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Regulation of chain length in two diatoms as a growth-fragmentation process
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Chain formation in diatoms is relevant because of several aspects of their adaptation to the ecosystem. However,
the tools to quantify the regulation of their assemblage and infer specific mechanisms in a laboratory setting are
scarce. To address this problem, we define an approach based on a statistical physics model of chain growth and
separation in combination with experimental evaluation of chain-length distributions. Applying this combined
analysis to data from Chaetoceros decipiens and Phaeodactylum tricornutum, we find that cells of the first
species control chain separation, likely through a cell-to-cell communication process, while the second species
only modulates the separation rate. These results promote quantitative methods for characterizing chain formation
in several chain-forming species and in diatoms in particular.
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I. INTRODUCTION

Diatoms are unicellular algae characterized by a rigid exter-
nal cell wall (the frustule) composed of two siliceous and un-
equal halves (called the valves), with the bigger one fitting onto
the smaller one like a lid fits onto its box. This ecologically key
class of algae inhabits all the aquatic environments, from salty
waters to brackish and fresh waters. They have a deep impact
on oxygen production on Earth, fixing at least one fifth of the
total carbon fixed per year on our planet [1]. Additionally, di-
atoms are the most diverse class of algae, numbering 12 000 de-
scribed species to date and possibly 8000 unknown species [2].

One of the main features characterizing diatoms is their
ability to form variably stiff [3] and differentially shaped
chains [4]. Chains are produced only at mitotic division,
when two daughter cells do not separate completely but stay
together. Usually, intercellular junctions are not accompanied
by cytological contact between sibling cells. In diatoms cell
division is very peculiar (see Ref. [5] for an extensive review
of mitosis and cytokinesis in diatoms), with the daughter
cells “growing” within the mother, then separating via an
animal-like cleavage furrow [5,6], followed by the synthesis of
a new silica cell wall (similar to what happens to the cellulose
cell wall in plants). Upon separation, in most species the two
daughter cells keep physical contact and produce variably long
chains. Chain formation is a species-specific (and possibly
ecotype-specific) feature, and the junction modes known to
date are quite diverse [7–10], with some species showing cells
connecting to each other via frustule processes (e.g., Skele-
tonema [11], Chaetoceros [12], the extant genus Trochosira
[13]), others producing mucus pads that keep the cells together
from the apices (e.g., Asterionellopsis [14], Tabellaria [15],
the extant family Rutilariaceae [16]), and others synthesizing
chitin threads between adjacent cells (Thalassiosira [9]).
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The reasons and mechanisms for diatom chain formation
are still being debated. Likely chains have ecological impor-
tance [17–20], which could range from buoyancy behavior,
similar to flocculation in yeast [21,22], to increased resistance
to predators. More generally, clustering is sometimes inter-
preted as a first step towards multicellularity [23], the second
being division of labor with the evolution of specialized cells
[24], as in the slime mold Dictyostelium discoideum [25].
Diatom ability to produce chains has never been interpreted
as a sign of nascent multicellularity, although in some cases
(Licmophora, Encyonema, or Navicula ramosissima) partic-
ularly complex colonies have been hypothesized to contain
specialized and behaviorally differentiated cells [26]. In other
phytoplankters [27] as well as in yeasts [28], multicellular-like
behavior was invoked and experimentally induced.

One prominent question is the extent and mechanisms that
different species and ecotypes use to control the range of
chain lengths found in a population. A minimal mechanism
purely controls the robustness of junctions, with more fragile
junctions being more prone to separation (thereby reducing
the average chain length of a population). The extent to which
separation may be produced by environmental forcing, e.g.,
strain due to the fluid shear, is still unclear (see, e.g., Ref. [29]).
For example, the physical separation rate may be increased in
the presence of turbulent flows, while in these conditions it
might be more advantageous for a species to maintain or even
increase its average chain length. Alternatively, chain sepa-
ration might be under more tight regulation, involving, e.g.,
communication between neighboring cells. Such mechanisms
may allow chain formers to react to different environmental
changes.

