS
methods to a broader range of wavelength-swept OCT systems
that lack phase stability [14].

Regardless of the technique used, confocal- and coherence-
gated DLS measurements have gained increased interest due to
the potential for spatially resolved measurements in colloidal
science, microfluidics, and biomedicine. In all applications,
DLS has the potential for an accurate determination of the sus-
pended particles’ diffusive motion as well as the deterministic
motion given by the velocity field. This potential, however,
cannot be fully realized until all decorrelation contributions
are accounted for in the theoretical model for a given system.
In this work, we focus on deterministic motion of pointlike
scatterers, and we show that not only the velocity field but
its derivatives as well must be taken into account as sources
of decorrelation. We provide a simplified expression for the
calculation of the autocorrelation function in generalized
optical systems and pointlike particles with arbitrary velocity
fields. We then use this expression to treat axial-velocity
gradients inside the sampling volume and show that they have
a significant effect on the decorrelation due to coherent effects.
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Even though there have been indications of this behavior
before [2,9], to the best of our knowledge there has been
no complete description of axial-velocity gradient effects to
date. We are able to obtain an explicit functional relationship
between gradients of the axial velocity and the autocorrelation
function: we show that all axial-velocity derivatives contribute
to decorrelation through the gradient and a modified gradient
operator, and that their contribution is quadratic in the time
difference, the same order as the contribution from the velocity
itself. For this reason, unique determination of the velocity
field is not possible in a single DLS measurement. We propose
strategies to overcome this problem using multiple measure-
ments. Finally, we show a comparison between experimental
data and our model for fully laminar parabolic flow that
highlights that, even in well-behaved flow with no turbulence,
velocity gradient contributions can be of the order of, or greater
than, the translational motion contribution.

II. THEORETICAL MODEL

We will consider in this section both confocal- and
coherence-gated spatially resolved DLS. Coherence-gated
techniques have either access to the complex backscattering
profile of the sample in DLS-OCT or to the intensity of
the backscattering in iDLS-OCT. Generally, confocal-gated
techniques acquire only the intensity of the backscattering. The
complex backscattering profile of the sample allows the direct
calculation of the first-order autocorrelation g(1)(τ ) of the
signal; when only the intensity is accessible the second-order
autocorrelation of the backscattering signal g(2)(τ ) can be
computed.

Assuming that the backscattering signal is a complex
circular Gaussian process given by fully developed speckle,
the first-order autocorrelation function is related to the second-
order autocorrelation through the Siegert relation [15]

g(2)(τ ) = 1 + |g(1)(τ )|2. (1)

This allows us to derive a unique model for g(1)(τ ) which
is enough to describe the behavior of complex-based DLS
techniques that use g(1)(τ ) (such as coherence-gated DLS-
OCT) and intensity-based techniques that use g(2)(τ ) (such
as coherence-gated iDLS-OCT and confocal-gated LDF).
Arguably, when the resolution volume reaches a certain small
size in relation to the scatterer size the Siegert relation may
no longer hold as the number of scatterers in the resolution
volume is not large. We will not consider this special case and
instead assume hereafter that Eq. (1) holds.

Throughout this work (x̂,ŷ,ẑ) will denote the position of
the resolution volume under study given by beam scanning
and coherence or confocal gating, while (x,y,z) will denote
the integration variables inside the resolution volume. The
coordinate systems are identical.

In spatially resolved DLS, the first-order autocorrelation
function of the signal is calculated as

g(1)(x̂,ŷ,ẑ,τ ) = 〈F (x̂,ŷ,ẑ,τ )F ∗(x̂,ŷ,ẑ,0)〉, (2)

where F represents the complex backscattering signal of the
sample at depth ẑ when the interrogating beam is at lateral
position (x̂,ŷ), 〈. . .〉 represents an ensemble average and ∗ the
complex conjugate. In the case of coherence gating F is given

by the Fourier transform of the OCT fringe signal [16]

F (x̂,ŷ,ẑ,t) = ξ

∫
d(2nk) e−i2nkẑ

√
Sr (k)Ss(k)

×
∫

d3�rR(x − xs(t),y − ys(t),z − zs(t))

×h2
xy(x − x̂,y − ŷ)ei2nkz, (3)

where ξ is the photon-to-electron conversion efficiency, Sr (k)
and Ss(k) the spectral power density for the reference and
sample arms, respectively, R(�r) is the sample reflectance
at position �r = (x,y,z), hxy(x,y) the complex point spread
function of the probe beam, n the refractive index of the
sample, k the wave number, and (xs(t),ys(t),zs(t)) the time-
dependent position of the sample. We define the axial beam
direction as z, and the transverse plane xy. In our case we
neglect variations of the intensity of the probe beam in the
axial direction, that is, the beam has a large Rayleigh range
compared to the coherence gating.

