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Wake-sleep transition as a noisy bifurcation
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A recent physiologically based model of the ascending arousal system is used to analyze the dynamics near the
transition from wake to sleep, which corresponds to a saddle-node bifurcation at a critical point. A normal form
is derived by approximating the dynamics by those of a particle in a parabolic potential well with dissipation.
This mechanical analog is used to calculate the power spectrum of fluctuations in response to a white noise drive,
and the scalings of fluctuation variance and spectral width are derived versus distance from the critical point. The
predicted scalings are quantitatively confirmed by numerical simulations, which show that the variance increases
and the spectrum undergoes critical slowing, both in accord with theory. These signals can thus serve as potential
precursors to indicate imminent wake-sleep transition, with potential application to safety-critical occupations in
transport, air-traffic control, medicine, and heavy industry.
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I. INTRODUCTION

The arousal state of the mammalian brain is governed by
the ascending arousal system (AAS), which projects from the
brainstem and hypothalamus to determine the overall arousal
state of the brain [1,2]. The AAS is driven by homeostatic
and circadian inputs, which are ultimately determined by
influences such as light exposure and the dynamics of
metabolic byproducts that favor sleep [1,3,4].

The AAS normally has two stable states, one corresponding
to sleep and one to wake. The slow dynamics of circadian
and homeostatic drives combine to move the system around a
hysteresis loop that links these two states, with rapid transitions
between them. Physiologically based modeling implies that
these transitions correspond to saddle-node bifurcations [5,6].

It is of great importance to have warning of imminent
transitions, particularly from wake to sleep, because of their
critical safety implications for workers in the transport indus-
try, air traffic control, and other safety-sensitive occupations.
Although some vigilance classifications for alertness in the
approach to wake-sleep transitions exist based on electro-
oculography [7] or self-assessment on scales like the Karolin-
ska Sleepiness Scale (KSS) [8], these are subjective, not
physiologically based, and/or are artificially discretized. Better
quantitative understanding of precursors to this transition
would be highly valuable, and critical fluctuations as it is ap-
proached may correspond to such phenomena as microsleeps,
in which drivers and other workers momentarily doze off for a
few seconds at a time [9–11]. Indeed, fatigue and sleep-related
attentional and performance lapses are believed to account for
up to 50% of traffic accidents, for example [9,12].

Recent advances in understanding the AAS have allowed
a number of mathematical models of arousal dynamics to be
developed [1,5,13–26]. In particular, the physiologically based
model of Phillips and Robinson [5] has had its parameters
rigorously constrained and has been successfully applied to
a wide variety of phenomena, including normal sleep-wake
cycles [5,27], sleep deprivation and recovery [28,29], circadian
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entrainment and jetlag [4], the effects of caffeine [30], and
varieties of mammalian sleep patterns [31], as summarized in
a recent review [6].

Phenomena in which slow dynamics are followed by a sud-
den transition from one stable state (e.g., wake) to another (e.g.,
sleep) are examples of critical transitions that occur in a wide
range of complex systems [32], including earthquakes [33,34],
climate tipping [35–39], and wire creep under stress [40]. The
changes at such transitions are drastic, and of great practical
importance, so early-warning signals have been sought across
all these fields. Table 1 in Ref. [41] illustrates the range of
fields in which these catastrophic bifurcations occur, including
early-warning indicators investigated to date, which include
such measures as variance, autocorrelation, skewness, and
others. This table includes one other neurological application
(to epilepsy [42]), but these methods have not yet been
rigorously applied to the wake-sleep transition.

At a critical transition via a saddle-node bifurcation, a
fixed point of the system ceases to exist, which corresponds
to the disappearance of a minimum in a potential energy
function [43,44], which is often expressed in a standardized
normal form in dimensionless variables. As this point is
approached in the presence of noise in the system, the variance
of fluctuations around the fixed point increases, while their
spectral width decreases due to critical slowing [40,41,45].
The scaling of the variance with the distance from the critical
point has been predicted, but not yet fully tested, whereas the
scaling of the spectral width has not yet been analyzed [40].

Existing physiologically based models of arousal dynamics
typically contain many biophysical parameters and must be
simplified in order to make tractable contact with the more
abstract normal-form analyses typically used to explore critical
transitions in the literature. However, it is essential to retain
the ability to relate the results back to the actual brain and
its dynamics, so any nondimensionalization or rescaling of
variables needs to be explicit and invertible.

