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We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Activity Driven
(NoPAD) model [Moinet et al., Phys. Rev. Lett. 114, 108701 (2015)], a temporal network model incorporating
the empirically observed bursty nature of social interactions. We focus on the aging effects emerging from the
non-Poissonian dynamics of link activation, and on their effects on the topological properties of time-integrated
networks, such as the degree distribution. Analytic expressions for the degree distribution of integrated networks
as a function of time are derived, exploring both limits of vanishing and strong aging. We also address the
percolation process occurring on these temporal networks, by computing the threshold for the emergence of a
giant connected component, highlighting the aging dependence. Our analytic predictions are checked by means
of extensive numerical simulations of the NoPAD model.
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I. INTRODUCTION

The network science approach to complexity has been
traditionally based in a static view of complex systems
[1,2]. The increasing availability of time-resolved data on
different kind of interactions has unveiled an additional level
of complexity in networked systems, consisting in topological
patterns of connections that evolve with time [3–5]. This
transformation has been particularly relevant in the field of
social sciences [6,7], since social interactions are intrinsically
dynamic, being constantly created and terminated at different
time scales. Moreover, digital traces of human dynamics are
nowadays ubiquitous, from mobile phone communications [8]
to face-to-face social interactions [9], providing inestimable
longitudinal data, including timing of social interactions, at a
scale unprecedented in other kinds of systems. The emerging
field of temporal networks [3,4], developed to yield the
theoretical grounding needed to represent and analyze the
properties of such time-varying complex systems, is thus
influenced by a bias towards social dynamics.

From the study of large scale data, a wealth of rich patterns
and characteristic properties have been uncovered in human
dynamics. One of the most striking features observed is prob-
ably the bursty nature of social interactions [10], revealed by
the observation of interevent times τ between two consecutive
interactions of the same individual following heavy-tailed
distributions that can be approximated as power laws of the
form ψ(τ ) ∼ τ−(1+α), with 0 < α < 2 in general, at strong
odds with previously assumed Poissonian behavior. Such
bursty behavior has been observed in many instances of social
interactions [9,11,12] as well as in phenomena belonging
to other fields, such as earthquakes [13], neuronal activity
[14], mRNA synthesis in cells [15], etc. (see Ref. [4] for an
extensive reference list). Moreover, it has been recognized
that the bursty nature of temporal networks can have a deep
impact on dynamical processes running on top of such time-
varying systems [16–22]. These observations claim for a better
theoretical understanding of the dynamics of such temporal
networks, and in particular for the design of simplified,
descriptive, or generative temporal network models.

Several models of temporal networks have been put forward
in the literature [23–27], focused on different possible mecha-
nisms to explain the empirically observed properties. Among
those, it is noteworthy the recently proposed non-Poissoinan
activity-driven (NoPAD) model [28]. The NoPAD model
aims to be a generative model, akin to the configuration
model for static networks [29]. It is defined in terms of
agents that follow independent renewal processes [30], starting
social connections separated by intervals of time τ distributed
according to some prescribed waiting time distribution ψ(t),
establishing connections to randomly chosen other agents.
The model thus captures the most basic feature of social
temporal networks, namely a non-Poissonian interevent time
distribution, which can be adjusted by imposing long-tailed
waiting time distributions ψ(t), in a simple, mathematically
tractable framework, the one of renewal theory [30].

In this paper we present a detailed mathematical analysis
of the NoPAD model, focusing on the properties of the static
networks that can be constructed integrating the contacts
in the temporal dynamics. Indeed, within the mathematical
framework of a temporal network, a static representation can
be recovered by integrating a time-varying graph in a time
interval [ta,ta + t], spanning a width t , and starting after a
time ta from the inception of the network. The study of this
integrated network is relevant, since traditional static social
networks [6] are constructed in this way, and it is important
to know how the features of the temporal dynamics affects
the topological properties of its integrated counterpart. The
inclusion of non-Poissoinian dynamics in the process of links
addition, given by the waiting time ψ(t) with a nonexponential
form, has a deep impact on the topology of the resulting
time-aggregated network. A relevant signature of this effect
is the aging behavior [31,32] of its topological properties,
which depends not only on the width of the integration time
t [33], but also on the aging time ta at which the integration
starts. The NoPAD model can thus be viewed as a null model,
able to single out aging exclusively due to the burstiness of
links activation, different from aging of different nature that
might be present in real social networks, such as physical
aging [34,35].
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The paper is structured as follows: In Sec. II we define
the NoPAD model as a natural extension of the previously
proposed activity-driven model [36]. Section III sets up the
mapping of the NoPAD model to a hidden variables network
[37], which will allow for the calculation of the topological
properties of the integrated network. Section IV is devoted to
the general calculation of the integrated degree distribution.
The case of waiting time distributions with a power-law form
in the absence of aging, i.e., with ta = 0, is described in
Sec. V; the more interesting case of aging effects is analyzed in
Sec. VI. The percolation properties of the integrated network
are discussed in Sec. VII, where we study the time Tp at which
a giant component in the integrated network emerges, spanning
a finite fraction of the network. Finally, Sec. VIII concludes
the paper, discussing the results presented and drawing future
perspectives.

