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Driven polymer translocation in good and bad solvent: Effects of hydrodynamics
and tension propagation
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We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence
of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer
segment on the cis side that is measured for the first time using our method that works also in the presence of
hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics.
We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not.
Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed
segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when
hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the
translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer
translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent
conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not
scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is
pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the
bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on
the motion of individual monomers within the highly correlated globular conformation on the cis side and hence
on the entire driven translocation under bad-solvent conditions.
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I. INTRODUCTION

The process of a polymer driven through a nanometer-scale
pore by a force acting inside the pore is well understood
under good-solvent conditions. It is well established that the
polymer is driven out of equilibrium even for moderate pore
force. On the cis side, that is, on the side from which the
polymer translocates, this shows as the tension propagating
along the polymer chain [1–5], and on the trans side, i.e., the
side to which the polymer translocates, it shows as crowding
of polymer segments [2]. We have previously shown that this
crowding has no discernible effect on the driven translocation
[5]. The scaling of the translocation time with the polymer
length τ ∼ Nβ in the good solvent follows from the scaling
of the length to which the tension has propagated nt with
the number of translocated monomers, or beads, nt ∼ sβ−1.
If τ scaled with N also under bad-solvent conditions, tension
propagation would be the most likely explaining mechanism.

Hydrodynamics has been shown to speed up driven polymer
translocation under good-solvent conditions [2,3,6,7]. The
significance of hydrodynamic interactions under bad-solvent
conditions has not been established. As will be seen, hydrody-
namic interactions constitute a good way of characterizing how
the motion of the polymer segment on the cis side takes place.

Previously, we measured tension propagation along the
polymer chain alternatively via the motion of the polymer
beads [2] or the strain of individual bonds [5]. Except for the
preliminary results in [2], tension propagation in the presence
of hydrodynamics has not been studied. The first-mentioned
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indirect measurement is the only method that has been used in
the presence of hydrodynamics. However, since in the presence
of hydrodynamics monomers may be set in motion toward the
pore before the tension has reached them, this method does
not give the true dynamics of the propagating tension when
hydrodynamics is involved. Encouraged by the very precise
measurements of the tension using the second, more direct,
method in the absence of hydrodynamics, we apply it here
also in the presence of hydrodynamics. We determine the
tension-spreading dynamics and also how fast hydrodynamic
interactions set in compared with the tension-propagation
speed in the good solvent.

The paper is organized as follows. The computational model
is explained in Sec. II. First, the implementation of the polymer
and solvent dynamics is covered in Sec. II A. The polymer
model, the indirect implementation of the solvent quality
using this polymer model, and the simulation geometry are
explained in Secs. II B, II C, and II D, respectively. Results
are reported and analyzed in Sec. III. Sections III A and III B
cover measurements of translocation time and radii of gyration,
respectively. These first sections set the background and open
questions for our research. The main findings are covered in
Sec. III C. Here our results from measurements of waiting
times, tension, and friction are reported and analyzed. This
section is further divided in two sections that cover the results
pertinent to good and bad solvent, separately.

II. THE COMPUTATIONAL MODEL

A. Polymer and solvent dynamics

The dynamics of the polymer immersed in the solvent
is implemented by a hybrid method where the polymer
beads perform molecular dynamics (MD), whose time step
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δt = 0.001, and at every 1000 MD time steps both the polymer
and the solvent perform stochastic rotation dynamics (SRD),
whose time step �t = 1. The time steps along with the distance
and potential values that follow are given in reduced units, see,
e.g., [8]. The polymer’s equations of motion are integrated in
time by the velocity Verlet algorithm [9,10].

Stochastic rotation dynamics that is used to implement
solvent dynamics supports hydrodynamic modes [11]. In the
SRD model the simulation space is divided into cubic lattice
of cells, whose sides are of unit length. Each cell contains,
on average, five solvent particles (SPs) and one polymer bead
(PB). Solvent particles are fictitious in the sense that they
can be thought of as carrying the mass and momenta of
multiple realistic particles. The interactions of SPs and PBs
are approximated in a stochastic fashion as described below.

An SRD step consists of streaming and collision steps.
In the streaming step the position of each solvent particle is
propagated according to

xi(t + �t) = xi(t) + vi(t)�t. (1)

After this the collisions between the solvent particles and the
polymer beads are taken into account by

vi(t + �t) = vc.m.(t) + �[vi(t) − vc.m.(t)], (2)

where vc.m. is the velocity of the center of mass of the solvent
particles and polymer beads within the cell to which they
currently belong and � is a stochastic rotation matrix. The
rotation angle is constant, but the direction of the axis with
respect to which the velocities are rotated at each time step is
chosen randomly for each cell. The lattice of cells has periodic
boundary conditions.

To maintain molecular chaos, that is, in order to avoid
artificial correlations between solvent particles, random grid
shifts were applied to the cells before the collision step [12,13].
In the grid shift the cells (or equivalently the particles) are
moved by a displacement between [−0.5,0.5] of the cell
dimension sampled from uniformly random distribution.