Equation (3) describes the calculation of the OCT tomo-
gram from complex fringes that have been acquired through
quadrature detection or through the avoidance of depth
degeneracy, either using half of the coherence range or the
full range with a frequency shifter [17]. The square in the h

term incorporates the effect of the weak confocal gating in
OCT due to coupling back into a single-mode fiber [9]. We
consider here a normalized spectral power density described
by a Gaussian distribution centered at kc with bandwidth �k

for both arms

Sr (k) = Sk(k) =
√

2

n�k
√

π
e−2(k−kc)2/�k2

. (4)

It is possible to reorganize Eq. (3) to perform first the
integration on 2nk,

F (x̂,ŷ,ẑ,t) = ξ

∫
d3�r R(x − xs(t),y − ys(t),z − zs(t))

×h2
xy(x − x̂,y − x̂)hz(z − ẑ), (5)

where the axial complex point spread function is given by

hz(z − ẑ) =
∫

d(2nk) ei2nk(z−ẑ)S(k) = e−(z−ẑ)2/w2
z ei2nkc(z−ẑ),

(6)

where w2
z = 2

n2�k2 [16]. Note that we define the resolution
so that wz is the e−2 half-width of the resolution voxel in the
tomogram intensity, not amplitude. Equations (5) and (6) show
that the amplitude of the tomogram at ẑ is generated by the
coherent superposition of the signals coming from the volume
in the sample centered at (x̂,ŷ,ẑ) = (x,y,z). It is important
to consider that wz has been defined assuming a Gaussian
spectral power density. In general this is an approximation,
and during tomogram reconstruction Eq. (3) is implemented
as a discrete Fourier transform using a window function to
reduce sidelobes. For these reasons, the experimental value
of wz is expected to differ from the axial resolution of the
particular light source used.

In the case of confocal gating the backscattering signal can
be described by the same Eq. (5) in which the axial complex
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point spread function is given by

hz(z − ẑ) = e−(z−ẑ)2/w̃2
z ei2nkc(z−ẑ), (7)

where w̃z is the e−2 axial radius of the confocal-defined
resolution volume in the intensity signal [18]. It is clear that
Eqs. (6) and (7) are functionally the same, but the origin of
the axial localization is different. For this reason, we will
consider the axial resolution as given by wz irrespective of the
technique.

We consider the sample as composed of multiple
point scatterers, so that the backscattering is given by
R(x − xs(t),y − ys(t),z − zs(t)) = ∑N

ν=1 δ(x − xν(t))δ
(y − yν(t))δ(z − zν(t)), which simplifies Eq. (5) to

F (x̂,ŷ,ẑ,t) = ξ

N∑
ν=1

h2
xy(xν − x̂,yν − ŷ)hz(zν − ẑ), (8)

and therefore the first-order autocorrelation function is given
by

g(1)(x̂,ŷ,ẑ,τ )

= ξ 2

〈
N∑

ν=1

h2
xy(xν(τ ) − x̂,yν(τ ) − ŷ)hz(zν(τ ) − ẑ)

×
N∑

χ=1

[
h2

xy(xχ (0) − x̂,yχ (0)−ŷ)hz(zχ (0) − ẑ)
]∗

〉
. (9)

Considering scatterers with diffusive and translational motion
we have xν(τ ) = x ′

ν(τ ) + vxτ , and a similar expression for y

and z. Assuming that the motion of the scatters is independent
of their initial position, it is possible to separate Eq. (9) into
diffusional and translational averages [2,9]. The diffusional
average 〈∑N

ν,χ=1 ei2nkc[z′
ν (τ )−z′

χ (0)]〉 cancels out for ν �= χ and

its value is 〈∑N
ν=1 ei2nkc[z′

ν (τ )−z′
ν (0)]〉 = e−4n2k2

c Dτ , where D is the
diffusion coefficient and we define now kD = 2n2k2

cD [9,13].
It is important to note here that if the scattering is produced by
nonspherical particles other sources of diffusive decorrelation
need to be taken into account. Some of these effects include
tumbling [19] as well as deformation in nonrigid particles,
such as tank treading and swinging in red blood cells [20]. We
will limit the present model to pointlike particles with only
translational diffusive motion.

Computing the ensemble average as the average over all
possible initial positions of the scatterers, Eq. (9) can be written
as

g(1)(x̂,ŷ,ẑ,τ )

= ξ 2e−4n2k2
c Dτ

∫
d3�r h2

xy(x + vxτ − x̂,y + vyτ − ŷ)

×hz([z + vzτ ] − ẑ)
[
h2

xy(x − x̂,y − ŷ)hz(z − ẑ)
]∗

. (10)

This form of the autocorrelation function, although function-
ally equivalent to that in [9], allows for easy calculation of
the first-order autocorrelation function for different optical
configurations and velocity fields. It is important to note that
the separation of the diffusional and translational motion is
an approximation that relies on the optical system having a

relatively low numerical aperture [21], which may not apply
for certain confocal systems. However, for regimes in which
translational motion dominates, the diffusional contribution to
decorrelation is small and this remains a good approximation.
Additionally, there has been a discussion about the validity of
the square for the lateral h in Eq. (5), and whether this factor
actually comes from a more rigorous approach that includes
the Green’s function of the particular optical system [21], that
reveals a coupling between the diffusional and translational
components. In all practical cases, the optical system can be
assumed to be an imaging system with a given Gaussian beam
waist at the image plane, where both interpretations agree.

As indicated in [9], a change in the axial velocity across the
resolution volume gate will induce an additional decorrelation.
This effect comes from the fact that the Doppler term ei2nkcvz

will be different among the scatterers; when added coherently,
these terms produce amplitude modulations that ultimately
contribute to a stronger decorrelation. This important effect has
only been explored numerically, and its functional relationship
is currently unknown to the best of our knowledge.

