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Genuine non-self-averaging and ultraslow convergence in gelation
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In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large
cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that
the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble
averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous
gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show
very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous
transitions, genuine non-self-averaging and ultraslow convergence of the transition point. Our framework may
be helpful in understanding and controlling gelation.

DOI: 10.1103/PhysRevE.94.022602

I. INTRODUCTION

Irreversible aggregation phenomena are found in a great
variety of physical and chemical systems such as poly-
merization reactions, antibody-antigen reactions, soot forma-
tion, and gelling systems [1–3]. In the early 20th century
Smoluchowski [4] studied such kinetic aggregation processes
intensively and formulated a rate equation for the cluster
densities in the mean-field approximation as follows:

dnk

dt
=

∑
i+j=k

Kijninj − 2nk

∑
j

Kkjnj , (1)

where nk is the density of k-size clusters and Kij is called
the collision kernel that accounts for the adhesion of two
clusters. The rate Kijninj is the probability that two clusters
of sizes i and j merge per unit time and produces a cluster
of size k = i + j . The negative term represents the case that
a k-size cluster merges with any of the remaining clusters.
The solution of the rate equation is still unknown for the great
majority of collision kernels Kij . Linear polymerization where
two clusters are merged by the molecules at two reactive
ends has been modeled by a constant kernel Kij . When
two clusters have a compact shape and merge, the kernel is
given as Kij ∼ (ij )1−1/d , where d is the spatial dimension.
We consider the more general case of the power-law form
Kij ∼ (ij )ω, which has attracted considerable attention since
this form accounts for a great variety of aggregation processes.
Examples include models with 0.5 < ω � 1 that account for
the effect of steric hindrance and intramolecular bonding [5–8].
Below the critical value ωc = 0.5 aggregation based on Eq. (1)
exhibits a violation of mass conservation together with a
lack of gelation in finite time, which has triggered a large
body of work on the extensions (and corrections) of the
Smoluchoswki’s rate equation approach [3,9]. In particular, it
has been proven that gelation for the (normalized) power-law
kernel Kij = (ij )ω/(

∑
s sωns)2 is continuous for ω > 0.5 and

discontinuous for ω � 0.5 [10,11].
A constant kernel exponent ω, however, ignores a possible

dependence of ω on the size (or surface) of the collision
clusters [8,12], for example, in the presence of effects
highly specific to the cluster sizes. Examples include cluster

aggregation where rotation or gravitation leads to mass segre-
gation as discussed in Appendix B. Here we demonstrate that if
the collision rates of the largest cluster (or the largest clusters)
are controlled (by intrinsic or extrinsic effects), gelation can
exhibit anomalous critical and supercritical behaviors [13,14].

II. MODEL

We study the rate equation (1) for a composite collision
kernel that differs only from the normalized power-law kernel
in the growth rate of the largest cluster, which is given as
follows: Kij = kikj , where ki = iω/N with the normalization
constant N = ∑S1−1

s=1 sαns + S
β

1 nS1 ,

ω =
{
α if i �= S1

β otherwise, (2)

where ns is the density of clusters of size s, and S1 is the size
of the largest cluster in the system.

These composite kernels introduce a separation of time
scales occurring in a number of simple physical systems
such as diffusion-limited aggregation under gravity and cluster
growth in a linear shear profile. The cause for segregation in
those systems is a substantially different growth rate for very
large aggregates, compared to smaller clusters. For example
large clusters can move to the bottom of a vessel or can be
driven towards regions where the local cluster size distribution
differs from those of other places. This behavior can be most
pronounced when an infinite cluster is about to emerge or has
emerged (see Appendix B).