A particular advantage of the SRD method is that it
allows the switching off of hydrodynamic interactions by
randomly shuffling the momenta of the solvent particles after
each collision step. This feature is crucial in determining
the effects of hydrodynamics on which it is very hard to
obtain quantitative information. To pin down the effects
of hydrodynamic interactions, we make close comparison
between translocation dynamics taking place in a Brownian
heat bath and in the presence of full hydrodynamic interactions.

B. Polymer model

In order to gain understanding on the dynamics of polymer
translocation under bad-solvent conditions, we choose a
flexible polymer model. The freely jointed chain (FJC) model
used is commonly used to describe single-stranded DNA,
RNA, and proteins.

Forces for the equations of motion integrated in time using
the velocity Verlet method are obtained from the potentials
for the interconnected pointlike beads in FJC as f = −∇V .
Consequent beads in FJC are connected by the anhar-
monic FENE (Finitely Extensible Nonlinear Elastic) potential

given by

VFENE = −H
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)
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where H is a parameter describing the strength of the potential,
r is the distance, and R0 is the maximum distance between
consecutive beads allowed by the FENE constraint. Lennard-
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where ε = 1.2 is a coupling constant, σ = 1 sets the length
scale of the interactions, Q sets the solvent quality, and rc is the
cutoff distance for the interaction in the case of good solvent
(see the next section).

C. Implementation of solvent quality

The solubility of the polymer determines the initial polymer
conformation and, as we will see, has a strong effect on
the translocation dynamics. In a good solvent a polymer
spreads out and the polymer contour forms a self-avoiding
random walk. In contrast, bad solvent is repelled from within
the globular polymer conformation. In SRD, due to the
solvent being implemented by fictitious particles that represent
the explicit solvent particles, the solvent quality has to be
defined indirectly with the aid of monomer interactions. More
specifically, LJ potential is used as an effective substitute for
real hydrophilic or hydrophobic interactions, since the SRD
model for fluid dynamics does not incorporate the complex
electrostatic interactions between real solvent and polymer
molecules, in contrast to, for example, dissipative particle
dynamics (DPD) [14].

A polymer in good solvent can be simulated by excluding
the attractive interactions between monomers. This is done in
a standard way by truncating the LJ potential at rc = 2

1
6 σ ,

where VLJ = 0, which means setting Q = 0 in Eq. (4). For
a polymer immersed in bad solvent the full form of Eq. (4)
that includes both the repulsive and the attractive parts of
the potential is used, i.e., Q = 1. The attraction between
monomers corresponds to the repulsion between the polymer
and the solvent, leading to a globular polymer conformation
(see the first snapshot on the second row in Fig. 2). While this
indirect implementation has its limitations, causing unphysical
artifacts when solvents of two different qualities are used in
the same simulation [15], it is valid in any simulation where
there is solvent of only one quality present at any time, which
is the case in the present study.

D. Translocation geometry and pore model

The translocation geometry is depicted in Fig. 1. The
polymer is initially on the cis side with three beads inside
the pore. An infinite wall parallel to the xy plane divides
the simulation space. No-slip boundary conditions bounce the
solvent particles and the polymer beads from the wall, making
it impenetrable for them. The polymer can pass from the cis
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FIG. 1. Schematic depiction of the geometry used in the translo-
cation simulations.

to the trans side only through a cylindrical pore, whose axis is
parallel to the z axis.

While there is no solvent in the pore, every bead inside
the pore experiences a damping force Fγ = −γ v, where the
damping constant γ is chosen such that the damping inside
the pore corresponds to the damping caused by the solvent
according to the damping coefficient calculations by Kikuchi
et al. [16]. A harmonic pore force Fh = −kl applied to each
bead inside the pore keeps the polymer aligned and prevents
hair pinning. Here l is the displacement vector from the pore
axis to the bead (perpendicular to the pore axis) and k = 100.
The aligning force increases slightly the effective driving pore
force. We have checked that changing k from 100 to 1000
has no appreciable effect on translocation characteristics. The
aligning force is introduced primarily for numerical reasons.
Its physical origin would be the repulsive potential of the pore
surfaces. Previously, we have verified that the harmonic pore

FIG. 2. Snapshots of translocating polymers of length N = 1600.
Initial conformations on the left. Pore force F = 1. Hydrodynamics
is included. Top row, good solvent; bottom row, bad solvent. The
polymer translocates from the bottom cis side to the top trans side.
On the bottom row the pore region is shown by a blue rectangle. The
wall whose thickness is equal to the pore length extends horizontally
to the left and right from the pore (not shown). Due to a different
length scale the pore does not show on the first row. In the leftmost
snapshot only three monomers are inside the pore on the top. In the
following snapshots the pore and the wall lie just below the upper
region of crowded monomers.

and the commonly used bead pore give identical characteristics
for the driven polymer translocation [3].

The translocating polymer is driven by force exerted on the
polymer beads inside the pore. The reported driving forces
denote the forces applied to each bead inside the pore. Hence,
the force applied to the whole polymer is the reported force
multiplied by the number of beads inside the pore, which, on
average, is w/σ ≈ 3, where w is the thickness of the wall
and σ is the mean distance of the beads. The driving forces
considered in this work are in the moderate-to-large regime
(Fσ/kBT � 1) according to the definition by Dubbeldam
et al. [17].