In this paper, we employ the Phillips-Robinson model [5]
to investigate the early-warning signals of the wake-sleep
transition, where the disappearance of the stable wake state
pushes the system towards sleep. In Ref. [44] this model was
written in terms of an approximate potential function, which
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is adapted in the present work. In this approximation, the
normal form of dynamics is written in terms of the motion
of a particle in a potential well with friction. In Sec. II we
briefly describe the Phillips-Robinson model and its relation
to the underlying physiology. Then we present the theoretical
analysis in Sec. III, including simplification of the model to
dimensionless form, derivation of the normal form near the
critical point, calculation of the underlying potential function
for the saddle-node bifurcation, determination of the power
spectrum, and prediction of scalings. In Sec. IV the theoretical
predictions of the power spectrum and scalings are compared
with the numerical simulation results with white noise drives.
Finally, the results and future avenues for application of this
work are discussed in Sec. V.

II. PHYSIOLOGICAL MODEL OF THE AAS

The main components of AAS and their interactions
are shown in Fig. 1. The core of the wake-sleep switch
consists of the monoaminergic brainstem nuclei (MA) and
the ventrolateral preoptic nucleus (VLPO), which inhibit each
other so that the MA is active and the VLPO is suppressed in
wake, and vice versa in sleep. The MA group projects to the
cortex and thalamus to determine the overall arousal state of
the brain [1,2].

Here each population’s activity is summarized in terms of
its mean cell body voltage Vj , and mean firing rate Qj , where
j = m,v for MA and VLPO groups, respectively. The firing
rate is a sigmoidal function of the voltage, with

Qj (Vj ) = Qmax

1 + exp[−(Vj − θ )/σ ′]
, (1)

where Qmax is the maximum possible rate; θ is the mean
firing threshold relative to resting and σ ′π/

√
3 is its standard

deviation [46]. Dynamics of the mean MA and VLPO neural
soma voltages can be represented by

τmdVm/dt = −Vm + νmvQv + A, (2)

τvdVv/dt = −Vv + νvmQm + D, (3)

FIG. 1. Components of AAS and their interactions. MA and
VLPO populations share a mutually inhibitory connection, with MA
active in wake, VLPO active in sleep. The activities of MA and VLPO
are respectively enhanced by the drive A from ACh/Orx and the total
sleep drive D, which comprises the approximately 24 h periodic
circadian drive C from the suprachiasmatic nucleus (SCN) and the
homeostatic drive H due to sleep homeostat (HOM). The arousal
state also feeds back into homeostatic drive H , eventually triggering
sleep [1].

TABLE I. Nominal parameter values for the Phillips-Robinson
model. Constraints on these parameters are discussed in Refs. [5,28].

Parameter Value Unit Parameter Value Unit

Qmax 100 s−1 νvm −2.1 mV s
θ 10 mV νmv −1.8 mV s
σ ′ 3 mV τm 10 s
A 1.3 mV τv 10 s

where τj is the characteristic neuromodulatory decay time, νab

represents the input strength to population a from population
b (mutually inhibitory, with νmv,νvm < 0), D is the total sleep
drive to the VLPO, and A is a net drive to the MA from
cholinergic and orexinergic neurons, which is held constant in
the present work. The parameter values used in this paper are
listed in Table I and are those obtained in Refs [5,28].

In this model mutual inhibition between wake-promoting
(MA) and sleep-promoting (VLPO) nuclei gives rise to a
“flip-flop” switch, with each population indirectly reinforcing
its own firing by tending to suppress the other population
(hence reducing that population’s inhibitory effects). Hence,
for physiologically reasonable values of the couplings νmv and
νvm only one population can be active at a time, and the brain
is either asleep or awake, with rapid transitions between these
states. Thus the steady states of Eqs. (2) and (3) display a
saddle-node or fold bifurcation when the MA activity Vm is
plotted against the sleep drive D, as shown in Fig. 2. Here Vm

is a measure of wakefulness, and its sharp decrease evidences
the switch from wake to sleep.

This transition is caused by gradual increase of the sleep
drive D, which comprises the approximately 24-h periodic
circadian drive C from the suprachiasmatic nucleus (SCN)
and the homeostatic drive H due to sleep homeostat (HOM),
both afferent to the VLPO as in Fig. 1 [47]). The sleep drive
D increases during wake and decreases during sleep [16,48].
The circadian drive C is normally entrained by light, while
the homeostatic drive H increases during wake due to the
accumulation of somnogens (sleep-promoting chemicals),
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FIG. 2. Steady state value of Vm against the control parameter D

shows the saddle-node bifurcation. Stable wake and sleep branches
are linked by an unstable branch (dashed line). The square represents
the critical transition point of saddle-node bifurcation from wake to
sleep. The value of the critical sleep drive is Dc = 2.463465 mV, as
derived in Sec. III A.
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which excite the VLPO. Eventually this stimulus to the VLPO
overcomes inhibition by the MA, and the transition to sleep
occurs at this critical point, with VLPO activity rising steeply
and suppressing the MA. During sleep, somnogens are cleared
and H decreases, but the circadian drive C increases during
this period. This leads to a flip back to wake once other drives
to the MA are sufficient to overcome inhibition by the VLPO.