We perform kinetic Monte Carlo simulations in the follow-
ing way. Starting with N monomers of size one, each time step
two clusters of sizes i and j are randomly selected with the
weight Kij given by Eq. (2) and are merged. Next, the control
parameter p (the normalized time) is increased by �p = 1/N ,
which ensures p � 1. Gelation is determined by studying
the order parameter G1(p) ≡ S1(p)/N , the relative size of
the largest cluster, as a function of p, which characterizes the
gelation transition from microscopic connectivity (the sol) to
macroscopic connectedness (the gel) in the thermodynamic
limit N → ∞.
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FIG. 1. Single realizations exemplify various gelation types. (a)
The relative size of the largest component G1(p) vs p for single
configurations with N = 2 × 106. We find four gelation types I–IV.
In the case of type I (•, purple), G1(p) for (α,β) = (1,1) shows
continuous transition at pc < 1 and exhibits no jumps. For type II (�,
green), G1(p) at (1,0) follows a staircase. The steps of the staircase are
stochastic, even for N → ∞. In the inset, we show single realizations
at (1,0) from different configurations and envelopes of those staircase
patterns (dotted curves) for N = 107. The envelopes are given by the
minimum and maximum, respectively, of the realizations as a function
of p. For type III (�, red), G1(p) at (0,0) shows discontinuous
transition, induced by single step gaps, at pc = 1. For type IV (◦,
blue), G1(p) at (0,1) exhibits a continuous transition at the transition
point pc, which moves ultraslowly to pc = 1 for N → ∞. (b)
Ultraslow convergence: We show G1(p) vs p at (0,1) for different
system sizes N = 103,105, and 107. Inset: Plot of 1 − pc (•) and
dG1/dp|max vs N (�) are shown. Dashed lines follow power law with
exponents −0.07 and 0.08. Solid lines are log(x)−0.82 and log(x)1.05

for comparison.

III. RESULTS

Single realizations of the evolution of the largest cluster
illustrate the occurrence of four gelation types (I–IV) for
different combinations of the exponents α and β (Fig. 1). The
phase diagram of those different types in the plane of (α,β) is
shown in Fig. 2.

Type I. We characterize type I as globally continuous
gelation, implying a continuous transition of G1(p) at the
critical point pc < 1 (Fig. 1) and a vanishing maximal one-
step gap in G1,�G1 := maxp (G1(p + 1/N ) − G1(p)) → 0
(Fig. 3). This method has been helpful to distinguish between

FIG. 2. Phase diagram of the gelation types in the plane (α,β).
The transition point is classified into two cases by location, pc < 1
for α > 0.5 and pc = 1 for α � 0.5. Genuine non-self-averaging
behavior appears in the region of type II: not only the ensemble
of realizations are stochastic in the supercritical regime (shaded
triangle) but also single realizations become fully stochastic in the
thermodynamic limit (see text). The ultraslow converging behavior
of the transition point appears in the region of type IV.

continuous and discontinuous percolation models [15–22].
Type I is found in the phase diagram in the domain QRVS
given by α > 0.5 and α + β > 1 (Fig. 2).

Type II. For the region satisfying α + β < 1 and α > 0.5,
the order parameter in a single realization follows a staircase
beginning at the critical point pc < 1. Specifically, there exist
multiple finite one-step gaps in G1 for N → ∞. This pattern
has been observed in percolation [23–25]. The plateaus are
caused by the stagnation of the growth of the giant component.
During finite intervals, other clusters can grow to O(N ) and
can aggregate with the largest component and cause multiple
finite jumps of the order parameter [23]. Intriguingly, the
positions of the staircase steps are randomly distributed, even
in the thermodynamic limit. To see this, we study the relative

variance of the order parameter Rv(p) = 〈G2
1(p)〉−〈G1(p)〉2

〈G1(p)〉2 , which
does not scale away for N → ∞, for p > pc [Fig. 4(a)]. This
means that the order parameter in the type II phase transition
does not converge to a function G1(p) for p > pc. This
behavior stands in contrast to usual self-averaging gelation
processes [Fig. 4(b)] but has reported earlier in models of
random network percolation [24,25].

Type II, however, differs qualitatively from previous
reported stochastic staircases in random network percola-
tion [24,25] where single realizations of G1 necessarily jump
instantaneously to the upper envelope when touching the lower
one [13]. This rather unphysical behavior is a consequence of
the strict impossibility for G1 to grow unless the second-largest
cluster has exactly the same size as G1, a built-in mechanism
of the models studied in Refs. [23–25].