III. RESULTS

In what follows the focus is on the detailed measurements
of tension and waiting times that are presented in Sec. III C.
Sections III A and III B set the background and questions for
our study. It is seen from Fig. 2, showing a series of snapshots
of the simulated driven translocations in the good and bad
solvent, how different the process is depending on the solvent
quality.

A. Translocation time

Polymers of lengths N = 25,50,100,200,400,800,1600
beads were driven through the pore by a force F acting inside
the pore. The amount of computation needed for equilibrating
the longest chains N = 800 and 1600 proved to be extensive.
Therefore, the simulations for these polymer lengths were run
in parallel using multiple CPU cores. The results were obtained
by averaging over at least 200 translocations for chains of
length N � 400 and at least 50 translocations for N � 800.

As expected, clear scaling of translocation time with the
polymer length, τ ∼ Nβ , was obtained for the good-solvent
case; see Fig. 3. For the large pore force of F = 10 stalling
events due to local jamming at the pore entrance deteriorate
the perfect scaling in the good solvent (not shown). In
the good solvent we obtain β ≈ 1.5 and 1.54 for F = 1
and 3, respectively, in the absence of hydrodynamics. The
measurements of β for F = 1 and 3 not affected by jammings
are in accordance with the many times confirmed increase
of β with F [2,5]. We showed that this increase of β with
F comes from the trans side and addressed it to fluctuations
that were shown by Dubbeldam et al. to assist translocation
[18]. Hydrodynamic interactions decrease β, as we have found
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FIG. 3. Translocation times τ as a function of polymer length
N for good solvent (GS) and bad solvent (BS) with and without
hydrodynamics (HD). (a) F = 1; (b) F = 3.
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previously [2]. We obtain β ≈ 1.31 and 1.36 for F = 1 and 3,
respectively, when hydrodynamics is included.

In the case of bad solvent the situation is not as clear. τ

depends on N in a way where a mechanism resulting in τ

scaling with N may play a role; see Fig. 3. However, this
mechanism, if there is one, does not dominate the overall
translocation dynamics. In simulations made using DPD [14]
scaling τ ∼ Nβ was not obtained for polymer translocation in
bad solvent. We look into this in more detail in the following
sections.

In accordance with previous findings [2,6], hydrodynamic
interactions are seen to speed up translocation in good solvent;
see Fig. 3. Hydrodynamics does speed up translocation also
under bad-solvent conditions. However, here the speed-up is
small. In the bad solvent where the polymer is in globular
conformation tension does not appreciably propagate, as seen
in Sec. III C. The increased correlations due to hydrodynamics
that enhance momentum transfer along the extended polymer
chain in good solvent may not contribute appreciably to
the motion of monomers screened by the globular polymer
conformation in bad solvent. In addition, it is an open question
how effectively hydrodynamics enhances motion in the bad
solvent in general. We determine these issues in Sec. III C 2.

Regardless of the solvent quality hydrodynamics speeds up
the translocation more effectively for large F . The momentum
that is mediated along the polymer chain from the pore to the
cis side is larger for larger F . Drift due to bias dominates over
diffusion more strongly for large F . Hence, it is clear that
the effect of hydrodynamics via the mediated momentum is
more pronounced for large F . The reduction of friction due to
hydrodynamics is dealt with in Sec. III C.

B. Radius of gyration

Radius of gyration, defined as

Rg =
√√√√ 1

N

N∑
i=1

(xi − xc.m.)2, (5)

where xi and and xc.m. are the positions of bead i and the center
of mass of the polymer, respectively, can be used to determine
if a polymer is driven out of equilibrium during translocation
[2,5,19]. For polymers in equilibrium the relation R

eq
g ∝ Nν

holds, where ν is the Flory exponent. We measured ν ≈ 0.63
and ν ≈ 0.31 for equilibrated polymer conformations in good
and bad solvent, respectively.

Figure 4 shows Rg’s measured during the translocations as
a function of the number of beads on the cis side Ncis = N − s

for polymer conformations when hydrodynamics is included.
As expected, Rg of the translocating polymers in good solvent
show significant deviation from the equilibrium scaling. The
polymers in bad solvent maintain their globular equilibrium
conformation throughout the translocation process. Small
deviation of Rg from the equilibrium scaling can be seen at
the end (for small Ncis) when the tail of the polymer is sucked
into the pore.

Figure 5 shows Rg measured separately on the cis and
trans sides as a function of the number of translocated beads
s for the good solvent together with the plotted R

eq
g (s), that

is, Rg for equilibrated conformations of s monomers. [For
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FIG. 4. Measured radii of gyration of the translocating polymers
on the cis side. The equilibrium Rg measured for seven discrete
polymer lengths and the solid line giving the obtained scaling Rg ∼
Nν(measured) are shown for reference. Hydrodynamics is included.
F = 10. (a) Good solvent, ν(measured) ≈ 0.63. (b) Bad solvent,
ν(measured) ≈ 0.32. The chain lengths are [from bottom to top in
(a)] N = 25, 50, 100, 200, 400, 800, 1600.

the bad solvent Rg(s) ≈ R
eq
g (s) for all s and are accordingly

not shown.] In accordance with previous findings, Rg deviates
increasingly from the equilibrium value R

eq
g on both sides in

the course of the translocation; see, e.g., [2]. The measured Rg

on both sides deviate more from R
eq
g when hydrodynamics is

not included. On the cis side Rg > R
eq
g due to the straightening

of the polymer, that is, tension propagation. On the trans side
Rg < R

eq
g due to crowding of monomers.