III. THEORETICAL ANALYSIS

In this section we first simplify the model to a dimensionless
form in Sec. III A, then deduce the normal form of dynamics at
this critical point in Sec. III B. After that, the power spectrum
of fluctuations is calculated in Sec. III C. The scalings of
the fluctuation variance and spectral width are quantitively
predicted in Sec. III D.

A. Dimensionless form and the critical point

To simplify the dynamics of the Phillips-Robinson
model [5], it is convenient to rescale the variables Vm and Vv ,
and the model parameters, to be dimensionless by introducing
new variables defined by

u1 = Vm − A

σ ′ , (4)

θ1 = θ − A

σ ′ , (5)

Q1 = νvmQmax

σ ′ , (6)

u2 = Vv − D

σ ′ , (7)

θ2 = θ − D

σ ′ , (8)

Q2 = νmvQmax

σ ′ . (9)

After these rescalings, Eqs (2) and (3) become

τmu̇1 + u1 = S2(u2), (10)

τvu̇2 + u2 = S1(u1), (11)

where Sj is a sigmoid function

Sj (uj ) = Qj

1 + exp(θj − uj )
, (12)

with j = 1,2.
For all steady states, u̇2 = 0, whence u2 = S1(u1), which

can be inserted into Eq. (10). Then we get

τmu̇1 + u1 = S2[S1(u1)]. (13)

Likewise we have u̇1 = 0 and u1 = S2[S1(u1)]. At the critical
states, ∂u̇1/∂u1 = 0, which combined with u̇1 = 0 can give us
the critical sleep drive Dc = 2.463465 mV for the transition
from wake to sleep. We retain a large number of significant
figures in our estimate of Dc because we need to compute
scalings versus very small departures from this point.

B. Normal form near the critical point of saddle-node
bifurcation

In the approach to a critical transition, the dynamical
system moves toward a bifurcation at which the dominant real
eigenvalue approaches zero. For small deviations from the
critical point, a normal form suffices to describe the dynamics
around the critical point, with our system being approximated
by a mechanical model following Ref. [44].

Around the critical point, the normal form of dynamics is
deduced by separating dissipative forces from conservative
forces. In this way, Eqs (10) and (11) are reduced to the
equation of motion of a particle in a potential well with
dissipation, with

τmτvü1 = −τvu̇1 + dS2(u2)

du2
τvu̇2, (14)

= −τvu̇1 + (τmu̇1 + u1)

(
1 − τmu̇1 + u1

Q2

)

×
[
S1(u1) + log

(
Q2

τmu̇1 + u1
− 1

)
− θ2

]
(15)

= Fd (u̇1) + Fc(u1), (16)

where Fd (u̇1) and Fc(u1) are the dissipative and conservative
forces, respectively.

The form of (15) and its decomposition in (16) can
be simplified by making some approximations, as follows:
(1) The dissipative force in this system can be shown to
be approximately frictional. Taking the partial derivative of
Eq. (16) with respect to u̇1 yields [44]

τmτv

∂ü1

∂u̇1
= −(τm + τv) + τmτvu̇2

[
1 − 2S2(u2)

Q2

]
(17)

≈ −(τm + τv), (18)

with 0 < S2(u2)/Q2 � 1. Figure 3 shows one instance
before the wake-sleep transition [49], where we find
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FIG. 3. Time series of the rate V̇v (blue) and Vm (red) in the
wake-sleep transition. The critical value of Vm (dashed black line) can
be derived in Sec. III A and indicated by the square point shown in
Fig. 2. The critical time for transition from wake to sleep is indicated
by the dashed green line. The dynamics of sleep drive D is given in
Ref. [49].
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V̇v < 3 × 10−3 mV s−1 and then |u̇2| = |V̇v/σ
′| < 10−3 s−1.