By contrast, the staircase of type II is fully stochastic in
the supercritical regime, for p > pc: not only the ensemble
but also single realizations are stochastic (even for N → ∞).
This behavior (referred here to as genuine non-self-averaging)
is the behavior typically occurring in spin glasses.
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FIG. 3. Largest gap statistics. (a) Plot of the exponent δ of �G1 ∼
N−δ in the plane of (α,β). Numerics supports that δ > 0 for types I
and IV and δ = 0 for types II and III. (b) For characterization of the
boundary between type I and II we plot �G1 vs N for the three points
(0.75, 0.5) (
), (0.875, 0.375) (◦), (1, 0.25) (�) in the region of type
I. They decay with increasing N with the slopes −0.07, − 0.05, and
−0.03, respectively. We also checked the cases (0.5, 0.25) (�), (0.625,
0.125) (�), and (0.75, 0) (�) in the region of type II. �G1 seems to
be independent of N . For visibility the data for (�,�) are shifted
upward. Inset: Plots of �G1(N ) vs N for the data points (0.625,
0.375) (�), (0.75, 0.25) (♦), and (1.0, 0) (	) on the boundary SV
suggests a marginal behavior, that is, �G1(N ) displays an ultraweak
dependence on N . Slopes of the guidelines are −0.01 and 0.

Type III. We characterize type III by a single discontinuous
transition at the end of the process, pc = 1 [10,26–28] together
with the occurrence of a finite gap induced by a single merger,
�G1 → const. > 0 for N → ∞ [16]. We find Type III to
occur in the region β < α � 0.5 of the phase diagram (Fig. 2).
The special case α = β < 0.5 was reported earlier [10].

Type IV. The type IV transition occurs in the domain PQST
(α � 0.5,α < β) of the phase diagram (Fig. 2). As shown
in Fig. 1, G1(p) seems to exhibit a continuous transition.
However, the finite-size transition point pc(N ) approaches
pc = 1 as N is increased. Specifically, for (α,β) = (0,1) the
approaching rate is ultraslow characterized by 1 − pc(N ) ∼
N−0.07, together with an ultraslow increase of the maximum
slope dG1/dp|max ∼ N0.08. This behavior is shown in the
inset of Fig. 1(b). Accordingly, G1(p) sharply increases at

FIG. 4. Non-self-averaging for type II vs self-averaging for type
I. (a) G1(p) (•, red) and the relative variance Rv(p) (◦, blue) vs p

for (α,β) = (1,0) in type II. Rv(p) > 0 when p > pc, which suggests
non-self-averaging. Data are obtained from N = 106 averaged over
2 × 104 realizations. Inset: To test for non-self-averaging, we plot Rv

vs N at p = 0.8. Rv oscillates near 0.069, which suggests that Rv

does not shrink to zero in the thermodynamic limit. (b) G1(p) (•, red)
and Rv(p) (◦, blue) vs p for (α,β) = (1,1) in type I. Rv(p) = 0 when
p > pc = 0.5, which characterizes self-averaging. Inset: To test the
self-averaging, we plot Rv vs N at p = 0.8. Rv decays to zero as
∼1/N .

pc = 1 in the limit N → ∞. Due to pc = 1 this transition is
discontinuous but still lacks a one-step gap. For fixed N , the
point P exhibits the smallest single-step gap size in the domain
PQST (Fig. 2).

To further substantiate our claims we have performed an
extensive scaling analysis of the size of the largest gap [16]

�G1 ∼ N−δ. (3)

Figure 3(a) shows the (α,β) plane where the color codes for δ,
based on Eq. (3). The numerics suggests that the largest gap
scales away for N → ∞ for the domains of types I and IV. Our
numerics also supports position and extent of discontinuous
transitions of type II or III (δ = 0) as shown in Fig. 2.

IV. DISCUSSION

Gelation can show anomalous behaviors when two (or
more) coalescence time scales compete. Examples include
systems where a force opposes diffusion in one spatial
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direction, as for aggregation processes affected by gravity,
or in rotating (planetary ring) systems (see Appendix B, and
Ref. [29] for a recent study on Saturn’s rings coalescence
dynamics).

Ultraslow convergence towards pc = 1 with no genuine
single-step gaps (type IV), occurring in an extended parameter
regime, represents an anomalous phase transition type of
discontinuous gelation [13,30]. This behavior can be related
to aggregation under linear shear and other collision kernels
(see Appendix B).