II. THE NON-POISSONIAN ACTIVITY-DRIVEN MODEL

The activity-driven (AD) model [36] is built upon the
empirical observation that individuals are characterized by
different levels of social activity, i.e., they have different levels
of propensity to become engaged in social interactions. Social
activity, which can be defined as the probability per unit time a

that an individual becomes active and starts a social interaction,
has been empirically measured in a variety of social temporal
networks and shown to exhibit a heterogeneous, heavy-tailed
distribution [36]. To take into account this heterogeneity, in
the AD model [36,38] each node i, representing an agent,
is endowed with a constant activity ai , representing the
probability that at each time step he or she will establish a link,
of infinitesimally short duration, with another agent, chosen
uniformly at random. It is possible to show [36,38] that the
degree distribution Pt (k) of the resulting network integrated up
to time t is functionally related to the probability distribution
F (a) from which the activities ai are drawn. Therefore, if
fed with the empirically observed F (a), the time-integrated
AD networks show some of the topological properties of real
social networks, and in particular its characteristic heavy-tailed
degree distribution [38]. The AD model has proved to be very
flexible, allowing one to incorporate many typical features
of human dynamics, such as memory effects [39], and it is
analytically suitable to study dynamical processes on time-
varying networks, such as epidemic spreading [40], random
walks [21,41], or percolation [42].

However, it is easy to see that for sufficiently large N ,
in the continuous time limit, a constant activity ai leads
to an interevent time distribution for node i with the form
ψi(τ ) = aie

−aiτ [41], following an exponential form. Thus the
AD model fails to reproduce the main feature observed in
real temporal networks, namely a long-tailed interevent time
distribution between social contacts. One way to overcome
this drawback is to allow for each node i a time-dependent
activity ai(τ ), where τ is the time elapsed since the last
activation of node i. With this assumption, one can define a
generalized model in which each individual i becomes active
by following a renewal process [30], defined by a waiting
time distribution between successive activation events given
by ψi(τ ) = ai(τ ) exp{− ∫ τ

0 ai(t) dt} [30]. For the standard
AD model, with ai constant, we have ψAD

i (τ ) = aie
−aiτ ,

that is, agents follow a simple Poisson process [43]. Any
function ai(τ ) leads thus to the consideration of a generalized
non-Poissonan activity-driven (NoPAD) model [28]. Shifting
away from the instantaneous activity ai(τ ), the NoPAD model
can be defined in terms of a set of agents that become active
by following a renewal process with waiting time distribution
ψi(τ ), giving the probability of observing a time τ between
two activation events of agent i. For the sake of simplicity,
we assume here the same functional form of ψi for all
agents, ψi(τ ) ≡ ψci

(τ ), where the parameter c gauges the
heterogeneity of the activation rate of the agents, and it is
randomly drawn from a distribution η(c).

Here we are interested in reconstructing the integrated
network obtained by aggregating interactions occurring within
the time interval [ta,ta + t]. In order to build such networks in
the nonaged case, ta = 0, we proceed as follows:

(1) We start with a set of N disconnected nodes.
(2) For each agent i, we extract ri + 1 waiting times

τk , with k = 1,2, . . . ,ri + 1 from the probability distribution
ψci

(τ ), and define the activation times Tj = ∑j

k=1 τk , such that
Tri+1 > t and Tri

< t . In this way, individual i has been active
ri times within the interval [0,t].

(3) Each time an agent i is active, an individual j �= i is
chosen uniformly at random and an edge is created between i

and j . In the case of a preexisting link, no additional edge is
created (a weight increment may possibly be considered).

In order to construct the aged network, i.e., aggregated over
the time interval [ta,ta + t], we apply the generating process
between 0 and ta + t and discard all the events occurring
before ta .

III. MAPPING TO THE HIDDEN VARIABLE FORMALISM

The topological properties of the integrated networks
generated by the NoPAD model can be worked out by
applying a mapping to the class of network models with
hidden variables, proposed in Ref. [37] (see also Refs. [44,45]).
Hidden variables network models are defined as follows:
starting from a set of N initially disconnected nodes, each
node i has assigned a variable �hi , drawn at random from a
probability distribution ρ(�h). Each pair of nodes i and j , with
hidden variables �hi and �hj , are connected with an undirected
edge with probability �(�hi,�hj ) (the connection probability).
The model is fully defined by the functions ρ(�h) and �(�h,�h′),
and all the topological properties of the resulting network can
be derived through the propagator g(k|�h) [37], defined as the
conditional probability that a vertex with hidden variable �h
ends up connected to exactly k other vertices (has degree
k). From this propagator, expressions for the topological
properties of the model can be readily obtained [37].

We can apply the hidden variables formalism to the NoPAD
model defined in Sec. II by identifying the mapping to the cor-
responding hidden variables and connection probability. Let
us assume that all agents are disconnected and synchronized
at time t = 0, and let us consider an integration time window
[ta,ta + t]. From the definition of the model, the parameter that
determines the connectivity of a node i is the number of times
ri that it has become active in the considered time window
(its activation number). This number depends on its turn of
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the parameter ci characterizing the waiting time distribution
of node i. Therefore, we choose as hidden variables

�h → (r,c). (1)

It is worth noticing that these quantities are not independent,
and it is convenient to describe the variable r with its
conditional distribution χta,t (r|c), which can be computed
in terms of ψc(τ ) [32]. The hidden variable probability
distribution thus reads

ρ(�h) → ρta,t (r,c) ≡ η(c)χta,t (r|c). (2)

Finally, it is easy to see that the connection probability depends
only on the activation numbers ri ,

�(�h, �h′) → �(r,r ′), (3)

depending only implicitly on the integration window through
the distribution of the activation numbers χta,t (r|c). Simple
probabilistic arguments show that the probability that two
nodes with activation numbers r and r ′ become eventually
connected in the integrated network is �(r,r ′) = 1 − [1 −
N−1]r+r ′

[38]. Thus, in the limit N � r ,r ′, we have

�(r,r ′) 	 r + r ′

N
. (4)