The crowding results from the polymer exiting the pore
faster to the trans side than it relaxes to equilibrium. Since
the deviation from equilibrium is slightly larger for polymers
simulated without hydrodynamics, hydrodynamics speeds up
the relaxation of the polymer to thermal equilibrium more than
it speeds up translocation. For F = 10 the situation changes
(not shown). Hydrodynamics speeds up translocation more
effectively for larger F . The speed of relaxation to equilibrium
does not change with F . Accordingly, the polymer segment
on the trans side is driven further out of equilibrium for larger
F , as seen in Fig. 5. For the very large F = 10 (not shown)
the polymer conformation on the trans side is equally strongly
compressed whether hydrodynamics is included or not.

C. Waiting times, tension, and friction

1. Good solvent

It is well established that in good solvent polymer translo-
cation dynamics is in practice determined by the tension prop-
agating along the polymer chain on the cis side [1–4,17,20,21].
The mechanism was introduced in [1] and first extracted
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FIG. 5. Good solvent. Measured Rg as a function of the translo-
cation coordinate on the trans (plots increasing with s) and cis (plots
decreasing as s increases) sides. The equilibrium values for the radius
of gyration Req

g are are plotted with solid black lines. Hydrodynamics
is included, N = 400. (a) F = 1; (b) F = 3.
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distance

Θ

FIG. 6. A schematic five-bead polymer segment showing the
measured drag distance over the three middle beads.

from simulations by registering the number of moving beads
nd [2]. Recently, we measured tension propagation more
accurately and showed that in the absence of hydrodynamics
a quasistatic model was sufficient to describe the process
with great precision [5]. The method used in [2] was based
on monomer velocity measurements to determine nd . Due
to backflow effects one cannot obtain precise dynamics of
tension propagation with this method when hydrodynamics
is included. In the present study we investigate tension
propagation when including hydrodynamic interactions using
the more precise and direct method used in [5]. This way
we obtain tension propagation with good precision also in
the presence of hydrodynamics and can relate it to the better
understood case of tension propagation without hydrodynamic
interactions.

A more direct way to obtain tension-propagation dynamics
than measuring monomer velocity is to measure strain between
all two consecutive beads in the polymer. The measured
values of the bead-to-bead distances turned out to fluctuate
strongly and hence require averaging over a vast number
of measurements. For this reason, we measure the local
straightening of a polymer over three consecutive beads, as
depicted in Fig. 6. We define the drag distance as di =
‖xi+1 − xi−1‖, which is directly proportional to the strain of a
single bond. The average distance for polymers in equilibrium
is di ≈ 2νσ . Obviously, for a completely straightened polymer
segment di = 2σ [5].

In the three color charts of Fig. 7 the distance di is depicted
for each bead i as a function of the reaction coordinate s.
Colors show the tension around the bead i of the polymer at
the time when the bead s is at the pore. On the diagonal i = s

and the bead i resides at the pore where the tension is the
greatest. Above the diagonal line i > s and this region depicts
the tension on the cis side. Below the diagonal i < s, which
corresponds to the trans side, where the polymer is not tensed.

The color charts on the top row are for polymers in good
solvent with and without hydrodynamics. The pore force
F = 10. Tension is seen to propagate qualitatively in the same
way in both cases. However, in the presence of hydrodynamics
tension propagates slightly less effectively along the chain.
This is understandable, since the solvent with hydrodynamic
modes mediates the momenta of the moving beads farther
from the pore along the chain. Consequently, a bead with a
given label n will be set in motion earlier (at a smaller s) in a
solvent supporting hydrodynamic modes than in a Brownian
heat bath. This results in smaller tension for a given s when
hydrodynamics is included.

FIG. 7. (Top row and bottom left) The drag distances di of each
bead i as a function of the translocation coordinate s. F = 10 and
N = 400. (Top left) Good solvent with hydrodynamics. (Top right)
Good solvent without hydrodynamics. (Bottom left) Bad solvent with
hydrodynamics. (Bottom right) A logarithmic plot of the number of
beads in the tensed segment nt on the cis side as a function of s. F = 3
and N = 1600. Curves from top to bottom: Good solvent without
hydrodynamics, good solvent with hydrodynamics, bad solvent
without hydrodynamics, and bad solvent with hydrodynamics. The
dotted line shows the scaling ∼s0.5.

The first plot on the second row in Fig. 7 shows di as a
function of s for polymers translocating in a bad solvent that
supports hydrodynamics for F = 10. As can be seen, tension
does not propagate appreciably, with the only discernible
tension seen only on the diagonal, that is, at the pore entrance
on the cis side. The plot for the case where polymer translocates
in a Brownian heat bath with no hydrodynamics is similar (not
shown).