Despite the existing knowledge, the process of chain
formation is still poorly understood. Most importantly, no
widely accepted tools exist to quantify it in controlled settings.
In this scenario, even the elementary statistical physics models
to understand and quantify data are an open question. Here,
we address these issues with a combination of experiments

2470-0045/2016/94(2)/022418(8) 022418-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022418


MARCO GHERARDI et al. PHYSICAL REVIEW E 94, 022418 (2016)

quantitating chain length in steadily growing colonies and
mathematical models of chain formation and separation.

The main goal of this work is the definition and appli-
cation of methods capable of discerning different regulating
mechanisms and of quantifying the biases in the underlying
processes. Such methods could become general tools for
future research. Figure 1 describes our combined approach
using theoretical modeling and experimental data. We started
from the evidence that the average chain length measures
the tendency to form chains but is often not sufficient to
reveal the specific processes that regulate the dynamics. The
time-dependent distribution of lengths, instead, contains much
more detailed information which should be exploited.

We selected the chain-forming diatom Chaetoceros decipi-
ens as the main experimental model species. Besides producing
chains, this species has the advantage of presenting a peculiar
feature allowing us to identify the exact spot where a chain will
split into two or more subchains. Indeed, C. decipiens is char-
acterized by the production of cellular processes called setae.
The cells that form part of a chain produce intercalary setae
that span perpendicular to the length of the chain up to seven
to eight cell radii and are clearly visible in light microscopy.
When two cells in a chain are going to separate, they synthesize
terminal setae that are parallel to the chain length and are not
connected [see Fig. 1(a) and the inset in Fig. 3]. This will
ultimately generate two terminal cells whose setae are at the
apices of the chains and are usually thicker than the intercalary
ones. As a term of comparison, we used the P. tricornutum,
considering both a wild-type strain, which under specific
growth conditions may form short chains in the laboratory
(typically two to four cells), and a chain-forming transgenic
line (hereafter termed “mutant” but strictly speaking a transfor-
mant; see Sec. II), which forms longer chains (up to 50 cells).

As the simplest mechanism for chain formation, we
assumed that cells grow and divide, thus increasing the chain
length. Dividing cells may separate after division, or the chain
may break at random junctions. This constitutes our model (see
Sec. II for a precise formulation). In such a model, division
and chain separation are treated as independent processes:
all cells have the same fixed division rate (per cell) α, and all
cell-to-cell junctions have a fixed separation rate (per junction)
β. The stochasticity in such a model represents the cell-to-cell
and chain-to-chain variability in chain separation. This model
predicts that, after some relaxation time, a steady state should
be reached for the histogram of the chain length and also pre-
dicts the shape of this histogram. We define a clear procedure
to compare this model with experimental data from colonies
grown in the laboratory. Comparing the (null) model with data
gives insight into the non-null process of chain formation. We
also considered non-null variants of the model to investigate
which extra ingredients in the regulation of growth and chain
separation could reproduce the observed data.

II. MATERIALS AND METHODS

A. Chaetoceros decipiens and Phaeodactylum
tricornutum experiments

Diatom strain SZN-Cdec (Chaetoceros decipiens) was
grown in f/2 diatom-specific culture medium [30]. Cells were

grown in tissue culture flasks with no agitation or bubbling at
18 ◦C, a light:dark (L:D) period of 12L:12D, and a photon
fluence rate of about 80 μmol photons m−2 s−1 produced
by cold white light bulbs adapted for phytoplankton growth.
Seven replicate experiments were run with C. decipiens.
Cultures were kept in an active and exponential growth phase
for 2 weeks before each experiment by serial dilutions. In order
to inoculate cells in new vessels and fresh f/2 medium for the
experiments, a cell count was carried out by a Sedgewick-
Rafter counting chamber. Initial cell concentration was set
at 250 cells mL−1 (according to the natural blooming con-
centration). We preferred low cell concentrations in order to
avoid overcrowding and self-shading during the experiments.
At the moment of inoculum, cells were in the exponential
growth phase. For each experiment, Plexiglas beakers were
inoculated with C. decipiens cells to reach the aforementioned
concentration (in Fig. 1 for C. decipiens experiments). Inocu-
lated beakers were put in the experimental conditions and left
24 h to acclimate to the dilution into the fresh medium and to
the new vessels. Temperature, photoperiod, and light intensity
for the experiment were set as the growth chamber used for
maintenance. At the same time of day, a sample was taken
from each beaker and fixed with neutralized formaldehyde
(final concentration 1% vol/vol) and stored at 4 ◦C in the dark
until analysis. For technical and logistic reasons, three out of
the seven replicates lasted 3 d (from T0 to T2), while the other
four lasted 4 days (until time point T3). Although C. decipiens
chains are quite stiff [3], sampling was gently performed by
delicately stirring the culture with a 25-mL strippette for 15
s. This sampling procedure did not disturb chain spectra. We
remark that a broken chain is easily recognizable, especially
for C. decipiens, being characterized by the lack of terminal
cells at the apices [31].