We now proceed to use Eq. (10) to obtain this functional
relationship. We define the velocity field inside each resolution
volume as

vx = vx0,

vy = vy0, (11)

vz(z − ẑ) = vz0 + vzz

wz

(z − ẑ),

where vzz characterizes the axial velocity change per axial
resolution. We limit ourselves here to only a first-order gradient
contribution for several reasons. First, as we will see later,
the first-order contributions are on the order of, or greater
than, contributions from the zeroth-order vz0 term alone.
Second, in laminar parabolic flow profiles the contribution
from second-order gradients occur at the center of the profile,
where the zeroth-order contribution is maximum. On the other
hand, the maximum first-order contribution happens at the
edges of the profile, where the zeroth-order contributions are
minimal. This has an important effect when trying to assess
the Brownian motion contribution in a parabolic profile. Third,
the second-order contribution of a parabolic profile becomes
important only when the size of the flow channel approaches
the resolution volume of the system. Although this is an
important case when measuring blood flow in capillaries, we
consider it out of the scope of this work. Finally, higher-order
contributions are expected to contribute in turbulent flow.
However, the time scale of the turbulence also plays a role
because a changing flow pattern during the DLS measurement
will have a significant and a qualitatively different effect on
the autocorrelation function.

Because the role of (x̂,ŷ,ẑ) is to define the lateral and
axial position of the sample being analyzed, we will drop
this dependence as the autocorrelation function will in general
be calculated independently for any given sample location. We
will also consider only normalized autocorrelation functions,
therefore dropping the ξ 2 term and using normalized h’s
in all dimensions. Now the integration in Eq. (10) can be
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separated as

g(1)(τ ) = e−4n2k2
c Dτ

∫
dz hz(z + vzτ )h∗

z (z)
∫

dx h2
x(x + vxτ )

[
h2

x(x)
]∗

∫
dy h2

y(y + vyτ )
[
h2

y(y)
]∗ ≡ gDgzgxgy, (12)

where we define the autocorrelation contributions as gD ≡ e−4n2k2
c Dτ , and each velocity contribution gl as the integral along

coordinate l. In the transverse directions we have

gx(τ ) = 2

wx

√
π

∫
dx e−2(x+vx0τ )2/w2

x e−2x2/w2
x = e−v2

x0τ
2/w2

x , (13)

where we used a normalized h2
x . We apply an analogous equation for gy . For the axial direction we have

gz(τ ) =
√

2

wz

√
π

∫
dz exp [−i2nkc(vz0τ + vzz/wzzτ )] exp

[−(z + vz0τ + vzz/wzzτ )2/w2
z

]
exp

[ − z2/w2
z

]
=

√
2

wz

√
π

exp [−i2nkcvz0τ ] exp
[−v2

z0τ
2/w2

z

] ∫
dz exp

[
−i2nkc

vzz

wz

zτ

]
exp

[
−2

gz2(τ )

w2
z

z2

]
exp

[
−2vz0

gz1(τ )

w2
z

τz

]
,

(14)

where we have defined gz1(τ ) = 1 + vzz/wzτ and gz2(τ ) = [1 + g2
z1(τ )]/2. Note that these two quantities are unity valued in

absence of gradients. The Gaussian integral above can be readily solved yielding

gz(τ ) = 1√
gz2(τ )

exp [−i2nkcvz0τ ] exp

[
i
nkcvz0vzzgz1(τ )τ 2

wzgz2(τ )

]
exp

[
−v2

z0τ
2

2w2
z

{
2 − g2

z1(τ )

gz2(τ )

}]
exp

[
−n2k2

c v
2
zzτ

2

2gz2(τ )

]
. (15)

It is clear that the gradient has a profound effect on the expression for the autocorrelation function. In particular, there is a
new quadratic phase term, the quadratic velocity term is modified nonlinearly, and there is a new, standalone term that depends
exclusively on the gradient. Equation (15), although exact, does not reflect clearly the magnitude of the gradient effects on the
autocorrelation. For this reason we now perform some approximations. We define the transit time through the resolution volume
in the axial direction as τ̄ = wz/vz0, which represents the time scale of the decorrelation in the absence of gradients. Based on
this, we define the differential transit time due to the gradient as τ1 = wz/vzz. We take this quantity as defining the time scale of
the gradient effects, and create first-order approximations to all functions involving gz1 and gz2 as a first-order polynomial that
passes through their values at τ0 = 0 and τ1. Additionally, we approximate the radical in gz as a first-order exponential to obtain
an all-exponential expression:

h1(τ ) = 1√
gz2(τ )

= exp

[
ln

(√
2

1 + (1 + vzz

wz
τ )2

)]
≈ exp

[
−1

2
ln

(
5

2

)
vzz

wz

τ

]
,

h2(τ ) = gz1(τ )

gz2(τ )
= 1 + vzz/wzτ[

1 + (
1 + vzz

wz
τ
)2]/

2
≈ 1 − 1

5

vzz

wz

τ,

(16)

h3(τ ) = g2
z1(τ )

gz2(τ )
= (1 + vzz/wzτ )2[

1 + (
1 + vzz

wz
τ
)2]/

2
≈ 1 + 7

5

vzz

wz

τ,

h4(τ ) = 1

gz2(τ )
= 2

1 + (
1 + vzz

wz
τ
)2 ≈ 1 − 3

5

vzz

wz

τ.