Given the form of the connection probability, the cor-
responding propagator will be a function of the activation
number alone, g(k|r). To find its functional form, one notices
that a node with activation number r will have a degree k

equal to the sum of an in-degree and out-degree, k = kout + kin,
which accounts for the edges created by the activation of the
node, and by the activation of all other nodes, respectively. In
the limit N � r ,r ′, kout = r (each activation event leads to an
edge connecting to a different node), and thus the propagator
of the out-degree is a delta function centered at r , gout(k|r) =
δ(k − r). For the in-degree we can write kin = ∑

r ′ kin(r ′),
where kin(r ′) is the number of connections received from
other nodes with hidden variable r ′. By following Ref. [37] we
obtain that the generating function of the in-degree propagator,
ĝin(z|r) = ∑

k gin(k|r)zk , fulfills the equation

ln ĝin(z|r) = N
∑
r ′,c′

ρta,t (r
′,c′) ln[1 − (1 − z)π (r ′)], (5)

where π (r ′) = 1 − (1 − 1/N )r
′
is the probability that a given

node is reached at least once by a node with activation number
r ′. Therefore, for a sparse network, the in-degree propagator
reads [37]

gin(k|r) = e−〈r〉ta ,t
(〈r〉ta ,t )k

k!
, (6)

where we have defined the moments of the activation number
distribution 〈rn〉ta ,t = ∑

r,c rn η(c)χta,t (r|c) in the time win-
dow [ta,ta + t], which we shall from now on write as 〈rn〉 (or
〈rn〉0 when we explicit consider a nonaged process) for the
sake of legibility. Finally, we obtain the total propagator as the
convolution of the in-degree and the out-degree propagators,
having the form

g(k|r) =
{

e−〈r〉 〈r〉k−r

(k−r)! for k � r

0 otherwise
. (7)

In the limit 〈r〉 � 1, the previous exact expression can be
approximated by the simple shifted Poissonian form

g(k|r) = e−(r+〈r〉) (r + 〈r〉)k
k!

, (8)

which we will use in the rest of the paper to allow for
mathematical tractability.

IV. GENERAL FORM OF THE DEGREE DISTRIBUTION

The most relevant topological property of any static network
is its degree distribution P (k), defined as the probability
that a randomly chosen node has degree k [1]. The degree
distribution generated by the NoPAD model in an integration
window [ta,ta + t] can be expressed in terms of the propagator
g(k|r) as [37]

Pta,t (k) =
∑
c,r

ρta,t (r,c)g(k|r). (9)

The general asymptotic form of the degree distribution can
be obtained by performing a steepest descent approximation.
For 〈r〉 � 1, using the Poissonian propagator Eq. (8), and
considering r as a continuous variable, we can write Eq. (9) as

Pta,t (k) 	
∑

c

η(c)
∫

dr eφ(r)χta,t (r|c), (10)

where

φ(r) = −〈r〉 − r + k ln(r + 〈r〉) − ln(k!). (11)

This function has a maximum at rm = k − 〈r〉, and its second
derivative at this point is φ

′′
(rm) = − 1

k
. By expanding φ up to

second order, one can obtain

eφ(r) 	 e−(r−rm)2/2k

√
2πk

	 δ(r − rm), (12)

where we have used Stirling’s approximation and replaced
the ensuing Gaussian function by a Dirac delta function.
Therefore, the degree distribution reads

Pta,t (k) 	
∑

c

η(c) χta,t (rm|c), (13)

where we recall rm = k − 〈r〉.
If we consider the simple case of a Poissonian interevent

time distribution, ψ(τ ) = ce−cτ , as in the original AD model,
the activation number distribution is simply given by the
Poisson distribution [30],

χta,t (r|c) = e−ct (ct)r

r!
, (14)

with an average activation number 〈r〉 = 〈c〉t , which is
independent of the aging time ta due to the memoryless nature
of the Poisson process [30]. In a continuous c approximation,
defining χta,t (rm|c) = eϕ(c) with

ϕ(c) = −ct + rmln(ct) − ln(rm!), (15)

and applying once again a steepest descent approxima-
tion around the maximum at cm = rm

t
, with the condition
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|ϕ ′′
(cm)| = t2

rm
� 1, one finally obtains

Pt (k) 	 1

t
η

(
k

t
− 〈c〉

)
, (16)

recovering the asymptotic form of the integrated degree
distribution obtained in Ref. [38], the limits of its validity
being 〈c〉t � 1, and t2 � (k − 〈c〉t) � 1.

In the case of heavy-tailed waiting time distributions, we
expect to observe strong departures form the simple result in
Eq. (16). Let us focus in particular on the simple power law
form,

ψc(t) = α c′(c′ t + 1)−(α+1), (17)

where c′ = c (
1−α)
1
α , c being the parameter quantifying the

(possible) heterogeneity of waiting times in the population,
and where we have defined 
z ≡ 
(z), the gamma function.
We will explore in particular the case 0 < α < 1, for which
the first moment of the waiting time distribution diverges, and
aging effects are expected to be relevant [46]. We will work
out approximations at large time; however, since we used the
sparse network hypothesis to obtain Eq. (8), we shall check
afterwards that the condition 〈r〉

N

 1 remains fulfilled.

As we can see from Eq. (13), the degree distribution Pta,t (k)
depends mainly on the activation time distribution χta,t (r|c).
Expressions for this function in the case of a general waiting
distribution ψc(τ ) can be obtained in Laplace space. Thus,
defining the Laplace transforms

ψc(s) =
∫ ∞

0
dτ ψc(τ )e−τs,

χu,s(r|c) =
∫ ∞

0
dta

∫ ∞

0
dt χta,t (r|c)e−uta e−st ,

we have [46–48]

χu,s(r|c) =
{

(us)−1 − hc(u,s)s−1 r = 0

hc(u,s)ψc(s)r−1[1 − ψc(s)]s−1 r � 1
,

(18)
where

hc(u,s) = ψc(u) − ψc(s)

s − u

1

1 − ψc(u)
(19)

is the double Laplace transform of the forward waiting time
distribution hc(ta,t), defined as the distribution of the waiting
time measured forward from an arbitrary ta to the next
activation of an individual.