Cell counts were used both to define chain distribution over
time and to calculate growth rates. On average, 405 chains per
replicate per time point were counted in the Sedgewick-Rafter
counting chambers [32] in a Zeiss Axiophot light microscope
at a magnification of 100×. For SZN-Cdec experiments,
the number of separating chains (chains presenting at least
one separation point identified by two adjacent separating cells
within the chain; see Fig. 3 below) was recorded. The chain
length of the separated subchains was recorded as well.

Experiments on Phaeodactylum tricornutum were per-
formed with the CCMP632 (Pt1) strain obtained from the
Provasoli-Guillard National Center for Culture of Marine
Phytoplankton. Analyses were performed on wild-type cells
showing reduced chain length (maximum of four cells in a
chain) in a small percentage (5% of the population) and on
a transgenic line showing a chain formation phenotype (up
to 50 cells in a chain) under standard conditions: growth in
f/2 medium [30] without additional silicic acid and without
agitation, temperature of 18 ◦C and illumination with white
fluorescent light in a 24-h light photoperiod. The transgenic
line has been obtained as described in [33]. This line contains
an antisense fragment for the phytochrome photoreceptor
(Phatr2_54330). To date, a direct relationship between the
phytochrome deregulation and the observed chain phenotypes
has not been established. However, we considered that this
line represented a useful tool for the purpose of this work.
With light intensity being one of the most important factors
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FIG. 1. Workflow of the experiments. (a) Cells were cultivated and kept in exponential growth phase until inoculum. After inoculum into
fresh culture medium, cultures were poured into flasks. In the time bar, white boxes identify illuminated periods (12 h), and black boxes identify
dark periods (12 h) for experiments with C. decipiens; P. tricornutum was kept in a 24-h light photoperiod. (b) Daily microscopic inspection
led to the growth curves and the chain-length histograms for each replicate for each time point, which were analyzed with the model.

affecting the growth rate, several light intensities have been
used. The wild-type cells were grown at seven different light
intensities: 200 μmol photons m−2 s−1 (n = 6), 75 μmol
photons m−2 s−1 (n = 2), 50 μmol photons m−2 s−1 (n = 4),
25 μmol photons m−2 s−1 (n = 1), 15 μmol photons m−2 s−1

(n = 2), 10 μmol photons m−2 s−1 (n = 2), and 2.5 μmol
photons m−2 s−1 (n = 1). Moreover, in order to have constant
growth rate higher than two divisions per day, wild-type cells
were grown in f/2 medium supplemented by 0.5% of tryptone
[34] at 200 μmol photons m−2 s−1 (n = 6). The transgenic
line was grown at seven different light intensities: 75 μmol
photons m−2 s−1 (n = 5), 50 μmol photons m−2 s−1 (n = 2),
25 μmol photons m−2 s−1, 15 μmol photons m−2 s−1 (n = 2),
10 μmol photons m−2 s−1 (n = 7), 5 μmol photons m−2 s−1

(n = 2), and 2.5 μmol photons m−2 s−1 (n = 1). For each
experiment, cells were adapted to the different light conditions
and media for at least 2 weeks and kept at constant growth rate
in exponential phase by dilutions every 3 d. Cell concentration
was set between 0.5 × 105 and 1 × 105 cells/mL at each
dilution. After adaptation, cell number and chain length were
directly counted (without fixation) in a Malassez chamber for
3 d (from T0 until T2) at the same time of day.

Raw data are available with the authors.