Substituting these approximations into Eq. (15) yields

gz(τ ) = exp

[
−1

2
ln

(
5

2

)
vzz

wz

τ

]
exp [−i2nkcvz0τ ] exp

[
i
nkcvz0vzzτ

2

wz

(
1 − 1

5

vzz

wz

τ

)]

× exp

[
−v2

z0τ
2

2w2
z

{
2 −

(
1 + 7

5

vzz

wz

τ

)}]
exp

[
−n2k2

c v
2
zzτ

2

2

(
1 − 3

5

vzz

wz

τ

)]
. (17)

As τ grows, the negative exponentials have values progressively closer to zero, so that when the third or higher orders dominate,
the autocorrelation value is already virtually zero. At this point, it is clear that the contribution from these higher orders is
negligible. For this reason, keeping all leading orders up to second order is an excellent approximation. Additionally, in most
practical cases the first exponential term is significantly smaller than the other gradient terms, justifying only a first-order
expansion for it. With these considerations we have

gz(τ ) = exp

[
−1

2
ln

(
5

2

)
vzz

wz

τ

]
exp [−i2nkcvz0τ ] exp

[
i
nkcvz0vzzτ

2

wz

]
exp

[
−v2

z0τ
2

2w2
z

]
exp

[
−n2k2

c v
2
zzτ

2

2

]
. (18)
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It is interesting to note the new phase factor in Eq. (18) in
addition to the Doppler term exp [−i2nkcvz0τ ]. The Doppler
term can be viewed as being proportional to the fraction
of the wavelength that the scatterers move per unit time
nkcvz0 = 2πvz0/λn. The new quadratic term can be viewed
as the product of two factors (nkcvz0)(vzz/wz), the first being
equal to the Doppler term and the second proportional to the
differential fraction of the axial resolution that the scatterers
move per unit time in response to the gradient. Because of
its differential nature, and its relation to the axial resolution
instead of the wavelength, this phase term is expected to be
significantly smaller than the leading Doppler term except for
very large τ .

A discussion on the values of wx and wy is in order. Prior
work [22], numerical results [21,23], recent experiments [11],
and our own numerical integration of Eq. (12) indicate that
Eq. (13) holds regardless of the position of the sample with
respect to the beam waist wx . Moving away from the beam
waist position not only increases the beam size, but also
introduces a quadratic phase to the wave front, and these
two factors seem to interact to cancel each other. To further
clarify this idea, consider the speckle signal produced by a
scattering sample moving rigidly at a constant speed while
being illuminated by the beam of any of the optical systems
used for spatially resolved DLS. The constant-speed motion
is equivalent to scanning the sample, and the time coordinate
is mapped linearly to the position coordinate: the intensity of
the speckle signal is equivalent to a one-dimensional image of
the sample reproduced by a coherent imaging optical system
with the same numerical aperture of the spatially resolved
DLS optical system. It is well known that in coherent optical
systems, the speckle size is given by the diffraction-limited
spot size independent of any optical aberrations [24]. For this
reason we can extend the results of [11,21–23] and conclude
that wxand wy correspond to the diffraction-limited beam
waist regardless of the optical aberrations of the system,
including but not limited to defocus.

As explained in Eq. (11), axial velocity gradients are
an additional source of decorrelation because the different
Doppler signals create amplitude modulations. It is natural
to assume that this effect is not limited to axial gradients of

the axial velocity, but should also arise from lateral gradients
of the axial velocity. Therefore, we now introduce the lateral
derivatives of the axial velocity defining the velocity field as

vx = vx0, vy = vy0,
(19)

vz(x,y,z) = vz0 + vzx

ŵx

x + vzy

ŵy

y + vzz

ŵz

z.

Here we introduce new beam sizes ŵx , ŵy and axial resolution
ŵz. In the discussion above, the insensitivity to optical aber-
rations came from the parallel between a rigid displacement
of the sample (and thus the absence of gradients) and the
properties of coherent optical systems. When gradients are
present the equivalence with a rigid displacement of the
sample no longer holds, and in this case optical aberrations
will effectively expand the scatterers that contribute dissimilar
Doppler signals. The wave-front phase cannot in general
counteract the effect of arbitrary gradients, and therefore
aberrations are expected to reinforce the decorrelation effect
of gradients. Because it is difficult to predict the interplay be-
tween gradients, beam size, and wave-front phase, we consider
ŵx and ŵy as effective beam sizes for decorrelation purposes,
which may not match exactly the experimental size of the beam
measured with, say, a beam profiler. For the axial dimension in
coherence-grated DLS we can draw a parallel between optical
aberrations and dispersion mismatch: while optical aberrations
are caused by an inhomogeneous phase at the Fourier plane,
axial aberrations are caused by an inhomogeneous phase in the
spectral domain caused by dispersion mismatch. Dispersion
compensation is done routinely in postprocessing in OCT [25],
which should minimize axial aberrations. However, other
effects, such as polarization-mode dispersion, affect the actual
axial resolution in fiber-based systems. For confocal DLS,
optical aberrations affect the optical sectioning and degrade
the axial resolution. For these reasons we consider an effective
axial resolution ŵz for the axial gradient contribution.