V. NONAGED NETWORKS

In the case of nonaged networks, it is easy to verify that
hc(ta = 0,t) = ψc(t), and Eq. (18) reduces thus to

χs(r|c) = ψc(s)r
1 − ψc(s)

s
, (20)

where the activation number distribution χt (r|c) depends now
only on the window length t . By virtue of a Tauberian theorem
[49], for s

c

 1 we can expand

ψc(s) 	 1 −
( s

c

)α

, (21)

and using Eq. (20), we deduce [46]

χt (r|c) 	 1

α r

c t

r1/α
L

(
c t

r1/α

)
, (22)

valid for ct � 1, and where L(z) is a one-sided Lévy
distribution with Laplace transform L(s) = e−sα

[32]. Using
the expansion at large r [47],

χt (r|c) 	 (c t)−α


1−α

exp

⎧⎪⎨⎪⎩−(1 − α)
[( α

ct

)α

r
] 1

1 − α

⎫⎪⎬⎪⎭,

and inserting it into Eq. (13), we arrive at

Pt (k) 	 (k − 〈r〉0)
1
α
−1


1−αt

∫
η

[
u

t
(k − 〈r〉0)

1
α

]
eξ (α,u)

uα
du, (23)

where we have considered c continuous, defined ξ (α,u) =
−(1 − α)(α/u)

α
1−α , and 〈r〉0 is the average activation number

with no aging, 〈r〉0 = ∑
c η(c)

∑
r rχt (r|c).

Expression Eq. (23) depends now only on the waiting time
heterogeneity distribution η(c). While the parameter c of an
agent is not directly accessible from empirical data, in Ref. [28]
it was argued that it is directly related to the average activity ā,
defined as the probability to become active in a time window
of a given length �t . Given the power law activity distribution
observed in real temporal networks [36], here we assume a
distribution

η(c) = β

c0

(
c

c0

)−(β+1)

, β > 0, c > c0. (24)

With this form of η(c), the average activation number with no
aging takes the form, for large t [47],

〈r〉0 	 β 
−1
1+α

(β − α)
(c0t)

α, (25)

and the integral in Eq. (23) has a lower bound at u0 = c0 t (k −
〈r〉0)−

1
α . Taking the limit k − 〈r〉0 � (c0t)α we finally obtain

the asymptotic result

Pt (k) ∼ (c0t)
β(k − 〈r〉0)−γ (26)

with γ = 1 + β

α
, an expression recovering the analytic result

obtained in Ref. [28], where it was numerically confirmed by
simulations of the NoPAD model.

The result Eq. (26) is noteworthy in two respects. First, it
relates two fundamental features found in real social networks,
a broad-tailed interevent time distribution, as represented by
the waiting time distribution ψ(τ ), and a scale-free degree
distribution Pt (k), whose exponent γ is simply related to
the parameters α, controlling ψ(τ ), and β, related to the
heterogeneity of the individuals’ social activity. Second, it
shows transparently that non-Markovian effects are related to
an exponent α < 1, associated with a diverging first moment
of the waiting time distribution. Indeed, in the limit α → 1,
Eq. (26) recovers the Poissonian results Eq. (16), which means
that even if the second moment of the waiting time distribution
is infinite (1 < α < 2), the structure of the integrated network
will not be significantly different (at dominant order in t) to
that of a Poissonian AD network.
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VI. AGING EFFECTS

In the case ta > 0, and working in the large t and ta limit,
the expression of the forward waiting time in Laplace space,
Eq. (19), takes, by using Eq. (21), the form

hc(u,s) = sα − uα

uα(s − u)
, (27)

while Eq. (18) becomes [46]

χta,t (r|c) = δ(r)[1 − mc(ta,t)] + hc(ta,t) ∗t χt (r|c), (28)

where mc(ta,t) = ∫ t

0 hc(ta,t ′) dt ′, the symbol ∗t means convo-
lution with respect to the variable t , and χt (r|c) = χta=0,t (r|c).
For ta > 0, we observe an increasing probability of counting
exactly r = 0 events during the time interval [ta,ta + t], with a
relative weight given by 1 − mc, which will have an important
impact in the shape of the degree distribution.

A. Slightly aged regime

We expect different aging effects according to the relative
importance of the aging time ta and the observation time
window t . For slightly aged networks, in which 1 
 ta 
 t ,
Eq. (27) reduces to

hc(u,s) 	 1

u
− sα

uα+1
, (29)

and Eq. (28) is expressed as [46]

χta,t (r|c) 	 δ(r)(ta/t)α


1+α
1−α

+ χt + (c ta)α


1+α

∂χt

∂r
, (30)

where we write χt ≡ χt (r|c) for brevity. Inserting this expres-
sion into Eq. (9) we obtain

Pta,t (k) =
∑

c

η(c)
∫ ∞

0

[
(c ta)α


1+α

∂χt

∂r
+ χt

]
g(k|r) dr

+P(k,〈r〉) (ta/t)α


1+α
1−α

, (31)

where P(k,〈r〉) is a Poisson distribution centered at 〈r〉.
Noticing that for 〈r〉 � 1, the Poissonian propagator in
Eq. (8) tends to a Gaussian distribution and is as such a
quasisymmetric function with respect to the axis k = r + 〈r〉,
we write g(k|r) 	 g(k − r − 〈r〉). Moreover, the dependence
of g on the aging time is fully included in the average activation
number 〈r〉 ≡ 〈r〉ta ,t ; thus we can use the following relation
between g0 = g0,t and g = gta,t :

g(k|r) 	 g(ka − r − 〈r〉0,t ) 	 g0(ka|r), (32)

where ka = k + 〈r〉0,t − 〈r〉ta ,t . Inserting this result in Eq. (31),
and integrating by parts, we obtain