B. Stochastic model of chain accretion and chain separation

The stochastic model we adopted as a null reference to our
data implements duplication (growth and division) of cells and
fragmentation of chains as two independent mechanisms. Each
cell duplicates with a growth rate α, and duplicate cells remain
in chains. Moreover, each interface between two consecutive

cells “breaks” with a rate β (see Fig. 1). We will use the terms
fragmentation and separation to refer to the process whereby
a chain breaks up into two daughter chains. Dimensionally, α

and β are, respectively, rates per cell and per junction, meaning
that the actual overall rates of chain separation and accretion
(the “propensities” of these processes) depend dynamically
on the number of interfaces and cells. Apart from this, the
model assumes that the two processes regulated by α and β

are independent, and the two rates are fixed. The assumption of
a time-independent α is justified by the experimental growth
curves, which are well fitted by exponential functions. In
particular, for each experiment, growth rates were computed
for each time interval (i.e., from T0 to T1, from T1 to T2, etc.),
as αi = ln(Ni/Ni−1), where Ni is the total cell count at time
point (day) i and ln is the natural logarithm. For all replicates,
the variability of αi for different time segments was less than
15%. The values α for each replicate were obtained by linear
fits of the form ln Ni = ln N0 + iα. A fixed β is the minimal
assumption defining this null model. As we will see, we find
that different species may agree or not with the null model and
hence may or may not allow us to reject the assumptions.

More precisely, the system is composed of a time-varying
number Ft of chains, each composed of ki cells. At each time
t the state is specified by the numbers ki , with i = 1, . . . ,Ft ,
representing the number of cells in each chain, i.e., the chain’s
length. Let Ft (k) be the number of chains of size k at time t ,
which is the quantity analyzed empirically. Its time evolution is
controlled by the two (nonstationary) Poisson processes of cell
duplication and chain separation at junctions described above.
This model is simple enough to be tractable analytically. One
can write an equation for the evolution of Ft (k), taking into
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account the different sources of increase or decrease of this
quantity, namely, the duplication of a cell in a chain of size k −
1 and the separation of a chain of size k̄ > k (in the two relevant
ways) and the two sources of decrease, i.e., the duplication of
a cell in a chain of size k and the separation of a chain of
size k. The long-time behavior of the chain-length abundance
Ft (k) can then be studied by standard techniques; the details
are reported in the Appendix. In brief, the model predicts
that the chain-length normalized distribution pt (k) = Ft (k)/Ft

reaches a steady state pss(k) for long times. The steady state is
characterized by the fact that the relative proportions of chains
of different lengths remain unchanged, while the number of
chains keeps increasing. The shape of the distribution pss(k)
is given by the exponential

pss(k) = β

α

(
1 + β

α

)−k

. (1)

A practical consequence of Eq. (1) is the following relation
between the growth rate α and the mean chain length < k >

at the steady state (see the Appendix):

〈k〉 = α

β
+ 1. (2)

To compute the full time dependence of Ft (k) we rely
on numerical simulations, performed using the first-reaction
method of Gillespie [35].

III. RESULTS

A. Short subchains are suppressed in C. decipiens

We first compared the model with the chain-length data
from C. decipiens (see Sec. II). The model predicts that
chain-length histograms should take an exponentially decaying
form in the long-time regime. Histograms for this quantity for
experimental data, shown in Fig. 2(a), strongly deviate from
such prediction (p values of Kolmogorov-Smirnov tests are
of order 10−14). For instance, an exponential distribution is
monotonically decreasing and has its maximum at 1, which is
clearly not the case for the empirical distributions. Assuming
the system is not at the steady state, the evolution from the
initial distribution (at t = 0 d) can be obtained numerically, but
again, we found no agreement between the data and the null
model, which does not reproduce the observed local maxima
in the chain-length distributions.

Therefore, a modified model, taking into account a possible
bias in the chain-separation mechanism, was considered.
Such a model variant attempts to positively reproduce the
data through a modification of the null assumption on the
separation rate. Specifically, we assumed that regulation of
chain separation is implemented as follows: cells do not
separate if a chain boundary is closer along the chain than
a fixed number k0 of cells, thus inhibiting the formation
of resulting chains shorter than k0. In order to estimate the
best values of the separation rate β and of the cutoff k0,
we perform extensive simulations starting from the empirical
initial condition, varying these parameters and computing
the Kolmogorov-Smirnov distance between the simulated
and the empirical chain-length distributions [36] at t = 2 d.
The duplication rate α = 0.72 is computed by cell counts.
Figure 2 compares this modified model with data. This analysis