Using Eq. (19) it is possible to carry out the integrals, which
are no longer separable. Surprisingly the time scales of the
effects of the lateral gradients are governed by τx1 = wz/vzx

and τy1 = wz/vzy . With the same approximation approach
used to reach to Eq. (18) we obtain

g(1)(τ ) = exp [−i2nkcvz0τ ] exp [inkc( �v0 · �∇vz)τ
2] exp

[ − 4n2k2
cDτ

]
exp

{
−1

2

[
χxy

vzx

ŵz

+ χxy

vzy

ŵz

+ χz

vzz

ŵz

]
τ

}

× exp

[
−1

4
n2k2

c

∣∣ �̃∇vz

∣∣2
τ 2

]
exp

[
−v2

x0τ
2

w2
x

]
exp

[
−v2

y0τ
2

w2
y

]
exp

[
−v2

z0τ
2

2w2
z

]
, (20)

where �∇ is the gradient operator, χxy = ln ( 40
39 ) and χz = ln ( 5

2 ) are factors that arise during the approximation, and we have
defined the mean voxel velocity and the magnitude of a modified gradient operator as

�v0 = (vx0,vy0,vz0), | �̃∇vz|2 =
(

ŵx

∂vz

∂x

)2

+
(

ŵy

∂vz

∂y

)2

+ 2

(
ŵz

∂vz

∂z

)2

. (21)
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Gradient effects in intensity-based DLS are obtained by using Eqs. (1) and (20)

g(2)(τ ) = exp
[−8n2k2

cDτ
]

exp

{
−

[
χxy

vzx

ŵz

+ χxy

vzy

ŵz

+ χz

vzz

ŵz

]
τ

}
exp

[
−1

2
n2k2

c

∣∣ �̃∇vz

∣∣2
τ 2

]
exp

[
−2v2

x0τ
2

w2
x

]

× exp

[
−2v2

y0τ
2

w2
y

]
exp

[
−v2

z0τ
2

w2
z

]
. (22)

Although we keep all the first-order decreasing exponential
terms for completeness, we note that these factors for the
transverse coordinates are roughly 36 times smaller than
the axial factor. For typical experimental parameters, the
axial component itself is close to one order of magnitude
smaller than the diffusion term. In the presence of a nonzero
mean voxel velocity these terms are negligible, and only
quadratic terms in τ contribute to the decorrelation. In general,
the most important feature of Eqs. (20) and (22) is that
the velocity gradient contribution to decorrelation and the
velocity contribution to decorrelation have the same quadratic
dependence on τ , and therefore cannot be decoupled in a single
DLS measurement.

Another important feature of Eqs. (20) and (22) is that
the quadratic gradient terms depend on both the velocity field
derivatives and on the size of the resolution volume. This
is because, when assuming a linear gradient, the velocity
difference between the fastest and the slowest scatterers
inside the resolution volume is the dominant metric for the
additional decorrelation contribution. The dependence on the
resolution volume is inversely proportional to the dependence
of the mean voxel velocity term, and therefore taking DLS
measurements with different optical resolutions will decouple
the contributions. Other options to decouple the contributions
are possible, such as multiple measurements while introducing
a bias in the velocity [10]. In this case, the velocity contribution
will change with the bias, while the gradient contribution will
remain the same.

It is important to note that these spatially resolved DLS
techniques are not limited to measurements of fully laminar
flow. In the presence of turbulence, however, it is necessary that
the turbulence time scale be larger than the DLS measurement
time in order to accurately determine the dynamics of each
voxel. As validation is more readily done under laminar
conditions, it is helpful to analyze the influence of the gradients

FIG. 1. Geometry of the experimental setup, with fully developed
parabolic flow of an intralipid solution inside silicone tubing. (Inset)
The estimated signal-to-noise ratio of the tomograms for each θn

angle.

in a fully laminar parabolic flow profile. In the experimental
section we use the setup shown in Fig. 1, where we indicate
that the nominal rotation angle θn is given by the rotation of the
tube, but the actual rotation angle θ takes into account possible
experimental errors. The nominal value of the incident angle φ

was zero. The velocity field is given by the rotation of a simple
parabolic profile �v′(x̂,ŷ,ẑ) = 2Q

A
[1 − ŷ2+ẑ2

R2 ] by an angle θ

�v(x̂,ŷ,ẑ) = 2Q

A

[
1 − 1

R2
(ŷ2 + x̂2 sin2 θ + ẑ2 cos2 θ

+ 2x̂ẑ sin θ cos θ )

]
(cos θ êx − sin θ êz), (23)

with the condition ŷ2 + (x̂ sin θ + ẑ cos θ )2 � R2, where Q

is the flow rate, A the area of the tube, R the radius of the
tube, and êj the unitary vector along the j axis. Considering a
measurement at x̂ = 0, the derivatives of the axial velocity are

∂vz

∂x̂

∣∣∣∣
x̂=0

= 2Q

AR2
ẑ sin θ sin 2θ,

∂vz

∂ŷ

∣∣∣∣
x̂=0

= 2Q

AR2
2ŷ sin θ, (24)

∂vz

∂ẑ

∣∣∣∣
x̂=0

= 2Q

AR2
ẑ cos θ sin 2θ,

where it should be noted that the maximum speed is vmax =
2Q/A. From this it is possible to calculate the quadratic
gradient contribution to decorrelation as