Thus

τmτvu̇2 < 0.1 s � 20 s = τm + τv (19)

yields the approximation in Eq. (18). This implies that the
dissipative force can be approximated as

Fd (u̇1) ≈ −(τm + τv)u̇1. (20)

(2) By setting u̇1 = 0 in Eq. (16), the conservative force
can be written as

Fc(u1) = u1

(
1 − u1

Q2

)[
S1(u1) + log

(
Q2

u1
− 1

)
− θ2

]

(21)

≈ u1

[
S1(u1) − log

(
u1

Q2

)
− θ2

]
, (22)

where the approximation is valid for 0 < u1/Q2 � 1, because
−1 < u1 < 0 and Q2 ≈ −60. With this approximation, the
critical point for the transition from wake to sleep occurs at
uc

1 = −0.4270, which is the common solution of Fc(uc
1) = 0

and F ′
c(uc

1) = 0 at the critical sleep drive. The corresponding
potential of this conservative force can be written as

U (u1) = −
∫ u1

uc
1

u

[
S1(u) − log

(
u

Q2

)
− θ2

]
du. (23)

Similarly, by setting x = u1 − uc
1, Taylor expansion to second

order yields

Fc(u1) ≈ −a2
(
uc

1

)
x2 + a1

(
uc

1

)
x + a0

(
uc

1

)
, (24)

where the values of these coefficients evaluated at uc
1 are given

as follows:

a0
(
uc

1

) = uc
1(D − Dc)/σ ′, (25)

a1
(
uc

1

) = (D − Dc)/σ ′, (26)

a2
(
uc

1

) = 1/
(
2uc

1

) − uc
1S

′′
1

(
uc

1

)
/2 − S ′

1

(
uc

1

)
, (27)

S ′
1

(
uc

1

) = dS1

du1

∣∣∣
u1=uc

1

, (28)

S ′′
1

(
uc

1

) = d2S1

du2
1

∣∣∣
u1=uc

1

. (29)

We see that a0(uc
1) and a1(uc

1) depend linearly on the drive D,
whereas a2(uc

1) is independent of D.
Actually, when D is near Dc, x is also close to 0. Hence,

the drive-dependent linear term a1(uc
1)x in Eq. (24) does not

significantly change the dynamics, because of its higher-order
infinitesimal dependence on D − Dc relative to the term
a0(uc

1). Thus, around this critical point, it can be omitted and
the normal form can be further approximated as

mẍ = −a2
(
uc

1

)
x2 + a0

(
uc

1

) − κẋ, (30)

where m = τmτv is the effective mass of the particle and κ =
τm + τv is the effective coefficient of friction. Therefore, the
wake-sleep system is now converted to a mechanical system
of a particle subject to a conservative force and a frictional
force −κẋ. The potential function for this conservative force
can be written as

U (x) = ax3 − bx, (31)
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FIG. 4. Variation of the approximate cubic potential U (x) (solid
curves) with control parameter b, with the circle in each frame
representing the system state. The full potential function of the
conservative force Fc(u1) from Eq. (23) is shown with broken curves.
(a) b > 0, D < Dc: the system is in stable equilibrium corresponding
to the wake state (x > 0). (b) Same as (a), but D closer to Dc:
the potential well is shallow, but the wake state is still stable.
(c) b = 0, D = Dc, the critical transition accompanies loss of
stability. (d) b < 0, D > Dc: the system is in a stable sleep state
(x < 0).

where a = a2(uc
1)/3 > 0 and b = a0(uc

1) are the parameters
that determine the shape of the potential function. Hence,

mẍ = −∂U

∂x
− κẋ (32)

= −3ax2 + b − κẋ, (33)

where b acts as a control parameter, linearly related to the sleep
drive D, with

b = b0(Dc − D), (34)

and b0 = −uc
1/σ

′.
If b > 0, Fig. 4 shows that the system lies at the stable

wake equilibrium at x > 0. When it reaches the critical point
b = 0 (i.e., D = Dc), the stable and unstable equilibriums
coincide and the system is able to pass through x = 0, marking
the onset of the critical transition. After that, if b becomes
negative, the system moves to a stable sleep state at x < 0. A
full description of the stable sleep state requires use of the full
potential function of the conservative force Fc(u1) in Eq. (23),
which is also shown in Fig. 4. The cubic potential in the above
normal form suffices to describe the fluctuating responses,
as b → 0, where the steady state is well separated from the
sleep state. As b decreases towards 0, the stable potential well
flattens, as shown in Fig. 4(c). This implies that, analogous to
the simple harmonic oscillator, the restoring force weakens,
thereby resulting in higher fluctuation amplitudes and lower
characteristic frequencies.
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C. Power spectrum

If the particle is driven by a normalized random force,
the response of Eq. (33) can be Fourier transformed to obtain
the power spectrum of the response fluctuations, as detailed in
the Appendix. The result is

P (ω) = 1

m2
(
ω1

2 − ω2
)2 + ω2κ2

, (35)

where

ω1 = α(Dc − D)1/4 (36)

is the characteristic frequency of harmonic motion in the
potential well with α = (12ab0)1/4/

√
m, dependent only on

the parameters of the potential and the effective mass of the
dynamical system.