FIG. 2. Biased chain separation in C. decipiens. (a) Typical
chain-length distributions show that the most common chain is a
few cells long, compatible with the presence of a bias suppressing
the separation of shorter chains. The three plots correspond to times
1 d apart from each other. Blue dots are experimental data (error
bars estimated as Poissonian counting errors are smaller than the
points), dashed lines are the initial condition at t = 0, and red solid
lines are the predictions of the model with bias. (b) Suppression
of short-chain formation is manifested by the preference for a cutoff
length k0 = 2 in the biased model. Data and simulations are compared
through the Kolmogorov-Smirnov distances (vertical axis) between
the chain-length distributions at t = 2 d. Curves corresponding to
different cutoffs k0 = 0,1,2,3 (numbers near the lines) realize the
optimum overlap with the data at different values of the separation
rate per junction β (horizontal axis, in separations per day).

indicates that separation is inhibited for chains of up to k0 = 2
cells. The fitting procedure also estimates the separation rate,
namely, β = 0.41 separations/d.

Simulations using the best value of β can then be compared
to the time evolution of the distributions [Fig. 2(a)], showing
good agreement. In particular, the model also correctly
reproduces the decay of short-chain abundances from the
initial condition to the asymptotic null concentration. Although
the parameters are estimated by matching the distributions
at t = 2 d, the model prediction is in agreement with the
data also at t = 3 d (for the four replicates that were
followed up to that time point). Notice, however, that the
data display strong parity effects, with peaks at even chain
lengths, that are not captured by the model (see the next
section).

B. Positions of separating points in chains highlight the biases

The analysis presented above is consolidated by support
coming from independent measurements. We used the fact that
formation of terminal setae precedes separation of chains in
C. decipiens. Hence, we could verify whether a bias on future
subchain length is detectable in the pattern of chain-separation
points. To this aim, we collected data on the positions of
the setae along each chain that presented them. This defines
a population of chains n(k) (number of chains of length
k with at least one terminal seta) and another population
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FIG. 3. Formation of setae in C. decipiens shows suppression of
single-cell subchains and enrichment of odd lengths greater than 1.
Subchains are defined as the consecutive cells lying between two
terminal setae (or chain boundaries). The proportion of subchains
(y axis) with a given number of cells (x axis) is shown both for
empirical data (blue circles; the dashed line is a guide to the eye) and
for a simulated null model (red) where terminal setae are uncorrelated
and randomly distributed along the empirical chains. For empirical
data (1113 subchains in total), error bars estimated as Poissonian
counting errors are approximately the size of the data points (slightly
larger for the data at subchain length 3). For simulations, symbols
and boxes denote mean values and standard deviations, respectively,
while whiskers are 1st and 99th percentiles. Inset: a C. decipiens cell
chain showing one separation point. Arrows indicate terminal setae
on two adjacent intercalary separating cells, i.e., the junctions where
the chain will separate into two subchains.

n′(k), constituted by the subchains lying between consecutive
separation points. Let m be the number of separation points.
The bias on chain formation can be extracted by comparison
with a null mechanism in which all interfaces are equally
likely to produce separation points. Starting from the empirical
n(k), we simulated 104 realizations of this unbiased model by
inserting m separation points in randomly chosen interfaces
on all chains and compared the resulting subchain populations
with the empirical one n′(k).

The results (Fig. 3) highlight the presence of strong bias
suppressing the formation of single-cell subchains, which is
qualitatively in agreement with the phenomenology observed
combining our model and the chain-length distributions.
However, this analysis also shows that the positions of the
separation points heavily favor the formation of three-cell
subchains and, to a lesser extent, are biased towards producing
subchains of odd lengths. This parity effect is not due to the
finite size of the chains or to the particular lengths they happen
to have in our empirical data because those features are taken
into account as the starting configuration for the null model
considered in this section. Deviations from the null behavior
could, in principle, originate from a scenario where chains
of different lengths have different probabilities of forming
terminal setae. However, we tested this hypothesis on our data
by calculating the average number of setae per junction on

chains grouped by length and found that setae appear with
comparable rates (per junction) on chains of different lengths.