P (k) 	 P0(ka) + tαa


1+α

∑
c

η(c)cα[P0(ka|c) − P0(ka − 1|c)],

where P0(k|c) = ∑
r χt (r|c)g0(k|r) is the nonaged degree

distribution for a constant activity c. This gives, for a
distribution η(c) with a power-law form given by Eq. (24),

P (k) 	 P0(ka) + β tαa

(β − α)
1+α

[P̃0(k̃a) − P̃0(k̃a − 1)], (33)

where we have defined P̃0(k) = ∑
c η̃(c)P0(k|c) as the

nonaged degree distribution with a modified activity distribu-
tion η̃ of parameter β̃ = β − α, and k̃a = k + 〈r〉(η̃)

0,t − 〈r〉ta ,t ,
where 〈r〉(η̃)

0,t = ∑
c η̃(c)

∑
r r χt (r|c). Thus, at large degree

and leading order in ta/t , the second term of the equation
is negligible and the aged degree distribution is simply equal
to the nonaged distribution P0 evaluated at k = ka ,

Pta,t (k) ∼ (c0t)
β(k − 〈r〉ta ,t )−γ . (34)

Unsurprisingly, the degree distribution P (k) of the slightly
aged network exhibits the same scaling behavior as that of the
nonaged one at large k, and we recover the expected expression
for a vanishing ta . Interestingly, in Eq. (33) the aged degree
distribution is expressed with two nonaged distributions P0

and P̃0, and the dependence on the aging time ta is entirely
embedded in the shifted degree ka and a scaling factor tαa .
This allows for a direct evaluation of the aged distribution,
whatever ta , with the prior knowledge of P0 and P̃0 only.
In practice however, those two functions are evaluated via
numerical simulations.

Figure 1 checks the previous results by means of numerical
simulations of the NoPAD model in the slightly aged regime.
We numerically estimate the distributions P0, P̃0, and P

for a network of size N = 107, with three different sets of
parameters (α,β,ta,t). For each case we compare the aged
degree distribution, the nonaged degree distribution and the
degree distribution given by Eq. (33). One can see that that
Eq. (33) nicely predicts the aged degree distribution. Moreover,

100 200 300
k
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0.010

P(
k)

100 200 300
k

0
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P(
k)

100 200 300 400
k

0
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0.004
P(

k)

102 103 104

k - <r>
10-12

10-9

10-6

10-3

P(
k)

(a)

(c)

(b)

(d)

FIG. 1. Slightly aged degree distribution P (k) for different values
of α, β ta , and t . Panels (a), (b), and (c) show the nonaged distribution
with black circles and the aged distribution with green squares. The
behavior predicted by Eq. (33) (with P0 and P̃0 previously calculated
numerically) is plotted with the red dashed line. Panel (d) shows the
power law behavior at large k for the three aged distributions shown in
the other panels: (a) squares, (b) circles, and (c) diamonds. Equation
(34) is plotted as a dashed line. Network size N = 107, results are
averaged over 50 runs. The values of the parameters are the following:
(a) (α,β) = (0.3,1.2), t = 106, and ta = 103. (b) (α,β) = (0.7,1.8),
t = 500, and ta = 10. (c) (α,β) = (0.5,1.8), t = 5 · 103, and ta =
100.
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we observe a bump in the aged degree distribution for small
degree values with respect to the nonaged distribution, more or
less visible depending on the aging time ta . The fact that more
individuals have a smaller degree in the aged networks means
that the dynamics in this case is slowed down with respect to
the nonaged case. Figure 1(d) confirms that the exponent of
the power law decay, γ = 1 + β/α, predicted by Eq. (34), is
correct.

B. Strongly aged regime

The strongly aged network regime emerges for 1 
 t 
 ta .
In this limit, the forward waiting in the Laplace space can be
approximated as

hc(u,s) 	 sα−1

uα
, (35)

and the aged activation distribution is given by

χta,t (r|c) 	
[

1 − (t/ta)1−α


α
2−α

]
δ(r) − cαtα−1

a


α

∫ t

0

∂χt ′

∂r
dt ′.

Using the same approximations as in the slightly aged case,
we find, for η(c) given by Eq. (24),

P (k) 	 P(k,〈r〉) − β

β̃ 
αt1−α
a

∫ t

0
dt ′[P̃0,t ′ (k̃′

a)

− P̃0,t ′ (k̃′
a − 1)], (36)

where k̃′
a = k + 〈r〉(η̃)

0,t ′ − 〈r〉ta ,t . This expression shows the
presence of a population splitting: A majority of individuals
remain inactive over the whole observation time window t ,
while they still receive connections from the active part of
the population. This leads to a dominant Poisson term in the
degree distribution. Again, we find a power law behavior at
large k,

Pta,t (k) ∼ (c0t)
β(t/ta)1−α(k − 〈r〉)−γ , (37)

102 103 104

k - <r>

10-10

10-8

10-6

P t a, t
 (k

) (
t a /t

)1-
α /(c

0t)β

t = 750 ta = 9 104

t = 500  ta = 5 104

t = 103  ta = 25 104

0 100 200 300 400
k

10-4

10-3

10-2

P t a, t
(k

)

FIG. 2. Rescaled degree distribution Pta,t (k) in case of strong
aging. Different values of the time window t and the aging time ta are
shown. Inset: Poissonian behavior of the degree distribution P (k) for
small k with ta = 105, t = 500. Network size N = 107. Parameters
are set at α = 0.7 and β = 1.1.

but this time the tail of the distribution vanishes when ta tends
to infinity. Figure 2 shows the validity of the scaling with the
aging time ta predicted by Eq. (37) and the Poissonian term
highlighted in Eq. (36).