The denominator of power spectrum in Eq. (35) can be
expressed as

f (ω) = m2
(
ω1

2 − ω2
)2 + ω2κ2 (37)

= m2

[
ω2 −

(
ω1

2 − κ2

2m2

)]2

+ ω1
2κ2 − κ4

4m2
, (38)

which indicates that if ω1
2 − κ2/(2m2) > 0, there is a minimal

value of f (ω) and hence a resonance at the frequency

ωr =
√

ω1
2 − κ2/(2m2). (39)

However, from Eq. (36), ω1 can be arbitrarily small if D

is close enough to Dc, so no resonance appears when the
system is sufficiently close to the critical point. Actually, in
our simulation in Sec. IV A, we choose log10(Dc − D) � −2
and κ/m = 0.2 s−1, so

ω1 � (10−2)1/4α = 0.0252 s−1 � κ/m, (40)

which implies that the dissipation is large enough to prevent
any resonance when the steady state is close enough to the
critical one, as in the cases we consider.

Therefore, as shown in Fig. 5(a), we can divide the spectrum
into the following three regimes:

(1) A plateau for ω � ω1. In this regime, the theoretical
power spectrum in Eq. (35) can be simplified to

P (ω) ≈ 1

m2ω1
4

∼ (Dc − D)−1, (41)

which is independent of ω. Equation (41) also indicates that
the power at low frequency increases as the sleep drive D

approaches the critical point Dc.
(2) If ω � ω1 is not satisfied, but ω is close to ω1, that is

|ω − ω1| � κ/m, then we get a shallow power-law regime. In
this regime, the first term in the denominator of Eq. (35) can
be neglected, yielding

P (ω) ≈ 1

κ2ω2
∼ ω−2, (42)

which is shown as the black dashed line in Fig. 5. Notice
that such scaling behavior can also be indicated by the
asymptotic trend of points (ω1/2π , P (ω1)) for various values
of log10(Dc − D), marked by × symbols in Fig. 5(a). This is
because, from Eq. (35), the power at ω = ω1 can be calculated
to be P (ω1) = 1/(κ2ω1

2).
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P (ω) = 1/(κ2ω2)

P (ω) = 1/(m2ω4)

FIG. 5. Log-log plots of power spectrum for various values of
log10(Dc − D). (a) Theoretical power spectra from Eq. (35). For each
curve, the point [ω1/2π , P (ω1)] is marked by a × symbol in the same
color as the corresponding curve. The red vertical line represents
ω = κ/m. The black and blue dashed lines are power-law scalings of
the form ω−2 and ω−4, respectively. Parameters are m = 100 s2, κ =
20 s, and α = 0.0796 mV−1/4 s−1. (b) Power spectra from numerical
simulations, driven by external white noise with small amplitude c =
10−4 mV, which is input to the VLPO voltage Vv . They are smoothed
by local averaging over frequency for clarity. The particle is driven
by a random force with amplitude N = −uc

1c/σ
′ ≈ 1.42 × 10−5. The

maximal frequency included in the simulations is given by 1/�t with
the simulation time step �t = 12 s.

(3) A steep power-law regime for ω � κ/m � ω1. In this
regime, P (ω) ≈ 1/(m2ω4), and thus the rapid drop of the
power at high frequency ultimately steepens to a scaling of
ω−4. Such asymptotic behavior is also shown as the blue
dashed line in Fig. 5(a).

D. Theoretical scalings

We now calculate the scalings of the fluctuation variance
and spectral width versus Dc − D.

The variance can be calculated by integrating the power
spectrum over all frequencies:

σ 2 =
∫ ∞

0
P (ω) dω = π

2mκω1
2
. (43)

This integral is evaluated in the Appendix, giving

σ 2 ∼ (Dc − D)β, (44)
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with β = −1/2. Alternatively, this scaling behavior can be
understood by a heuristic derivation without friction (κ = 0),
which is also given in the Appendix.

Following Ref. [40], the spectral width w can be defined to
be the angular frequency below which a given fraction of the
total fluctuation power resides. Here we choose this fraction
to be 0.75, as in Ref. [40], so w is the solution of

0.75σ 2 =
∫ w

0
P (ω) dω. (45)

The scaling of w versus Dc − D can be estimated based on
the shape of power spectrum. Since the power is dominated
by the low frequency, such as ω � ω1, the integral in Eq. (45)
can be approximated by

0.75σ 2 ≈ wP (0), (46)

which from Eq. (41) leads to the scaling

w ∼ ω1
4σ 2 ∼ (Dc − D)γ , (47)

with γ = 1/2.

IV. COMPARISON OF SIMULATION RESULTS WITH
THEORETICAL PREDICTIONS

In this section we use numerical methods to simulate
Eqs. (1)–(3) to compare with the theoretical results. The
comparison of theoretical power spectrum with the simulated
one is presented in Sec. IV A, and the scalings are discussed
in Sec. IV B.