C. Chain formation in P. tricornutum is not biased

Next, we considered chain-length data from the set
of experiments on P. tricornutum at different growth
rates controlled by light conditions, as explained in
Sec. II.

Let us first focus on the transgenic line. We set out to
establish whether chain-length data deviate from the null
growth-fragmentation model and from the C. decipiens data.
In order to compare different species and conditions, we used
a relevant property of the steady-state solution of the model:
if chain lengths are rescaled (separately for each data set) by
the average length < k >, then all their distributions should
collapse onto the same exponential function [see Eqs. (1)
and (2)]. Notice that such a rescaling yields a continuous
exponential distribution only in the limit of large < k >. For
small < k >, histograms will present finite-size fluctuations
around this law (remark, however, that even in this case the
model predicts an exactly exponential distribution of k). These
fluctuations are expected to average out when using data sets
with many different values of < k >, as is the case here.
The rescaling is carried out by computing separately for each
replicate j the average < k >j . Then each chain length ki

in replicate j is rescaled as ki/< k >j . All these values are
pooled to compute binned histograms.

FIG. 4. Null growth-fragmentation behavior in P. tricornutum
mutants. (a) The mean chain length (y axis) grows linearly with
the growth rate (x axis), as predicted by the model, Eq. (2). Circles
are colored according to their mean chain length. Small circles are
those lying below the threshold < k > = 2, which are discarded from
the analysis in (b). The dashed line is the model prediction, Eq. (2),
with β = 0.27 fitted from the data. (b) Cumulative distributions of
chain lengths for P. tricornutum mutants (data at t = 2 d for the 11
experiments with < k > � 2) and for C. decipiens (data at t = 1,2,3
d), rescaled by mean length (separately for each condition), show
remarkable collapse for the two different species on two distinct
behaviors. (c) The rescaled chain-length histograms (bin width of
0.4) of P. tricornutum computed with data pooled from all available
conditions [this combination is possible thanks to the agreement
shown in panel (a)] follow the exponential form predicted by the
model (dashed line).
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FIG. 5. (a) Wild-type P. tricornutum forms short chains, whose
lengths are compatible with the null growth-fragmentation model
(dashed line); (b) however, the growth rate has undetectable influence
on the average length. Data in (a) are rescaled and binned as in Fig. 4.
Small gray points in (b) are the same data as in Fig. 4(a); the larger
points are the WT data, shaded according to their mean chain length
(on the y axis), as in Fig. 4.

Figures 4(b) and 4(c) display the results of this procedure
and show that data on P. tricornutum obey this collapse
property. Additionally, this analysis shows [Fig. 4(c)] that
the data on chain length in P. tricornutum are in agreement
with the null model prediction. Finally, Fig. 4(b) shows that
the data on C. decipiens, taken at different time points and
therefore having different mean lengths, also show collapse of
the chain-length distributions but on a nonexponential function
[Fig. 4(c)].

Another useful prediction of the model is the relation (2)
between the growth rate and the mean chain length at the
steady state, which explains the linear scaling observed in
Fig. 4(a). Since the P. tricornutum data follow the null growth-
fragmentation model and growth rate is obtained directly from
measurements, this prediction allows us to estimate the separa-
tion rate. A fit of the experimental data against this expression
yields β = 0.27(3) separations/d. Individual variability of the
fragmentation rates computed as β = α/(< k > − 1) gives
an overall range β = 0.1–0.4 separations/d. Estimation of the
fragmentation rate by fitting the empirical distributions against
an exponential form gives consistent results. Altogether, the
data fully support the validity of a null model of chain
formation with no bias, where chain lengths are the outcomes
of random duplication and fragmentation.

We now turn to the analysis of the wild type, which formed
very short chains, even at large growth rates induced by adding
tryptone to the medium. Here, the stochasticity due to small
chain size makes it difficult to discern any collapse of the
cumulative distributions. However, merging all the data (by
normalizing each separate distribution by its mean, as above)
again confirms that the overall behavior is robustly exponential
[Fig. 5(a)], as predicted by the null model. Interestingly,
the mean chain length of the wild-type strain is roughly
independent of the growth rate. This is clearly visible Fig. 5(b),
which shows a stable mean chain length for a wide range of
growth rates. Spearman’s correlation test is unable to reject the
null hypothesis that the mean chain length for the wild type is

constant with growth rate (p value ≈ 0.4). By comparison, the
same test on the seven replicate experiments of C. decipiens
gives a p value of order 10−7.