Genuine non-self-averaging behaviors are qualitatively
different from non-self-averaging found in previous models
where a finite number of genuine jumps of the order parameter
imply the non-self-averaging [31], or from anomalous super-
criticality previously reported in random network percolation.
We here showed when and how multiple discontinuous
transitions and stochastic staircases in gelation (type II) arise
from a truly stochastic dynamics in the supercritical regime
(and not merely due to frozen random events at exactly pc,
determining the phase of the staircase as in recently introduced
models [13,24,25]).

Controlling the largest m clusters (instead of m = 1) leads
to the same phenomenology (in particular, types II and IV, see
Appendix A). This demonstrates the robustness of our results.

Non-self-averaging necessarily implies large sample-to-
sample fluctuations during the gel formation and avoidance
is therefore crucial for controlling gelation. Anomalous su-
percritical behaviors are expected in percolation and cluster
aggregation with a separation of the reaction time scales, in
particular due to mass segregation.

Future work must establish how large sample-to-sample
fluctuations induced by this effect occur in experiments. In
contrast to previous work where diverse phenomena in cluster
merging processes have been observed and explained with
different methods, the present work is an attempt to unify
anomalous phenomena in gelation.
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APPENDIX A: OBSERVATION OF FOUR TYPES OF
PHASE TRANSITIONS IN CONTROLLING THE

LARGEST CLUSTERS

To study the robustness of our model, we consider a
generalized model to control the growth of the m largest
clusters in the entire system. Here, we modify the collision
kernel of Eq. (2) as

ω =
{
α if i /∈ Rm,

β if i ∈ Rm,
(A1)

where Rm is the set of m largest clusters in a given
configuration. If there are multiple clusters of size Sm, we
randomly select one among them, where Sm is the size of mth
largest cluster. We remark that m = 1 in this modified model
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FIG. 5. Controlling the largest m components leads to type II (a)–(c) and type IV (d)–(f). We use m = 1,2,5, and 10 (see the text for
definition.) for (α,β) = (1,0) (a)–(c) and (0, 1) (d)–(f). (a) G1(p) vs p with N = 107. As m increases, G1(p) increases more drastically near
p = 1. Irrespective of m,G1(p) behaves as a stochastic staircase (type II). (b) pc(N ) vs N for m = 1,2,5, and 10 from below. pc(N ) decreases
to some finite value pc(∞) < 1 within the simulation range. Here, pc(N ) is taken as argminp(S1 
 N 1/2) same with pc(N ) used in the Fig. 1.
(c) The maximal jump size of G1 vs N for m = 1,2,5, and 10 from the above. �G1 is independent of N within the simulation range. (d) G1(p)
vs p with N = 107 for m = 1,2,5, and 10 from the right. (e) 1 − pc(N ) vs N . The slopes of guidelines are −0.075 and −0.065 from the above.
(f) �G1 vs N . The slopes of guidelines are −0.84 and −0.51 from the below.
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is different from the original model as well because there can
be numerous clusters of size S1.

We are interested in whether this modified model shows all
four transition types. Irrespective of m, it is obvious that this
model is equivalent to the original model when α = β. Thus,
it is already shown that this model shows type I transition
when (α,β) = (1,1) and type III transition when (0,0). Next,
we show the test of the parameter choice (1,0) and (0,1) for
types II and IV in Fig. 5. Again, we use pc(∞) < 1 and
�G1(∞) > 0 as the criterion to identify type II transitions and
pc(∞) = 1 and �G1(∞) = 0 as the criterion to identify type
IV transitions. It is confirmed numerically that type II (type IV)
transition is observed when (1,0)[(0,1)] for m = 1,2,5, and 10
as shown in Fig. 5. We expect that this result generalizes to
arbitrary values of m.

APPENDIX B: PHYSICAL SYSTEMS EXHIBITING
ANOMALOUS TRANSITION TYPES

1. Diffusion-limited cluster aggregation

Diffusion-limited cluster aggregation (DLA) was originally
suggested to model the formation of fractal structure of
aggregated particles [32,33] and allowed us to study exten-
sively dynamic properties such as the cluster size distribution.
Experimental realizations were achieved by aggregating silica
microspheres floating on salty water [34]. Diffusion-limited
cluster aggregation has been studied in the context of percola-
tion transition in Ref. [11] and the authors found that the model
shows a discontinuous percolation transition. Here, we study
this model in more detail from the perspective of percolation
and clarify which type of transition is observed in this model.