A. Simulated power spectrum

In this work, the combined cholinergic and orexinergic
drive A (see Fig. 1) is held constant. The transition from
wake to sleep is then approached by increasing the sleep drive
D toward its critical level Dc in small steps. At each step
the system has a particular fixed sleep drive value D, which
produces a statistically stable MA voltage signal. To restrict
the system around the wake state, each initial value is set as
the previous final one. Any residual transient effects are then
removed by disregarding the first part of each time series.
Here each run has 12-s time steps and continues for more than
1000 h with the first 500 h removed, and we do two runs for
each D. The data from these two runs are uniformly split into
a total 50 time series, each of which is Fourier transformed
to obtain the power spectrum, and then averaged to give the
mean power spectrum plotted in Fig. 5(b). In our simulations,
log10(Dc − D) varies between −2 and −5 in steps of 0.1.

In each run, an independent white noise signal is added
to the VLPO voltage Vv , with the noise amplitude kept small
enough that it comes nowhere near inducing a state transition.
Specifically, the noise amplitude is set as c = 10−4 mV, in
contrast with the minimal distance from the transition

�Vv ≈ σ ′S ′
1

(
uc

1

)
�u1 ≈ 1.97 × 10−2 mV, (48)

which corresponds to the minimal width of the potential well

�u1 = 2
√

b/(3a) ≈ 2.8 × 10−3, (49)

at Dc − D = 10−5. Therefore, the system driven by this small
noise will stay at the wake state.

With the noise input to Vv , u2(t) is replaced by u2(t) +
c/σ ′ξ (t) in Eqs. (2) and (3), where ξ (t) is the normalized
white noise. In the low-frequency regime, this is equivalent to
the particle being perturbed by a random force Nξ (t) with its
amplitude

N = −uc
1c/σ

′ ≈ 1.42 × 10−5, (50)

and the dynamics of the particle can be given as

mẍ(t) + κẋ(t) + ∂U

∂x
= Nξ (t). (51)

From Fig. 5(b), we can find that for each value of log10(Dc −
D), the simulated power spectrum consists of a plateau at low
frequency and the regime of power-law scaling

P (ω) = N2

κ2ω2
. (52)

Therefore, in the low-frequency regime, our simulated power
spectrum agree well with the theoretical prediction as shown
in Fig. 5(a).

However, as shown in Fig. 5(b), the simulated power shows
a slight turnup in the high-frequency regime ω > κ/m, instead
of the rapid drop in the predicted power spectrum in Fig. 5(a).
This difference may be due to the large simulation time step
�t = 12 s, which limits the simulated frequency to be less
than 1/�t ≈ 0.08 Hz and is also the coherent time scale of the
input noise. The increased coherence may enhance the power
of this frequency regime close to 1/�t .

Nonetheless, their difference has little effect on the scalings
of variance and spectral width as the sleep drive D approaches
the critical point Dc, as presented below. The reason is that
both of them are dominated by low-frequency components
with high power.

B. Scalings

Similarly to Ref. [40], our scaling analyses of variance and
critical slowing down are based on the power spectrum, where
the height of plateau increases but its width decreases as the
sleep drive D → Dc, as shown in Fig. 5. This indicates that
the noise-induced fluctuations grow in amplitude and decay in
frequency.

The numerical variance and spectral width are plotted
against Dc − D in Fig. 6. Both show the following power-law
scalings

σ 2 ∼ (Dc − D)β, (53)

w ∼ (Dc − D)γ . (54)

We estimate the scaling exponents by weighted linear least-
squares fitting on a log-log scale. Because the theoretical
exponents only apply rigorously in the limit D → Dc, we
examine fits using a sliding window that includes half the
total 32 points investigated, which were equally spaced
logarithmically between Dc − D = 10−5 and 10−2. The fit is
done first over the points nearest to 10−2, and then the window
is moved toward smaller Dc − D, progressively discarding the
points further from Dc and including the ones closer. Weighted
linear fitting is performed with a weight W = WeWk , where We

is an error-based weight, inversely proportional to the square
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FIG. 6. Log-log plots of variance and spectral width against the
distance Dc − D, with error bars calculated as the standard deviation
of the measurements over 50 runs. The line is the best weighted linear
fitting on the log-log scale. (a) Variance vs Dc − D. (b) Spectral width
vs Dc − D.

of the error ε as We = 1/ε2, while Wk is a linearly skewed
weight function with a relative slope of k within the sliding
window to enable points nearer Dc to be further emphasized
by choosing larger k. Specifically, for each point (X,Y ), the
skewed weight Wk assigned to Y is expressed as

Wk = 1 − k
X − Xmid

Xmax − Xmid
, (55)

where Xmin, Xmax, and Xmid are the smallest, largest, and
middle values of log10(Dc − D) in the sliding window.
Additionally, k is restricted to the range from 0 to 1, to
ensure no negative weights, thereby yielding a uniform weight
function at k = 0 and a triangular profile at k = 1.