We define the number of beads in the tensed segment nt on
the cis side as the number of consequent beads starting from the
bead s at the pore for which di exceeds the equilibrium value,
di > 2νσ ≈ 1.5. In other words, nt is the difference of the
label of the last bead belonging to this segment and the current
value of the translocation coordinate s. nt is the measure of
the length of the tensed segment on the cis side. For improved
resolution we use the threshold value 1.65 for the bond length
as a criterion for its end beads to belong to the tensed segment.
The number of beads in drag nd that was measured in [2]
differs from nt , especially when hydrodynamics is included,
as already pointed out. nd is not measured here but used to
denote the actually moving polymer segment that determines
the friction on the cis side.

The last plot in Fig. 7 shows nt as a function of s for
F = 3. The tension is seen to spread more effectively in the
absence of hydrodynamic interactions, even in the case of
bad solvent, where tension spreading is negligible. From this
logarithmic plot it is also evident that the spreading tension
gives the resultant scaling of the translocation time τ ∼ Nβ

under good-solvent conditions.
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FIG. 8. Comparison of the number of beads in the tensed segment
nt and the waiting times tw as a function of the translocation
coordinate s in good solvent. F = 3. (a) Hydrodynamics not included.
N = 400. (b) Hydrodynamics included. N = 400. (c) Logarithmic
plots of nt (s) and tw(s) with (H) and without hydrodynamics (NH).
N = 800. (d) nt as a function of the normalized reaction coordinate
s/N with no hydrodynamics. F = 3. From bottom to top N = 50,
100, 200, 400, 800, and 1600.

The waiting time tw(s) is defined as the time required for the
bead s to reach the pore after the instant when the bead s − 1
has entered the pore. In Figs. 8(a)–8(c) the number of beads in
the tensed segment nt (s) and waiting times tw(s) are compared
for the translocation in good solvent driven by F = 3. In the
absence of hydrodynamic interactions [see Fig. 8(a)], nt (s)
depends on s in almost exactly the same way as tw, that is,
nt (s) ∝ tw(s), which is in agreement with the results from our
previous study using Langevin dynamics. In this study we
showed that a quasistatic model, where the tension spreading
is described only geometrically and inertial and stochastic
components are ignored describes the process fairly accurately
[5].

The relation tw ∝ nt in a good solvent without hydrody-
namics is a consequence of the driven translocation taking
place strongly out of equilibrium [2]. Hence, the process can
be largely described by how the frictional force η changes
on the cis side. In the quasistatic model [5] the beads from
s to s + nt are considered to be the only nonstationary
beads affecting the translocation dynamics, the other beads
being at rest. The driving force must balance the friction
experienced by nd beads moving with velocity v towards
the pore F = η = ndγ v, or v−1 ∝ nd . Hence, when the bead
s − 1 is at the pore, the time required for the next bead s

to reach the pore is given by tw(s) ≈ σ/v(s) ∝ nd (s) = nt (s).
The last equality holds in the absence of hydrodynamics. The
translocation time τ = ∫ N−1

0 tw(s)ds. Accordingly, if nt (s) ∼
sξ in the tension-propagation phase, then disregarding the final
retraction of the polymer tail τ ∼ Nβ , where β = ξ + 1. From
the last plot in Fig. 7 we can read β ≈ 1.5.

Hydrodynamic interactions break the relation tw ∝ nt , as
seen in Fig. 8(b). The friction increasing with nt is still a
determining factor for the waiting time profile tw(s). However,
due to the backflow beads start moving before tension reaches
them. The backflow of the moving beads sets beads in

motion farther from the pore than where the tension has
propagated. This leads to smaller nt in the presence of
hydrodynamics. Consequently, nt < nd when hydrodynamics
is included. Also, in contrast to the translocation dynamics in
the Brownian heat bath, the friction is not directly proportional
to nd when hydrodynamics is included but determined by the
hydrodynamic radius of the moving polymer segment.

In Fig. 8(b) nt and tw are compared with and without
hydrodynamics. tw(s) is seen to initially increase as rapidly
in the presence and absence of hydrodynamics. It takes a
while for the hydrodynamic modes to fully develop after
the first polymer beads are set in motion. Before this the
translocating polymers immersed in solvents with and without
hydrodynamics experience identical friction. After this setting-
in time for hydrodynamics the friction for the translocating
polymer in the solvent with hydrodynamics is much smaller.
Consequently, the tw(s) profile grows more weakly with s than
the nt (s) profile. This is also clearly seen in the logarithmic
plots of nt (s) and tw(s) in Fig. 8(c). nt (s) scale identically for
the cases with and without hydrodynamics. In the absence of
hydrodynamics tw(s) is closely aligned with nt (s), whereas
tw(s) scales with s with a clearly smaller exponent than nt (s)
when hydrodynamics is included.

During the translocation the waiting time tw increases to a
maximum before dropping rapidly due to the final retraction of
the remaining polymer segment on the cis side. The ratio for the
waiting times in the absence and presence of hydrodynamics
R = tnoHD

w (s)/tHD
w (s) reaches a maximum Rmax at this same

point. For N � 800, Rmax does not change with F but
increases with N . We obtain Rmax = 1.2, 1.3, 1.5, 1.7, 2, and
2 for N = 25, 50, 100, 200, 400, and 800, respectively. This
characteristics is explained by tension not having a sufficient
time to evolve before retraction starts for short polymers, as
seen from Fig. 8(d), showing nt (s/N ) for different N in the
absence of hydrodynamics. Consequently, the tension profiles
in the absence and presence of hydrodynamics differ less for
short polymers.