The model describes aggregation between mobile clusters.
Clusters move following a Brownian motion in d-dimensional
space, and aggregate with each other when they are adjacent.
By the property of the Brownian motion, the mean velocity
of the clusters follow vs ∼ √

dkT /s, where s is size of the
clusters and T is temperature. To simulate this model, we
use the following method. At p = 0, we distribute N isolated
nodes in d-dimensional square lattices of length L. We remark
that no pairs of nodes are adjacent and all nodes are isolated
clusters at the beginning. Then, at each time step, one cluster
of size s is selected with probability proportional to 1/

√
s

and moves one unit to one of 2d directions randomly. Then,
two different clusters can be placed at the nearest neighbor
positions and merge to form a larger cluster. If two clusters
merge, p is increased by p → p + 1/N . The order parameter
G1(p) is the size of the largest cluster divided by N . To estimate
the thermodynamic limit of this system, we increase the system
size N for fixed density of particles ρ = N/Ld . In Fig. 6, the
snapshots of clusters for d = 2 and d = 3 are shown. We
find that the clusters have fractal structure. It is known that
the fractal dimensions of the clusters are df ≈ 1.4 for two
dimensions and df ≈ 1.8 for three dimensions.

Now, we determine the type of transition in this process.
As shown in Figs. 7(a) and 7(d), G1(p) increases drastically
at p ≈ 1, which means that a type III or type IV transition
is expected in this model. To specify the transition type, we
measure 1 − pc(N ) and �G1 vs. N as shown in Figs. 7(b)
and 7(e). Within the simulation range, 1 − pc(N ) decreases

FIG. 6. Growth of clusters in diffusion-limited cluster aggrega-
tion. This figure shows the snapshot of clusters following diffusion-
limited cluster aggregation in (a) two and (b) three dimensions with
p = 0.5,0.95, and 1 − 1/N from the top to bottom in each column.
L = 2 × 102 and N = 2 × 103 are used for (a) and L = 102 and
N = 4 × 103 are used for (b). The color of element in (b) varies
continuously from purple to black as z coordinate increases.

to zero following a power law as N increases, while �G1 is
independent of N , which indicates that this model shows type
III transition in both two and three dimensions.

To analyze this result within our theoretical framework, we
study the behavior of the collision kernel in this model. It is
known that the cluster aggregation process of this model may
be described via an asymmetric Smoluchowski equation

dns

dp
=

∑
i+j=s

kik
′
jninj − nsks − nsk

′
s , (B1)

where ki ∼ i1−1/df and k′
j ∼ j 1−1/df −0.5 [11]. This is derived

from the fact that the effective surface area of cluster of size i

scales as i1−1/df . When two clusters aggregate, one cluster is
mobile and the other cluster is immobile. Thus, the collision
kernel for aggregation of clusters of size i and j may be
written as the product of ki and k′

j , where ki is the collision
kernel for immobile cluster and k′

j is the collision kernel
for mobile cluster. This behavior was checked numerically
in Ref. [11]. We can obtain ki ∼ i0.29,k′

j ∼ j−0.21 for two
dimensions and ki ∼ i0.45,k′

j ∼ j−0.06 for three dimensions
by using known df values. To relate these collision kernels to
the α = β case of the collision kernel of Eq. (2), we investigate
ns of the diffusion-limited cluster aggregation process as
shown in Figs. 7(c) and 7(f). We find that ns decreases
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FIG. 7. Type III transition in diffusion-limited cluster aggregation. (a) G1(p) vs p for N = 7.2 × 104 and L = 1.2 × 103 in two dimensions.
G1(p) increases drastically up to unity near p = 1. (b) 1 − pc(N )(•) and �G1(�) vs N for ρ = 0.05. �G1 is independent of N and 1 − pc(N )
decreases following a power law within the simulation range, which implies that type III transition occurs in the diffusion-limited cluster
aggregation in two dimensions. Here, pc(N ) is taken as argminp(S1 
 N 1/2) same with pc(N ) used in the Fig. 1. The slopes of guidelines are
−0.44 and 0 from below. (c) ns vs s for p = 0.3,0.5,0.7, and 0.9 from the left in the semilog scale. N = 8 × 103 and L = 4 × 102 are used. We
can find that ns decreases exponentially in the large cluster region irrespective of p. (d) G1(p) vs p for N = 1.08 × 105 and L = 3 × 102 in three
dimensions. G1(p) increases drastically up to unity near p = 1. (e) 1 − pc(N )(•) and �G1(�) vs N for ρ = 0.004. �G1 is independent of N