VII. PERCOLATION DYNAMICS

Among the topological properties of the integrated net-
works as a function of the time, a particularly relevant one
is the birth and evolution of a giant connected component,
which constitutes a percolation process [1]. As time passes,
more connections will be established in the integrated network,
forming a growing connected component until at some time
Tp this component will percolate, i.e., it will have a size
proportional to the network size N . The percolation threshold
Tp is particularly relevant for the evolution of dynamical
processes running on top of the underlying network [50], since
any process with a characteristic lifetime τ < Tp will be unable
to explore a sizable fraction of the network.

A. General case

In order to find an expression for the percolation threshold,
we will follow the general formalism valid for correlated
random networks, where the effect of degree correlations are
accounted for by the branching matrix [42,51]

Bkk′(ta,t) = (k′ − 1)Pta,t (k
′|k), (38)

which implicitly depends on the aging time ta and the
observation window t through the conditional probability
Pta,t (k

′|k) that a node with degree k is connected to a node with
degree k′, in the time window [ta,ta + t] [52]. The percolation
threshold is determined by the largest eigenvalue �(ta,t) of
the branching matrix Bkk′(ta,t), which following Ref. [42] can
be written as

�(ta,t) = 〈k〉
2

+ 1

2

√
4〈k2〉 − 4〈k〉 − 3〈k〉2, (39)

where the first and second moment of the degree distribution
are computed on the network integrated in the time window
[ta,ta + t]. One can express � as a function of 〈r〉 and 〈r2〉
by combining Eqs. (9) and (7), using the hidden variables
formalism [37], as

�(ta,t) = 〈r〉ta ,t +
√

〈r2〉ta ,t − 〈r〉ta ,t . (40)

The percolation time Tp determined by imposing the condition
�(ta,Tp) = 1 [42], is thus given by the solution Tp of the
implicit equation

〈r2〉ta ,Tp
− 〈r〉2

ta ,Tp
= 1 − 〈r〉ta ,Tp

. (41)

It is worth noting that this result is valid regardless of the age of
the network. However, no explicit expressions exist for 〈r〉ta ,t
and 〈r2〉ta ,t , except for an exponential waiting time distribution
(Poisson process). Since the network percolation occurs at
relatively short times (such that 〈r〉 < 1), the approximations
for χt performed in the previous sections cannot be applied,
and one must resort in principle to numerical simulations to
estimate Tp.
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FIG. 3. Percolation threshold Tp as a function of α and β. Blue
dots correspond to estimations of Tp as given by the peak of the
clusters’ susceptibility; the surface is obtained by a numerical solution
of Eq. (41). Network size is N = 108, c0 = 1, and cmax = 106 (see
main text).

B. Nonaged networks

In the following, we will study the percolation time Tp for
a NoPAD network with an interevent time distribution of the
form given by Eq. (17) and a parameter c distributed according
to Eq. (24) in nonaged networks with ta = 0.

Figure 3 shows the percolation time Tp as a function of the
two main parameters of the NoPAD model, α and β, computed
by solving numerically Eq. (41), by means of a dichotomic
search, with 〈r2〉ta ,Tp

and 〈r〉ta ,Tp
evaluated from numerical

simulations. We proceed as follows: We evaluate θ0 = 1 −
〈r〉t0 − 〈r2〉t0 + 〈r〉2

t0
at some arbitrary starting time t0, and

then calculate θ1 at t1 = t0 × 2sgn(θ0), where sgn(z) is the sign
function, and so on recursively, θk = 1 − 〈r〉tk − 〈r2〉tk + 〈r〉2

tk
,

with tk+1 = tk × 2sgn(θk). As θk has positive values below Tp

and negative values beyond, tk rapidly converges towards Tp.
We then repeat the process several times for decreasing values
of the common ratio of the progression until a predefined
precision is reached. Figure 3 contrasts the result of this
numerical evaluation of Eq. (41) with estimations of the
threshold Tp from numerical simulations of the NoPAD model,
defined by means of the peak of the clusters’ susceptibility χ (s)
[42,53]. The susceptibility χ (s) is defined as χ (s) = ∑

s s2 ns ,
where ns is the density of clusters of size s and the sum is
restricted to all clusters, except the largest one. Figure 3 shows
that the two methods are in very good agreement, although the
threshold obtained by means of χ (s) tends to be slightly above
to the one predicted by Eq. (41), with an average error of 6%.

One can see that the percolation time Tp rapidly decreases
toward zero in a region of the (β,α) space. This is due to the fact
that, as Eq. (41) shows, if the second moment 〈r2〉t diverges,
then Tp tends to zero in the thermodynamic limit, N � 1. For
a nonaged agent with activity c, one has, for ct � 1 [30],

r2
t (c) =

∑
r

r χt (r|c) ∼ (ct)2α. (42)

Thus for β < 2α, 〈r2〉t = ∫
dc η(c)r2

t (c) is a divergent
function at large times. This implies that 〈r2〉 is infinite
∀t > 0, since otherwise there would be a discontinuity at

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 0.1
 0.3

 0.5
 0.7

 0.9

10-5

10-3

10-1

101

c0 Tp

β

α

c0 Tp

FIG. 4. Percolation threshold Tp as a function of α and β for
different values of cmax. Tp is calculated numerically from Eq. (41),
with c0 = 1. From top surface to bottom one, values of cmax =
103, 104, 105, 106. Network size is N = 108.

some arbitrary time t > 0, which makes no sense. Therefore,
the percolation time is zero in the thermodynamic limit for
β < 2α, while it is finite otherwise. To avoid these finite size
effects, one need to set a cutoff cmax for the parameter c (in
Fig. 3 this cutoff is set to cmax = 106). We explore the impact
of the cutoff in Fig. 4, which shows the percolation time Tp

in the (β,α) space for different values of cmax. We choose
a network size N such that N � 100 cmax in order to hinder
sampling errors on the values of c. As expected, we observe
a strong decay of Tp towards zero in the region β < 2α,
as cmax grows.