IV. DISCUSSION AND CONCLUSIONS

The quantitative approach defined and validated here
allowed us to explore the mechanisms driving chain formation
in two diatom species. Of particular interest is its applicability
under the lack of biological information on the underlying
processes (e.g., chemical signaling, local microenvironment,
cell differentiation, distribution of organic compounds and/or
proteins in single cells or chains), possibly allowing us to
extend the analysis to many species.

This first investigation already produced several interesting
results. First of all, it indicates that systematic measurements
of chain length of growing diatoms contain a wealth of
information, which is not necessarily accessible by considering
the means only. Our results demonstrate that measurement of
chain-length distributions can be informative on the collective
behavior of diatoms and provide a general method for future
investigations.

More specific considerations can be made on the implica-
tions of our findings for diatoms. Our approach was capable of
discerning different regulating mechanisms by combining data
with quantitative growth-fragmentation models. Complement-
ing those with positive models, we were able to quantify the
biases in the underlying processes, validating hypotheses and
pinpointing specific mechanisms. Indeed, for C. decipiens, we
firmly reject the null model and establish that characteristic
lengths exist, likely due to signaling between cells. The
most important of these trends is a constraint preventing the
formation of very short chains. We showed that a positive
version of the model including this constraint can reproduce
satisfactorily the observed chain-length distributions and their
dynamics. This result is supported by fits with positive models
where the constraint is realized.

An independent analysis of C. decipiens using terminal
setae, where future separations will develop, confirms the
existence of a strong negative bias for small chains and
suggests the existence of additional biases on even vs odd
positions of cells along the chain. Specifically, we have found
evidence of different parity effects in our data. Note that this
may be the consequence of some degree of synchronization
in the separation of cells, but the analysis of the subchains
delimited by setae instead suggests that this hypothesis should
be ruled out. We do not have a simple explanation for such a
complex pattern of biases, other than the notion of a (two-body)
interaction between neighboring cells, possibly giving rise to
parity effects. We speculate that these may be due to the effect
of “morphogenetic” signaling processes inside the chains,
giving rise to periodic patterns. Interestingly, cell divisions
in chains of the same species have been carefully described by
the authors of Ref. [31], who highlighted that the orientation of
intercalary setae depends on the position of the cell within the
chain, intercalary vs terminal. This reinforces the hypothesis
of a possible morphogenetic coordination among the dividing
cells.
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Conversely, all the results in the P. tricornutum strains may
be described by a simple unbiased growth-fragmentation ran-
dom process. These results suggest that in the P. tricornutum
strain, the orchestration of chain-length regulation, if present
in the wild, does not rely on cell-to-cell communication,
only on modulation of the effective separation rate. Notably,
while the mutant is fully consistent with a fixed separation
rate independent of the conditions, the behavior of the wild
type is intriguing. Indeed, its chain-length distributions are in
full agreement with the null model, but the average length
shows little dependence on the growth rate, in a wide range
of growth rates. One possibility is that the fragmentation rate
β is so large that the growth rates considered are still in a
small-length regime dominated by fluctuations. However, one
can also speculate that the remarkably flat appearance of the
plot in Fig. 5 is the consequence of an active regulation of
the separation rate by the cells in response to variations in the
growth rate. In other words, the cells in a chain may increase
their separation rate in order to keep the chain length small at
larger growth rates. A more refined analysis of the fluctuations
on top of the minimum value k = 1 would be required in order
to fully distinguish between those scenarios. At a qualitative
level, we remark that the dispersion of the mean length does
not appear to increase with growth rate, thus suggesting an
active mechanism. While other explanations may apply, we can
surmise the following simple possible interpretation of these
trends. Multiplets may form because during the division cells
excrete substances, such as polysaccharides, which “glue”
them together. If the amount of excreted substance is not tightly
regulated, as might be the case in fast-growing cells, which
display a wide range of variation in the single division rate,
the strength of the gluing effect may vary randomly and with
it the separation. A similar argument might apply also to the
mutant, with the difference of a more effective gluing and a
smaller number of divisions with a weaker link.