and 1 − pc(N ) decreases following power law within the simulation range, which implies that type III transition occurs in the diffusion-limited
cluster aggregation in three dimensions. The slopes of guidelines are −0.42 and 0 from below. (f) ns vs s for p = 0.3,0.5,0.7 and 0.9 from the
left in the semilog scale. N = 214 and L = 1.6 × 102 are used. We can find that ns decreases exponentially in large cluster region irrespective
of p.

exponentially irrespectively of p, which means that the cluster
size distribution is not heterogeneous. This may be due to the
fact that the exponents of both mobile and immobile collision
kernels are smaller than 0.5. Then, we use the approximation
kik

′
j ∼ i1−1/df j 1−1/df −0.5 ≈ i1−1/df −0.25j 1−1/df −0.25, which is

valid when i ≈ j , because the cluster size distribution is not
heterogeneous during the process. If we use this approxima-
tion, the dynamics of diffusion-limited cluster aggregation
can be related to the collision kernels of Eq. (2) as (α,β) =
(0.04,0.04) for two dimensions and (α,β) = (0.20,0.20) for
three dimensions, where type III transitions are observed. ns =
(1 − p)2ps−1 for (α,β) = (0,0) was analytically obtained in
Ref. [10] and the exponentially decreasing behavior of ns

was numerically checked for (α,β) = (0.04,0.04) and (α,β) =
(0.20,0.20), which supports this analysis.

2. Diffusion-limited cluster aggregation in gravitational field

Here we consider clusters in a vessel at temperature T in
the presence of a constant gravitational force pointing in the
negative z direction. Then, the density of clusters of size s at
position z, which is denoted by nzs , follows the Boltzmann
distribution,

nzs ∼ e−sgz/kT (B2)

as shown in the Figs. 8(a) and 8(b), where kT is the
thermal energy. If the height of the vessel is z0, normalization

∫ z0

z=0 nzsdz = z0ns leads to

nzs = z0nse
−sgz/kT

kT
sg

[1 − exp(−sgz0/kT )]
. (B3)

We assume that a collision rate between clusters of sizes i

and j in a local region at position z has the form nzinzj (ij )α ,
because the distribution of clusters would be uniform and thus
follows diffusion-limited cluster aggregation locally. Then a
total collision rate between clusters of sizes i and j is given as

Kijninj ∼ (ij )α
∫ z0

z=0
nzinzj dz. (B4)

When gz0S1 � kT , one can show easily Kij ∼ z0(ij )α in
accordance with diffusion-limited cluster aggregation by using
nzs ≈ ns . Now we consider the supercritical region p > pc

where finite clusters and one giant cluster coexist. In this
situation, we cannot assume that nS1 is an exponentially
decreasing function. For simplicity, we assume that the giant
cluster is a sphere and its diameter is S

1/df

1 . If the condition
for temperature is gz0S2 � kT � gz0S1 for the size of the
second-largest cluster S2, the giant cluster performs a random
walk at the bottom of the vessel z ≈ 0, and finite clusters are
almost uniformly distributed as shown in the Fig. 8(c). Then,
the relative collision rate KS1j nS1nj/Kijninj for i,j �= S1

would be of order O(S
1/df

1 /z0). When S
1/df

1 � z0, the growth
of the giant cluster is successfully suppressed over extended
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FIG. 8. Schematic for diffusion-limited cluster aggregation in gravitational field. Finite clusters are represented by points for visualization.
Color of each cluster changes continuously from purple to black as its mass increases. (a) Finite clusters are almost uniformly distributed
irrespective of their sizes when gz0S1 � kT . (b) When gz0 � kT � gz0S1, finite clusters of size s for gz0s � kT are almost uniformly
distributed but finite clusters of size s for kT � gz0s are more densely populated as closed to the bottom z = 0. (c) When there are finite
clusters and one giant cluster of size S1 (blue circle) satisfying the condition gz0S2 � kT � gz0S1, the giant cluster moves randomly on the
bottom z = 0 and finite clusters are almost uniformly distributed.

periods. Specifically, O(N )-sized clusters that have emerged
(after some extended time interval) move to the bottom at z ≈ 0
and aggregate with the giant cluster localized there, which shall
lead to a stochastic staircase, i.e., a type II transition. To check
this mechanism, direct molecular dynamics simulations would
be needed, which are beyond the scope of our study here.