Only for N = 1600 do values of Rmax differ slightly for
different F ; namely Rmax = 3 for F = 1 and Rmax = 2.3 for
F = 3 and 10. As seen in Fig. 8(d), translocation of the
polymer of length N = 1600 is occasionally stalled already
for F = 3. This stalling affects not only Rmax but also β, for
F = 10.

In Fig. 9 we look more closely at the lengths of the tensed
segments. nt increases with pore force F ; see Fig. 9(a). In other
words, tension propagates faster for larger driving pore force.
It is noteworthy that the tension propagates farther for larger F

in spite of the fact that also the polymer translocates faster and
so spends less time on the cis side. Hence, increasing F speeds
up tension propagation more than polymer translocation.

As seen in Fig. 9(a) the increase of nt with increasing F

gets weaker for larger F . When a bead at the end of the tensed
segment is being pulled by a moderate force, the next bonded
bead has time to move in the viscous heat bath before the
bond is fully stretched, or in our measurement the two-bond
drag distance di = 2σ (see Fig. 6). When this force increases
the bond gets more and more extended before the next bead
starts moving due to the diminished effect of stochasticity
and possibly increased effect of inertia. For a sufficiently
large force the bond gets fully extended before the next bead
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FIG. 9. Good solvent, N = 800. (a) The length of the tensed
segment on the cis side during translocation nt (s). Curves from
bottom to top: (i) F = 1, with hydrodynamics (HD); (ii) F = 1,
no HD; (iii) F = 3, with HD; (iv) F = 3, no HD; (v),(vi) F = 10,
with and without HD. (b) Tension profiles nt (s) with and without HD.
nt (s) with HD are scaled, Ant (s), such that perfect alignment with
no-HD profiles are obtained. A = 1.5 for F = 1 (lower curves) and
A = 1.1 and F = 3 (upper curves).

moves. nt cannot increase beyond the full extent given by
the quasistatic model, so by increasing F we will approach
this model where beads that are set in motion from their
initial positions start immediately moving at the velocity of
the pulling bead [5].

This change of nt with F is a deviation from the qua-
sistatic model and contributes to a dependence found in a
number of studies, namely that the translocation time is not
strictly inversely proportional to the driving force, but instead
τ ∼ F−α , where α < 1. A detailed study of this effect is
beyond the scope of the present paper and will be conducted
in a forthcoming paper [22].

For F = 1 and F = 3 tension propagates more strongly in
the absence of hydrodynamic interactions. The difference in
tension propagation for the cases with and without hydrody-
namics is largest for small F and decreases when increasing
F until it disappears for F = 10, where tension propagates so
fast that it overrides the effect of the hydrodynamic backflow,
whose effect is seen for F = 1 and 3.

Although the magnitudes of nt (s) with and without hy-
drodynamics are different, the shapes are identical, which
can be seen in Fig. 9(b), where the tension profiles nt (s) for
F = 1 and 3 with hydrodynamics are scaled to make them
align with the corresponding nt (s) without hydrodynamics. In
other words, tension propagates along the polymer chain on
the cis side similarly during the translocation for the cases
with and without hydrodynamics. Only the magnitudes of
nt (s) are smaller when hydrodynamics is involved for F < 10.
The length of the tensed segment without hydrodynamics is
by the factor A = 1.5 larger than with hydrodynamics for
F = 1. For F = 3, A = 1.1. For F = 10, tension profiles for
translocations with and without hydrodynamics are identical
(A ≈ 1.0).

In order to have some idea of the relative importance
of the two factors contributing to the speed-up due to
hydrodynamics, namely the backflow and the reduction of
friction, we performed simulations where a polymer in free
solvent (no walls, periodic boundaries) is pulled at the end
by constant force fdrag. These simulations were started from
straight polymer conformations that are relatively close to
the quasistatic conformations that the polymers assume after
being dragged for a sufficiently long time. We checked that
similar conformations (and terminal velocities) were obtained

N
v

fdrag

N
v

fdrag
FIG. 10. Terminal velocity times polymer length Nv as a function

of dragging force fdrag for polymers of different lengths. Upper
plots, hydrodynamics included; lower plots, hydrodynamics not
included. The dashed lines are linear fits to the data for N = 25.
(a) Good solvent; (b) bad solvent. In the case of bad solvent with
hydrodynamics the least-squared fitted lines are plotted to show the
deviation from the relation Nv ∼ fdrag [Eq. (6)].

by starting from equilibrated conformations. The velocity of
the polymer was measured after it had reached the terminal
value, as we have previously done for sedimenting polymers
[23]. The measurement was done for polymers of different
lengths and for different fdrag (ten runs per parameter pair).