To sum up, our results demonstrate that measurement of
chain-length distributions can be informative on the collective
behavior of diatoms, and we propose this combination as a
general tool for future research. For example, similar processes
may describe the mechanisms determining the end-of-bloom
flocculation and rapid sinking of diatoms [37], when the
production of exudates is so large that mixing and relative
motions of cell aggregates form larger and larger aggregates.
While our experiments and model cannot establish directly
the presence of cell specialization, which is one of the drivers
of generating multicellular assemblages, our findings raise
challenging questions on the ability of diatoms to modulate
their multicellular structures. Indeed, the fact that most of the
chain-forming diatoms produce specific substructures to form
their chains is suggestive of direct regulatory mechanisms.

From an ecological point of view, the role of tuning
chain length can impact buoyancy and likely also nutrient
uptake, as well as modulating palatability according to the
size of the most abundant predators [38,39]. It has also been
suggested that chains may favor the encounter with mates [40].
Unveiling the mechanisms of biological regulation of chain
formation may also be crucially valuable for biotechnological
applications. If diatom aggregation can be controlled (like
in Chlamydomonas and yeasts), it could be exploited, e.g.,

for easier collection of cells in bioreactors. Being able
to manipulate chain formation in economically interesting
species for bioproduction would improve cell gathering and
facilitate the use of standard techniques of separation from the
medium, e.g., filtering or centrifugation.
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APPENDIX: ANALYTICAL DETAILS OF THE MODEL

A mean-field approximate equation for �tFt (k) ≡
Ft+1(k) − Ft (k) can be written by considering, for each k,
the processes affecting the value of Ft (k):

d

dt
Ft (k) = α(k − 1)Ft (k − 1) − αkFt (k)

+ 2β

∞∑
k̄=k+1

Ft (k̄) − β(k − 1)Ft (k).
(A1)

The first (second) term on the right-hand side of Eq. (A1)
expresses the duplication of a cell in a chain of length k − 1
(k), thus leading to an increase (decrease) of Ft (k). The last
term is the loss due to the separation of a chain of length k; the
factor k − 1 is the number of interfaces. The third term counts
all the ways that a chain of length k can arise as a consequence
of the separation of a longer chain of length k̄. Note that the
probability of duplication is uniformly distributed on all cells,
which are Nc ≡ ∑

k kFt (k), while the probability of chain
separation is uniformly distributed among all interfaces, which
are Nl ≡ ∑

k kFt (k) − Ft ; the number of chains containing
k − 1 interfaces is, of course, Ft (k). With these definitions,
one readily obtains Eq. (A1).

We look for steady-state solutions. Although Ft (k) in-
creases with time, one expects a steady-state solution for the
ratio Ft (k)/Ft to exist (this is the normalized histogram of
chain lengths, with Ft being the number of chains at time t).
The vanishing of the time derivative of Ft (k)/Ft implies (as can
be shown by direct computation) that dFt (k)/dt = a(t)Ft (k),
where a(t) = d log Ft/dt does not depend on k. Then, by
taking the finite difference of Eq. (A1), evaluated at k + 1
and at k, one obtains

a(t)[Ft (k + 1) − Ft (k)] =α(1 − k)Ft (k − 1)

+ (2kα + kβ − β)Ft (k)

− (kα + α + kβ + 2β)Ft (k + 1).
(A2)

(This equation is strictly valid only for k > 1, as it incorporates
the duplication of chains made of k − 1 cells; however, the
assumption of the physical boundary condition Ft (0) = 0
extends its validity to k = 1.) With the assumption Ft ∝
exp(αt), implying a(t) = α, Eq. (A2) is exactly solved by
the ansatz Ft (k) ∝ C−k if C = 1 + β/α. The average chain
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length 〈k〉 can then be calculated as

〈k〉 ≡
∑∞

1 kC−k∑∞
1 C−k

= α

β
+ 1. (A3)

Intuitively, the average length is close to 1 if the fragmentation
rate β is large with respect to the growth rate α. Finally, the full

normalized distribution at the steady state pss(k) = Ft (k)/Ft

is

pss(k) = β

α

(
1 + β

α

)−k

. (A4)
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