We also compare the percolation threshold obtained within
the correlated networks formalism, Tp, with the prediction
valid for uncorrelated networks, as given by the Molloy-Reed
(MR) criterion [54]. The MR criterion imposes the presence of
a giant component whenever the condition 〈k2〉/〈k〉 > 2 is ful-
filled, which in the present case translates in a percolation time
T 0

p given by the solution of the equation 3〈r〉2
T 0

p
+ 〈r2〉T 0

p
−

3〈r〉T 0
p

= 0, which can be solved numerically applying the
dichotomic search method described above. Figure 5 shows

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
β

 0.1
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FIG. 5. Relative error (Tp − T 0
p )/T 0

p as a function of α and β. T 0
p

is obtained by numerically solving the implicit equation ensuing from
the Molloy-Reed criterion, Tp is given by the numerical solution of
Eq. (41). Network size is N = 108, c0 = 1, and cmax = 106.
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FIG. 6. Average activation number at the threshold, 〈r〉Tp
, as a

function of α and β, Network size N = 107, c0 = 1, and cmax = 106.

the relative error between Tp and T 0
p , in the (β,α) space. One

can see that only for large values of β the MR criterion is close
to the real percolation threshold, justifying the necessity of
using the correlated networks formalism.

Another interesting observation comes from relating the
behavior of the percolation time Tp as a function of α and
β, shown in Fig. 3, with the average number of activation
events counted in the time window [0,Tp], 〈r〉Tp

, which is
a measure of the density (average degree) of the integrated
network. On the one hand, increasing β while keeping constant
α decreases 〈r〉Tp

, and so it increases the percolation threshold
Tp. On the other hand, increasing α while keeping β constant
accelerates the growth of the integrated network, so 〈r〉Tp

increases and Tp is smaller. The average number of activations
〈r〉Tp

, thus, as a measure of the density of the network at
time t = Tp, provides useful additional information on the
characteristics of the percolation process. Figure 6 displays
〈r〉Tp

as a function of α and β, showing that this density has a
minimum value which appears to be close to the region α = β.
In this region, agents form a giant component even though
they hardly have interacted, indicating that the link emission
pattern is more efficient for this particular set of parameters.
A partial explanation of this feature can be derived from an
evaluation of Eq. (41) in the large time limit, even though
the network percolates at times where asymptotic expansions
of 〈r〉t and 〈r2〉t are not relevant. In this limit we write

〈rn〉 	 
n+1


αn+1
〈cαn〉tαn [46], which gives an average activation

number at the threshold Tp,

〈r〉Tp
	

√
1 + 4R(α,β) − 1

2R(α,β)
, (43)

where R(α,β) = 2 
2
α+1〈c2α〉/
2α+1〈cα〉2 − 1. The possible

extremes in Eq. (43), for a given value of α, correspond
to solution of ∂R(α,β)/∂β = 0. Performing the integrals in
the definition of R(α,β) (with a maximum cmax to avoid
divergences) and taking the partial derivative with respect to
β leads to a minimum in 〈r〉Tp

located precisely at β = α, in
qualitative agreement with Fig. 6.

0 0.5 1 1.5 2
β

10-4

10-2

100

Tp

χs
Tp

Tp
0

FIG. 7. Percolation threshold Tp on a Lévy NoPAD network
as a function of β. Three different values of the parameter cmax

are shown. Symbols represent Tp evaluated by means of the peak
of the susceptibility χ (s). Continuous lines represent Tp evaluated
numerically from Eq. (46) and Eq. (41). Dashed lines represent
the threshold T 0

p given by the Molloy-Reed criterion. Triangles
correspond to cmax = 104, circles to cmax = 105, and crosses to cmax =
106. The corresponding dashed lines follow the same downward
progression. Lower bound activity c0 = 1. Network size N = 108.

As stated above, for a the general form of the waiting time
distribution given by Eq. (17), neither explicit expressions
are available for 〈r〉Tp

and 〈r2〉Tp
, nor are approximations

valid close to the percolation time Tp, so that one must
resort to numerical simulations to estimate Tp. An exception
is the case of a power law waiting time distribution with
exponent α = 1/2, which corresponds to the one-sided Lévy
distribution [32]

ψc(t) = e−1/(ct)

√
πc t3/2

. (44)

In this case, the distribution of activation numbers at time t

reduces to

χt (r|c) = erf

(
r + 1√

ct

)
− erf

(
r√
ct

)
, (45)

where erf(z) is the error function. The moments of the
activation distribution can be analytically expressed as

〈rn〉t =
∫

dc η(c)
∞∑

r=0

rn

[
erf

(
r + 1√

ct

)
− erf

(
r√
ct

)]
, (46)

and the percolation time Tp can be computed by introducing
Eq. (46) into Eq. (41) and solving numerically the ensuing
self-consistent equation.