T 2
grad = 1

4
n2k2

c ∇̃2vz = n2k2
c

Q2

A2R4

[
ŵ2

z ẑ
2 cos2 θ sin2 2θ

+ ŵ2
y4ŷ2 sin2 θ + ŵ2

x ẑ
2 sin2 θ sin2 2θ

]
. (25)

It is easy to separate the axial and lateral gradient contributions
in Eq. (25). Ignoring the ŷ dependence, Eq. (25) implies
that, for a given x̂, the axial gradient contribution increases
faster than the lateral gradient and is the dominant term at
small angles, reaching a maximum at 35.3◦ before decreasing.
Both contributions are equal at 45◦ when ŵz = ŵx ; the lateral
gradient reaches a maximum at 54.7◦ and dominates until
90◦. Contributions from the lateral gradient in ŷ increase
monotonically with angle and are independent of ẑ. Finally,
the flow velocity contribution to decorrelation is

T 2
flow = 4Q2

A2

[
1 − ẑ2 cos2 θ

R2

]2[
cos2 θ

w2
x

+ sin2 θ

w2
z

]
. (26)

In the following sections we will explain the experimental
approach and compare the results with those predicted by our
model, Eqs. (20)–(26).
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III. MATERIALS AND METHODS

We used an OCT system to perform spatially resolved DLS
measurements. The OCT system has a wavelength-swept laser
with a 105 nm, unidirectional sweep centered at 1300 nm
and a repetition rate of 54 kHz (�t = 0.0185 ms). Signals
were digitized at 85 MS/s with 1568 samples per sweep. The
system utilized an acousto-optic frequency shifter to remove
depth degeneracy [17] and a polarization-diverse receiver
to avoid polarization fading [26]. Because the first-order
autocorrelation function requires the complex tomogram, the
polarization channel with the largest signal was chosen for
data analysis.

M-mode (time series with no spatial scanning) measure-
ments were performed by imaging a 1.6 mm inner-diameter
silicone tube containing a flowing 0.3% intralipid solution in
water. The refractive index of the solution was determined
by the ratio of optical path lengths of the empty and filled
tube, resulting in n = 1.34 and thus a pixel size of 4.4 μm.
Closed-loop flow was provided by a peristaltic pump. After
the pump, a pulse dampener transformed its pulsatile action
into steady, laminar flow in the area of interest in the flow
circuit. The tube was mounted on a rotation stage to allow for
a change of the angle θn, thus changing the ratio between axial
and lateral flow components (Fig. 1). The collimated beam had
an approximate diameter of 1.5 mm; the focusing lens had 30
mm focal length, yielding a beam waist size at the focal plane
of ∼33 μm before accounting for the effect of the silicone tube
geometry. It is expected that the tube will introduce significant
aberrations in both lateral dimensions, as well as reduce wy

due to the cylindrical lens effect of the interfaces. Because we
do not consider flow in y we are insensitive to the values of
ŵy and wy . Due to the system phase instabilities, the phase
of the OCT signal was corrected by using each reflection at
the two liquid-tube interfaces as fixed phase references. The
phase compensation was carried out as explained in [13]. We
placed a polarizer in the incident beam path before the tube
because the silicone seemed to exhibit birefringence: rotation
of the polarizer while acquiring data produced the alternation
of two images of the tube, with a depth offset of the order of
a few pixels and different maximum intensities. We fixed the
polarizer at the angle in which the stronger of the two images
had the maximum signal.

The discrete autocorrelation was calculated at pixel depth
k as

g
(1)
k (l�t) =

N−1∑
l=0

(Ek,0 − 〈Ek〉)(Ek,l − 〈Ek〉)∗
|(Ek,0 − 〈Ek〉)|2

N

N − l
, (27)

where ∗ denotes complex conjugate and 〈· · · 〉 denotes average.
The second fraction compensates for the reduction in number
of samples for increasing l, which is the time difference in
units of �t . The correlation window had N = 256 samples
in the time dimension. After calculating g

(1)
k we performed

averaging over four pixels (px) in depth, which defined the
sampling in depth to be �z = 17.8 μm. The averaging was
performed independently for the amplitude and the unwrapped
phase. We therefore obtained a total of 256 autocorrelation
functions in depth every 4.736 ms, for a total measurement
time of 757.76 ms. To account for the main effect of noise [13],

we removed the data point for τ = 0 and renormalized the
resulting function to make g

(1)
k (�t) = 1.

Measurements were performed at flow rates ranging from
10 mL/min to 30 mL/min every 5 mL/min for each angle.
The nominal values for the angles were θn = [−10,0,15,30]◦,
although the exact actual value is expected to be different
due to experimental uncertainties given by mechanical errors.
Although the incident angle φ was nominally zero, we could
not guarantee this value to high certainty due to experimental
constraints. A value different from zero implies contribution
from the y lateral gradient which we are not taking into
account. Equation (20) shows that the phase of g(1) evolves
as

arg {g(1)(τ )} = −2nkcvz0τ + nkc( �v0 · �∇vz)τ
2, (28)

where the discussion after Eq. (18) on the contribution from
each term applies now to all derivatives. Because in our regime
the quadratic term is negligible, the Doppler term can be used
to determine [Eq. (23)] vz0(x,y,z) = −|�v(x,y,z)| sin θ , and
therefore the true incident angle θ .