As shown in Fig. 7, both exponents are close to their
theoretical predictions of β = −1/2 and γ = 1/2 in Sec. III D,
especially when the sliding window is close to Dc and the
weights are skewed toward Dc. Our best numerical estimates
are β = 0.510 ± 0.006 and γ = 0.501 ± 0.005, and their
agreement with theory is likely to improve further at lower
Dc − D.

V. SUMMARY AND DISCUSSION

We have derived nondimensional and normal forms of
the dynamics of the ascending arousal system that governs
the sleep-wake cycle in a way that retains the explicit links
between the coefficients of the normal form and the underlying
physiology. This has been used to explore the dynamics and
scaling properties of the system in the presence of noise
near the saddle-node bifurcation that marks the transition

-5 -4.5 -4 -3.5

β

-0.56

-0.54

-0.52

-0.5(a)

(b)

k = 0
k = 1

min[log10(Dc − D)] of sliding windows
-5 -4.5 -4 -3.5

γ

0.48

0.49

0.5

0.51

k = 0
k = 1

FIG. 7. Scaling exponents fitted on data points of moving win-
dows against their minimal values of log10(Dc − D). Error bars are
given by bounds of 95% confidence interval in the weighted linear
fitting in Fig. 6. (a) variance; (b) spectral width.

from wake to sleep, using both theoretical and numerical
approaches. The main results are the following:

(1) A dimensionless normal form was derived that expresses
the dynamics in terms of motion of a particle in a frictional
quadratic potential, thereby placing earlier results in a tractable
form for further analysis.

(2) The power spectrum for the noise-driven system was
derived, showing a low-frequency plateau that narrows toward
zero width as the system approaches the critical point Dc of the
sleep drive D for the wake-sleep transition. This is followed by
an ω−2 regime that steepens to ω−4 when friction dominates
at high frequencies.

(3) Scalings of the variance and spectral width of the noise-
driven fluctuations were derived. The variance was predicted
to scale as (Dc − D)−1/2, consistent with large critical-point
fluctuations. The spectral width was predicted to scale as (Dc −
D)1/2, due to critical slowing down. Numerical simulations
yielded best-estimate exponents very close to the theoretical
predictions, especially when based on simulations nearest to
Dc.

We have focused on the analysis near the critical point to
investigate the potential precursors. The present work is thus
not concern with other multiscale phenomena, such as transient
oscillations and waves, which are sometimes detected by
fitting nonphysiological linear autoregressive (AR) statistical
models with time-dependent parameters [50], or by analyzing
cross-modulation of amplitudes and frequencies in ranges
relevant to electroencephalography, for example [51]. The two
key phenomena associated with critical transitions, increased
variability and critical slowing down, can also be detected
by a variety of statistical and data analysis methods [41],
but we stress that our approach is founded firmly in the
underlying physiology in the present case. In other works
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the autocorrelation (AC) function and detrended fluctuation
analysis (DFA) have also been applied to critical points in
climate tipping with some success [35,39]. Interestingly, the
scaling properties using AC function and DFA can actually
be interpreted via spectral analysis, using a weighted integral
over the power spectrum [52], so they are not independent
measures.

Overall, it is expected that critical fluctuations and their
slowing will provide useful precursors to the wake-sleep
transition for use in practical situations such as transport and
safety-related occupations where warning of imminent loss
of alertness is of great importance. Here and more generally,
it will be necessary to extend our analysis and simulations
to incorporate the effects of variation of D over time, and
of non-negligible variance of input noise. The former effect
requires us to relax the quasisteady assumption, which will
limit how clearly different time scales can be separated.
The latter effect may lead to phenomena such as flickering
between bistable states and early or delayed onset of critical
transitions [41,53,54] and may play a role in narcolepsy and
microsleeps [47]. Future work will thus involve incorporating
rates of change and noise parameters from experiment.

This novel application of bifurcation theory to the field
of neuroscience provides insight into the underlying mech-
anism of wake-sleep transition and validates the use of
similar methods to investigate potential precursors to other
catastrophic bifurcations, e.g., sleep-wake transition, with the
hope of predicting the transition itself, as well as gaining an
understanding of pretransition phenomena. More generally,
such a switch with all-or-none bistability is prevalent in a
host of systems; some biological ones include cell cycle
progression [55], cellular differentiation [56], apoptosis [57],
Xenopus oocyte maturation [58], mammalian calcium signal
transduction [59], and polarity in budding yeast [60].
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APPENDIX: VARIANCE SCALING

In this appendix, the variance scaling is derived in two ways:
a heuristic derivation with no friction and a detailed derivation
based on the power spectrum.