The measured components of the terminal velocities paral-
lel to fdrag follow quite accurately the relation

v = C(HD/noHD)
fdrag

N
, (6)

where the constants CHD ≈ 0.15 and CnoHD = 0.076 are for
the cases with and without hydrodynamics, respectively. In
Fig. 10(a) the terminal velocities multiplied by the polymer
lengths Nv are plotted as a function of fdrag. [This is done
instead of plotting v vs fdrag/N to more clearly show the
deviations from the relation given by Eq. (6).] The values
for the coefficients are given in Table I. Hydrodynamics is
seen to speed up the motion of the dragged polymers of
lengths N ∈ [25,400] by a factor CHD/CnoHD ≈ 1.9. Since
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TABLE I. The constants C of Eq. (6) for polymers of different
length N with and without hydrodynamics (HD) and their ratios.
Good solvent (GS) and bad solvent (BS).

N CGS
HD CGS

noHD CGS
HD/CGS

noHD CBS
HD CBS

noHD CGS
HD/CBS

noHD

1 0.0735 0.0731 1.01 0.0735 0.0731 1.01
25 0.140 0.0758 1.84 0.141 0.0760 1.85
100 0.146 0.0759 1.92 0.150 0.0760 1.97
200 0.147 0.0757 1.95 0.156 0.0762 2.05
400 0.148 0.0755 1.96

the effect of backflow is insignificant in the case of a fully
extended polymer being pulled at the end, this is the ratio of
the frictions in the absence and the presence of hydrodynamics.
From Fig. 8(d) and comparing CHD/CnoHD to the maximum
ratio of waiting times Rmax above hydrodynamic modes can
be estimated to have time to develop fully before retraction
for polymers of length N � 400. The backflow plays a role at
the initial and intermediate stages of translocation, but before
the retraction at the end of the tension propagation the driven
polymer translocation for a realistic pore bias has reached a
state where hydrodynamics speeds up the motion solely due
to the reduced friction.

2. Bad solvent

In bad solvent tension does not appreciably propagate
along the polymer chain on the cis side, in contrast to the
translocation in good solvent, see Figs. 4 and 7. Accordingly,
there is no scaling of τ with N due to tension propagation. This
is clearly seen in Fig. 11 showing cumulative waiting times,
Tw(s) = ∫ s

0 tw(s ′)ds ′ for F = 1 and 3 and N ∈ [100,1600].
[Tw(s) is the average time it takes for the bead s to enter the
pore.]

Right from the beginning of translocation the waiting times
are seen to be larger for longer chains. This reflects the
correlated motion of the polymer beads in the globular (and
entangled) conformation in the bad solvent. Unlike in the good

100

101

102

103

104

105

106

10 0 10 1 10 2 10 3

T w

s

FIG. 11. Translocation in bad solvent, no hydrodynamics. Log-
arithmic plot of cumulative waiting times Tw(s) for F = 1 (upper
curves) and 3 (lower curves). Polymer lengths N = 100, 200, 400,
800, and 1600.

solvent the correlation length in the bad solvent extends over
the whole globular polymer segment on the cis side (see the
second row in Fig. 2). Hence, a single moving monomer having
to push other monomers out of its path experiences a friction
that increases with the number of monomers on the cis side.
The waiting times increasing for any s when increasing N is
in stark contrast with waiting times of translocations in good
solvent, where for polymers of different N they are aligned
and follow tw ∼ sγ (up to the point where the final retraction
from the cis side starts). Consequently, in the bad solvent the
waiting time profile does not result in the scaling of τ with N

like in the good solvent.
Simulations where polymers in bad solvent were pulled at

the end by a constant force fdrag were also made. Figure 10(b)
shows the terminal velocity v multiplied by the polymer length
N as a function of the pulling force fdrag in the case of bad
solvent for N = 25, 100, and 200. As was the case in the good
solvent, the polymers start from a straight conformation. For
strong fdrag the conformations remain fairly straight but for
weak fdrag polymers have a globular portion. In the absence of
hydrodynamics individual monomers experience a similar fric-
tion regardless of the length of the pulled polymer. This is seen
as a collapse of Nv-fdrag curves for polymers of different N .

In the presence of hydrodynamics monomers belonging to
longer polymers obtain higher velocities than those belonging
to shorter ones. Also, polymers pulled by a constant force
obtain higher velocities in a bad than in a good solvent. Both
these features are due to the backflow assisting a polymer with
a prominent globular part. The effect of the backflow is not
significant for the straight polymers in the good solvent. The
coefficients in Eq. (6) for the bad-solvent case are shown in
the three rightmost columns of Table I.

In spite of hydrodynamics assisting collective motion of a
globular polymer segment in the pulling experiment, it has a

FIG. 12. A snapshot of a simulation with bad solvent at the
reaction coordinate value s = 1400. A trefoil knot (emphasized in
red) is seen at the pore entrance. N = 1600 and F = 3. For improved
visibility the polymer is depicted with a tube of diameter 0.2 that
is smaller than the diameter of 1 implied by the Lennard-Jones
interaction range.
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negligible effect on driven translocation in the bad solvent. In
the case of translocation individual monomers that are pulled
toward the pore are surrounded by immobile monomers, so
that long-ranged hydrodynamic modes in the direction of the
motion do not form. Accordingly, although hydrodynamics
speeds up collective center-of mass motion of entire polymer
conformations even more effectively in the bad than in the good
solvent, it has a negligible effect on the driven translocation in
the bad solvent.