Upon calculation of g(1), we discovered that the phase
compensation step had the effect of artificially increasing
the decorrelation of the signal for long τ , because we
forced a phase correlation even in the absence of amplitude
correlations. Figure 2(a) shows two typical examples, one with
positive θ and another one with negative θ . It is clear that
the autocorrelation function decays up to a given level and
then stabilizes while the Doppler term continues to evolve
in time. This is in contradiction to the findings reported
in [8], where static scatterers produced an offset in the
autocorrelation function for large τ with no further evolution
of the Doppler term. In Ref. [8] a spectral domain OCT system
was used, which is inherently phase stable. For this reason, we
performed an additional normalization to the autocorrelation,
by detecting the offset for large τ and subtracting it. The result
from this normalization is shown in Fig. 2(b). Although this
normalization worked very well for most data points, we found
that for diffusion-dominated decorrelation the offset was not
well defined. For this reason we expect our measure of the
diffusive constant to be not completely accurate. This is not a
concern because of the regime of interest in this work. After

FIG. 2. (a) Experimental g(1)(τ ) for θn = −10◦ and 5 mL/min
(green, solid), and θn = 15◦ and 5 mL/min (violet-blue, dashed).
(b) The same autocorrelation functions after normalization. Note the
nonlinear color mapping to ease visualization of the beginning of
each curve.
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FIG. 3. (a) Unwrapped phase of the experimental g(1)(τ ) for nominal angles θn = [−10,0,15,30]◦ and [10,15,20,25,30] mL/min.
(b) Unwrapped phase of g(1)(τ ) used to determine the actual experimental angles θ = [−8.4,0.1,13.2,30.4]◦. Only the first 32 values of
τ are shown for each flow rate.

normalization, the 160 autocorrelation functions for each depth
were averaged in order to make a comparison with the model.

IV. EXPERIMENTAL RESULTS

We performed the experiments explained in Sec. III.
As explained above, the actual values of the angles θn

were determined from the Doppler signal alone, and were
found to be θ = [−8.4,0.1,13.2,30.4]◦. Figure 3 shows the
experimental (a) and model (b) unwrapped phase of g(1) for
all flow rates at all θ angles. Phase unwrapping consisted of
one-dimensional unwrapping in time; no unwrapping in depth
was performed. The excellent agreement is clear, indicating
that the Doppler term given by the angle θ , which dominates
the phase of g(1), has been correctly determined. The smooth
phase jumps in the experimental data are due to the depth
averaging of the correlation window, which does not exist in
the model-generated data.

Before assessing the gradient effects we needed to deter-
mine kD , wx , ŵx , wz, and ŵz. We used a data set with no flow to
determine the diffusion constant, kD = 0.73 ms−1. According
to the Stokes-Einstein equation this corresponds to scatterers
with a diameter of ∼50 nm, around half the mean diameter
of particles in 10% intralipid solution [27]. As mentioned

above, the normalization is expected to impact our accuracy
of the diffusion term and in our regime of interest translational
motion dominates the decorrelation. Next, we determined the
diffraction-limited lateral resolution experimentally making
use of the data set at normal incidence: we found the best
value for wx that matched the data, which was found to be
wx = 34.7 μm [see Fig. 4(a)]. In a similar way the value for
wz was determined from the data at the center of the tube
including all angles now. Because gradient effects at the center
of the tube are negligible, we used the accepted expression for
g(1) in DLS-OCT [8]. The determined value was wz = 5.3 μm
[see Fig. 4(b)]. Surprisingly the value for wz estimated from
the spectral bandwidth of the light source was 7.5 μm. It
is not clear why the effective experimental value is smaller
than this estimation. Given that there haven’t been other
experimental validations of the decorrelation contribution of
the axial flow for large θ angles, it is possible that this
contribution is underestimated. The value for the actual axial
resolution ŵz was determined from the width of the peak of a
specular reflection and found to be ŵz = 8.3 μm. The effective
lateral beam size ŵx was calculated using a generalized
paraxial approximation of Gaussian optics using ray tracing.
As expected, its value depended strongly on θ and weakly
on the particular position inside the tube. We averaged its

FIG. 4. (a) Scatter plot of g
(1)
mod vs g(1)

exp for all flow rates at normal incidence used to determine wx . (b) Scatter plot of g
(1)
mod vs g(1)

exp for the
gradient-free region at all angles and flow rates used to determine wz.
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FIG. 5. (a) Absolute value of the experimental g(1)(τ ) for nominal angles θn = [−10,0,15,35]◦ and 15 mL/min. (b) Absolute value of
g(1)(τ ) according to our model that includes gradient effects.

value for depth positions ẑ = 0–0.4 mm and ẑ = 1.2–1.6 mm
in order to use a single value for each angle, obtaining
ŵx = [34,34,36,68] μm.

With these parameter values, we calculated the first-order
autocorrelation function using Eq. (20) to include all gradient
effects. Figure 5 shows the experimental (a) and model (b)
amplitude of g(1) for the 15 mL/min flow rate at all θ angles.
Due to the generally fast decay, we have limited the plotted
region to τ < 16�t . The excellent agreement is clear. It is
interesting to note how the slow decay near the interfaces at

small angles is replaced by a strong decay at large angles,
which gives an indication of the importance of the gradient
effects there.