1. Variance scaling with no friction

For a heuristic derivation of variance scaling, set κ = 0
in Eq. (33). By linearizing around the potential minimum at
x0 = √

b/3a and setting y = x − x0, Eq. (33) becomes

d2y

dt2
= −ω1

2y, (A1)

with ω1 =
√

(12ab)1/2/m, representing simple harmonic mo-
tion at an angular frequency ω1, when b > 0. Thus we obtain

ω1 = α(Dc − D)1/4, (A2)

with α =
√

(12ab0)1/2/m dependent only on constants that
define the underlying potential and the effective mass of the
dynamical system. Thus ω1 ∼ (Dc − D)1/4 indicates critical
slowing down as D → Dc.

Now, if the energy of the particle is an amount �U above
the bottom of the well, we note that

�U ≈ d2U (x)

dx2
M2 = −(12ab)1/2M2, (A3)

where M is the amplitude of oscillation and the derivative is
evaluated at x0. Hence, if the energy is constant, we find

M2 ∼ (Dc − D)−1/2, (A4)

and this is the scaling of any quantity that has the dimension
of a positional variance.

2. Theoretical spectrum and scaling

Taking κ 
= 0 in Eq. (33), in a similar way to the last section,
we find

m
d2y

dt2
+ κ

dy

dt
+ mω1

2y = ξ (t), (A5)

where we have added white noise ξ (t) on the right side.
By Fourier transforming Eq. (A5), we obtain

(−mω2 − iωκ + mω1
2
)
y(ω) = 1. (A6)

Rearranging Eq. (A6) and squaring its modulus yields the total

FIG. 8. Sketch of contour integrations used to evaluate (A9). The
integration extends around the blue contour in the direction indicated
and is evaluated via the residues at poles of P (ω) that it encircles (red
circles). When evaluating the integral, the limit is taken in which the
semicircular part of the contour becomes infinite in radius. (a) Case
with two poles on the imaginary axis. (b) Case with two poles with
equal and opposite nonzero real parts.
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power in system fluctuations in response to white noise drive
with unit amplitude:

P (ω) = |y(ω)|2 = 1

m2
(
ω1

2 − ω2
)2 + ω2κ2

, (A7)

where the normalized noise was used. Parseval’s theorem
implies that the fluctuation variance is proportional to P .

The total power in system fluctuations is obtained by
integrating Eq. (A7) over ω as follows:

P =
∫ ∞

0
P (ω) dω, (A8)

= 1

2

∫ ∞

−∞

dω

m2
(
ω1

2 − ω2
)2 + ω2κ2

, (A9)

which can be easily evaluated by contour integration. The poles
of the integrand lie at

ω∗
1,2 =

(
−iκ ±

√
−κ2 + 4m2ω1

2
)
/2m, (A10)

ω∗
3,4 =

(
iκ ±

√
−κ2 + 4m2ω1

2
)
/2m. (A11)

We perform the contour integration along the upper half of
the circle centered at the origin, with the semicircular segment
taken to infinity, as shown in Fig. 8. Hence we are interested in
the poles ω∗

3,4 in the upper half plane. For κ2 > 4m2ω1
2, these

two poles occur on the imaginary axis as shown in Fig. 8(a); in
the opposite case, as shown in Fig. 8(b), ω∗

3,4 = −iκ/2m ± r

where r is real.
The contour integral is calculated by evaluating the residues

at the poles. This yields

P = π

2κmω1
2

(A12)

for all values of κ2. This result has the same scaling as heuristic
one in Eq. (A4).
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[8] T. Åkerstedt and M. Gillberg, Subjective and objective
sleepiness in the active individual, Int. J. Neurosci. 52, 29
(1990).

[9] W. C. Dement and M. M. Mitler, It’s time to wake up to the
importance of sleep disorders, JAMA 269, 1548 (1993).

[10] J. A. Horne and L. A. Reyner, Sleep related vehicle accidents,
BMJ 310, 565 (1995).

[11] M. Johns and B. Hocking, Daytime sleepiness and sleep habits
of australian workers, SLEEP-NEW YORK 20, 844 (1997).

[12] J. M. Lyznicki, T. C. Doege, R. M. Davis, and M. A. Williams,
Sleepiness, driving, and motor vehicle crashes, JAMA 279, 1908
(1998).

[13] P. Achermann, D.-J. Dijk, D. P. Brunner, and A. A. Borbély,
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