It is also noteworthy that for polymers of realistic lengths
knots slow down translocation. In our simulations stalling
effects in individual translocations due to knots are seen for
polymers of lengths N = 800 and 1600. Figure 12 shows a
snapshot of a simulated translocation where a trefoil knot is at
the pore entrance.

IV. SUMMARY

We have studied driven polymer translocation in the good
and the bad solvent in the presence and absence of hydro-
dynamic modes using stochastic rotation dynamics coupled
with molecular dynamics. By measuring the radii of gyrations
Rg on both sides of the pore we found that during the
translocation polymers were not driven out of equilibrium
in the bad solvent, in contrast to the translocation in the
good solvent. The mechanisms driving the polymer out of
equilibrium in the good solvent are well established, namely
tension propagation on the cis and monomer crowding on the
trans side. In the bad-solvent polymer translocated through the
pore practically from one equilibrium conformation to another.
Here translocations driven by pore force of large magnitudes
were seen to be occasionally stalled by knots present already
in the initial random conformations.

In the good solvent the trans side polymer conforma-
tions deviated from equilibrium conformations less when
hydrodynamics was included. This means that hydrodynamics
speeds up a polymer’s relaxation toward equilibrium even
more than it speeds up its translocation. Also on the cis
side Rg of the polymer conformations deviate less from the
equilibrium values when hydrodynamics is involved. This is
a manifestation of the backflow setting monomers in motion
before the tension propagating from the pore has reached them.
Consequently, the polymer is less tensed, or less extended, on
the cis side in the presence of hydrodynamics.

Tension measurements showed that the length of the tensed
segment increases with the same exponent in the presence and
absence of hydrodynamics. In other words, tension propagates
qualitatively in the identical manner whether hydrodynamics
is included or not. Only the length of the tensed segment at
all stages is smaller due to backflow when hydrodynamics
is included. For a constant pore force the inclusion of
hydrodynamics reduces the length of the tensed segment by a
constant factor. This is quite remarkable, since it means that the
difference, e.g., in the scaling relations, comes only from the
difference in friction that the polymer experiences depending
on whether hydrodynamics is included or not. The polymer
conformations for both cases are identical. This information is
useful for inclusion of hydrodynamics in the present theories
of driven polymer translocation.

In spite of the tension propagating identically with the
the number of translocated monomers in the presence and
absence of hydrodynamics, the waiting times in the two cases
differ. A smaller exponent for the scaling of the translocation
time with the polymer length is obtained in the presence
of hydrodynamics, as is well known. In the beginning of
the translocation, the waiting-time profile follows the tension
propagation also when hydrodynamics is included. This is due
to the set-in time required for the hydrodynamic modes to fully
develop. After this initial stage the friction is smaller when
hydrodynamics is included and, consequently, the waiting time
that is to a good precision proportional to the friction scales
with the number of translocated monomers with a smaller
exponent in the presence of hydrodynamics.

In the bad solvent the tension does not propagate appre-
ciably on the cis side. Accordingly, the translocation time
does not show a clear scaling with the polymer length in
the bad solvent. The waiting times at the initial stages of the
translocations are longer for longer polymers, which is due to
the increased friction that the moving monomers experience
by the relatively immobile monomers in their path within
the globular conformations. However, for very long polymers
linear dependence of the translocation time on the polymer
length seems to be approached.

By measuring terminal velocities for polymers in free
solvent pulled at the end, we could determine the speed-up
due to hydrodynamics in the good solvent to result almost
entirely from the reduced friction and to a lesser extent from
the backflow. Surprisingly, hydrodynamics was seen to speed
up the pulled polymer in the bad solvent more than in the good
solvent. In addition, the motion of longer polymers was sped up
more than the motion of short polymers. This is explained by
the globular polymer conformation moving “as a whole” in the
bad solvent, that is, by collective center-of-mass motion of the
monomers, whereas in the translocation individual monomers
move within the globular conformation. The backflow is
much stronger in the motion of a globular than a stretched
polymer. (Compare a droplet-shaped vehicle to a long truck.)
Hence, in the presence of hydrodynamics the pulled polymers
move faster in the bad solvent than in the good solvent and
the longer polymers with a sufficiently large globular part
move faster than short polymers.

To recap, in the good solvent hydrodynamics does not
essentially change the polymer conformations during the
translocation; it only scales down by a constant factor the
extended, or tensed, polymer segment on the cis side. Hence,
all differences come from the different friction experienced by
the essentially same polymer conformations in the presence
and absence of hydrodynamics. In the bad solvent there
is no tension propagation nor the accompanying scaling of
the translocation time τ with the polymer length N in the
driven translocation. Hydrodynamics that in the good solvent
is known to speed up translocation and decrease the scaling
exponent β has only a negligible effect in the bad solvent. In
the biological context the polymer translocation takes place
in solutions abundant with biological organelles, which can
make the solvent quality effectively bad. Hence, the scaling
characteristics obtained for the generic translocation in the
good solvent may not be completely valid for the in vivo
translocation processes.
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