To have a better appreciation of the gradient effects and
their relative importance, we show in Fig. 6 a series of scatter
plots comparing the value of the amplitude of the experimental
and the model-generated g(1) for all flow rates, all θn angles,
and all values of τ . Even though we omitted data points with
an amplitude smaller than 10−3, each scatter plot contains
approximately 30 000 data points. Figure 6(a) shows this

FIG. 6. Scatter plots of g
(1)
mod vs g(1)

exp with (a) no gradient effects, (b) only axial gradient contribution, (c) lateral and axial gradient
contributions, and (d) lateral and axial gradient contributions considering optical aberrations according to our model.
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comparison when the model does not include any gradient
effects. The disagreement is clear, as the scatter plot shows
many data points with values of g(1) predicted by the model
higher than the experimental value. Figure 6(b) shows the
case of adding only the contribution of the axial gradient
of the axial velocity. There is a significant improvement;
however, disagreement for many data points still remain. This
case corresponds to the best model published known to the
authors [9]. Figure 6(c) shows the effect of adding both the
axial and lateral gradient effects to the model, Eq. (20), but
without considering optical and axial aberrations (ŵx = wx

and ŵz = wz). The improvement is clear, although significant
differences remain for large angles. Figure 6(d) includes the
effects of optical aberrations, which extend the agreement
between model and experimental data to the majority of the
data points.

In some approaches to DLS, a decorrelation time is
defined as the time difference τc when the amplitude of
the autocorrelation function |g(1)| or |g(2)| crosses a given
threshold gc [13,28]. The reason for this is that absent any
gradients, if wx = wz the inverse of τc is directly proportional
to the flow speed τ−1

c ∝ |�v|; however, this simple relation that
ignores gradients has been central to many works on speckle
decorrelation published to date [13,28–31]. We calculated
τc and compared the experimental and model decorrelation
times for all angles and flow rates using our model, shown
in Fig. 7, obtaining a good match between the two at all
depths and angles. Very importantly, the decorrelation time

at the liquid-tube interface does not approach zero, except for
θ = 0. Ignoring gradient effects implies that all decorrelation
profiles should be identical in shape to the one for θ = 0:
it is obvious that flow quantification using τ−1

c ∝ |�v| is not
possible without considering gradient effects. There are some
differences between our model and experiment, especially at
greater depths and large angles. Noise is expected to affect
the decorrelation time as the signal decreases [13] and Fresnel
losses will make this effect impact larger angles more than
smaller angles. The inset in Fig. 1 shows the signal as a function
of depth for all angles, which reinforces this hypothesis.
Multiple scattering could also be contributing to the faster
decorrelation at large depths. A model that includes these
effects could be made, in a similar way to the noise contribution
developed in [13]; however, we consider this outside of the
scope of this work.

In a previous work, a change in the proportionality factor
k between decorrelation time and flow speed as a function
of depth was found [13]. As we have discussed above, there
cannot be a dependence of k on the position with respect
to the beam waist. The experiments in [13] were carried
out with θ = 7.5◦, which implies the existence of lateral
and axial gradients of the axial velocity. The origin of this
disagreement is now clear: the change in the proportionality
factors comes from the gradient effects discussed in the present
work. Another important observation is that related techniques
that make indirect use of the DLS theory [3], where the
decrease in contrast in speckle as a function of integration

FIG. 7. Inverse g(1) decorrelation time for angles −10◦ (a), 0◦ (b), 15◦ (c), and 35◦ (d) for experimental data (circles) and our model (lines)
that includes gradient effects.
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time is used to determine flow speed, could also be affected by
the additional unknowns given by the velocity field derivatives.
In this case, the definition for the decrease in contrast should
include the quadratic terms from the velocity field derivatives
and a given contrast level will correspond to a given total
contribution of speed and axial gradients. Similarly, when
assessing Brownian motion under flow it is critical to have
perfectly perpendicular flow; otherwise, gradient contributions
to decorrelation will affect and even mask the Brownian
motion contribution. Finally, it is also interesting to see that,
in all the literature on spatially resolved DLS measurements,
large θ angles are generally not present in the experimental
validation. Apart from the obvious experimental difficulties
in realizing nonturbulent flow with large θ , this omission
suggests a long-standing problem in DLS that has not been
fully addressed until now.

V. CONCLUSIONS

We have modified the DLS theory, assuming meaningful
and realistic measurement conditions, to obtain a simple
expression to calculate the first-order autocorrelation function
for arbitrary velocity fields and arbitrary optical configura-
tions of the measurement apparatus. This framework can
be readily applied to spatially resolved DLS measurements

using confocal microscopy and optical coherence tomography.
Making use of this simplified expression, we introduced
gradients in the axial velocity field and we have arrived at
an explicit relationship between these and the autocorrelation
function. This relation demonstrates that all the derivatives
of the axial speed have a large effect on the autocorrelation
function and that they cannot be ignored when using DLS to
determine a velocity field. Additionally, the quadratic nature
of both the gradient and the velocity contributions makes them
nonseparable: it is not possible to accurately measure the
velocity of particles from a single DLS measurement when
velocity gradients are present. It is possible to devise repeated
measurements to decouple the contributions, like those with
different optical resolutions or introducing a scanning bias. To
confirm our findings, we have performed experiments and we
have shown that our theoretical model describes the behavior
of the autocorrelation functions accurately.
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