However, a similar mechanism has been proposed recently,
possibly explaining the emergence of early molecular life [35].
The authors study the escalation of polymerization in a thermal
gradient where large polymers agglomerate at the bottom of a
water-filled pore [35].

3. Generalized kinetic theory kernels exhibit behaviors of
type III and IV

As a further example, consider the generalized kinetic
theory kernel (see, e.g., the review by Aldous [36])

Kij = (iα + jα)δ(ij )β(i + j )−γ (B5)

and its decomposition

Kij =
{
iαδ+β−γ jβ if i � j,

(ij )
αδ
2 +β− γ

2 if i ≈ j,
(B6)

with exponents α,β,γ , and δ. The exponents are specific to the
particle mass m but are usually derived assuming homogenous
spherical particles (in three dimensions) with a fixed radius

FIG. 9. Type IV behavior of kernel Eq. (B5). (a) Aggregation for
α = 1/2,β = γ = 3/4, and δ = 1 [36] (no clear physical interpreta-
tion known for this kernel) exhibits type IV behavior with scaling
1 − pc(N ) ∼ N−0.11 (•) and �G1 ∼ N−0.09 (�). (b) System for
the kernel Kij ∼ (i1/3 + j 1/3)3 (α = 1/3,β = 0,γ = 0, and δ = 3),
which describes aggregation under linear shear profile [36] exhibits
type IV behavior with scaling 1 − pc(N ) ∼ N−0.17 (•) and �G1 ∼
N−0.012.

r ∼ m1/3. However, the compactness and fractal dimension of
the particle may depend on the size of the particle. A composite
kernel can thus describe a rapid change of the fractal dimension
as a function of the particle mass.

For two choices of fixed exponents α = 1/2,β = γ = 3/4,
and δ = 1 (no clear physical interpretation is known for this
kernel), and α = 1/3,β = 0,γ = 0, and δ = 3 (aggregation in
a linear shear profile) [36], with

Kij = (i1/3 + j 1/3)3 ∼
{
i1j 0 if i � j,

(ij )
1
2 if i ≈ j,

(B7)

we find anomalous critical behavior of type IV (see Fig. 9).
For i � j , the kernel in Eq. (B7) corresponds to the point
P = (0,1) in the phase diagram (Fig. 2).

Finally, we study cluster aggregation for the kernel

Kij ∼ (i1/3 + j 1/3)2(i−1 + j−1)1/2, (B8)

(α = 1/3,β = γ = −1/2, and δ = 2), which was recently
suggested to describe cluster aggregation in Saturn’s rings [29].
We find scaling of the form 1 − pc ∼ N−0.39 and �G1 ≈ 0.33
(Fig. 10) suggesting type III behavior. Limiting cases for
kernels that result into mass segregation via heterogeneous
time scales are easily derived, e.g., the Saturn kernel, Eq. (B8),

10-2

10-1

100

103 104 105

1 
− 

p c
   

   
ΔG

1

N

FIG. 10. Type III behavior of cluster aggregation for a model
describing aggregation in rotating systems, using the aggregation
kernel of Eq. (9) in Ref. [29]. 1 − pc(N ) ∼ N−0.39(•) and �G1 ∼
0.33(�).
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can be approximated by

Kij =
{
i2/3j−1/2 if i � j,

(ij )
1
12 if i ≈ j,

(B9)

where the resulting particle size distribution based on this
approximation is accurate for several orders of magnitude for

a range of system parameters, see Fig. 1 in Ref. [29]. A more
detailed analysis is beyond our scope here, and we refer to
Ref. [29].

In summary, composite kernels exhibit the full phe-
nomenology of anomalous critical and supercritical behaviors
in gelation.
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