Figure 7 shows the percolation time Tp on a Lévy NoPAD
network as a function of the activity distribution exponent
β. One can see that the theoretical prediction fits very well
the numerical estimation of Tp given by the peak of the
cluster susceptibility χ (s). In the same Fig. 7, we also plot
the percolation threshold T 0

p as predicted by the MR criterion,
showing that this is a good approximation only if β is close to 2,
in accordance with what is observed in Fig. 5, for an interevent
time distribution with a general form given by Eq. (17).
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C. Aged networks

Here we consider the effects of aging on the percolation
threshold. Equation (41) is valid also in presence of aging, so
that one can numerically solve it by means of the dichotomic
search explained above and find the percolation threshold Tp.
We checked that this method works also in presence of aging,
ta > 0. However, one can determine the asymptotic behavior
of the percolation threshold Tp as a function of the aging time
ta , in the limit of large aging, as follows. Since the main effect
of aging is to delay the growth of the integrated network,
we expect the same consequences for the birth of the giant
component. Therefore, Tp must be an increasing function of
ta . Three different asymptotic behaviors are to be considered
when ta tends to infinity: Tp/ta either tends to 0, to a positive
constant, or it diverges. It is straightforward to discard the
latter, since in this case one would have 〈r〉ta ,Tp

	 〈r〉0,Tp
� 1,

which is contradictory with the condition 〈r〉Tp
< 1. Thus, one

can look for a solution satisfying Tp/ta → 0 for ta → ∞, and
if a solution is found, then it is the correct one, since it is a
lower bound for any other. Using the expansions for the strong
aging regime proposed in Ref. [46], for ta � Tp � 1 one has

〈rn〉ta ,Tp
	 
n+1


α
αn+2−α

〈cαn〉 tα−1
a T 1−α+αn

p .

By inserting the moments of r in Eq. (41), one finds

Tp 	 A(α,β) t
1−α
1+α
a , (47)

where A(α,β) = [
α
2+α/2〈c2α〉] 1
1+α .

Figure 8 shows the percolation time Tp evaluated from
Eq. (41), using a dichotomic search strategy, as a function of the
aging time ta , and computed from direct numerical simulations
using the susceptibility peak, for a NoPAD network with β =
1.5 and different values of α. One can observe that aging has
practically no effect on the percolation time Tp for ta smaller

100 103 106 109

ta

101

102

103

104

105

106

107

Tp

χ(s)
Eq. (41)
Eq. (47)

FIG. 8. Percolation threshold Tp as a function of the aging time
ta . Parameters are set to β = 1.5, c0 = 0.001, cmax = 1, and α =
0.3, 0.5, 0.7 from top to bottom. Circles represent Tp evaluated
numerically from (41). Crosses are an estimation of Tp as given by
the peak of the susceptibility. The asymptotic behavior predicted by
(47) is plotted in dashed line. Network size N = 106.

than the percolation threshold with no aging. On the contrary,
for ta � Tp � 1, the asymptotic behavior of Tp as a function
of ta is very well predicted by Eq. (47).

VIII. DISCUSSION

In the study of complex systems, one of the main assets
of statistical physics consists in the postulation of simple
models capable to reproduce one given relevant property of
the system under consideration. This approach allows one to
simplify the study, by focusing on the property under scrutiny,
independently of other complicating factors. In the case of
static complex networks, the configuration model fulfills this
role with respect to the degree distribution, by considering
networks characterized exclusively by its degree distribution,
and completely random regarding all other properties. In the
field of temporal networks, the non-Poissonian activity driven
(NoPAD) model fills this niche, providing a simple model
characterized by an arbitrary interevent time distribution, that
assumes any form, in particular that dictated by empirical
evidence.

In this paper we have presented a detailed mathematical
study of the properties of the time-integrated networks emerg-
ing from the dynamics of the NoPAD model. We have focused
in two main issues: the topological properties of the integrated
networks, and their percolation behavior, as determined by the
percolation time Tp at which a giant connected component,
spanning a finite fraction of total number of nodes in the
network, first emerges. These two properties are determined as
a function of the model’s parameters, namely the exponent α of
the waiting time distribution ψc(t), and the exponent β of the
agents’ heterogeneity distribution η(c), as well as a function
of the time window of the integration process [ta,ta + t], by
applying a mapping of the network’s construction algorithm to
the hidden variables class of models. For the case of the degree
distribution P (k), we recover the intimate connection between
the scale-free nature of static social networks, P (k) ∼ k−γ , and
two main characteristics of social temporal networks, namely
a power-law distributed waiting time, ψc(t) ∼ (tc)−1−α , and
a power-law form of the heterogeneity distribution, η(c) ∼
c−1−β , as deduced from the distribution of average activity
[28,36]. This relation is quantified in the identity γ = 1 + β/α.
With respect to the percolation time Tp, analytic equations
are obtained, from which the value of Tp can be obtained by
solving them numerically. A relevant result here is that the
percolation time vanishes in the thermodynamic limit in the
region β < 2α, where the fast aggregation of connections leads
to a giant component in a very short interval of time.

The main asset of the NoPAD model is that it allows us to
transparently observe the aging effects introduced by arbitrary
waiting time distributions. These effects are due to the agent’s
memory from his last activation time, memory that is always
present in renewal processes, with different degrees of severity,
unless all nodes follow memoryless Poisson processes. Aging
effects translate in a breaking of the time translation symmetry
and induce a dependence of topological observables on the
beginning of the integration window ta . They are remarkably
strong in the region α < 1, when the average waiting time of
any agent is divergent. These aging effects, fully described
by the mathematical formalism of the NoPAD model, could
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be easily guessed, on the base of the empirical evidence of
a diverging average waiting time, in terms of the so-called
waiting time paradox [16].

The NoPAD model represents a minimal model of temporal
networks with long-tailed interevent time distribution. As such,
it has a wide potential to serve as a synthetic controlled
environment to check both numerically and analytically
several properties of these networks, and in particular their
effect on dynamical processes, in much the same way as the
configuration model has played this role for static networks.
Moreover, due to its simple definition, it can be easily modified
to make it more realistic. We envision as the more interesting
of those improvements the introduction of a finite duration
for the contacts between nodes and the addition of memory
effects in the process of selecting neighbors after an activation

process [39]. On the other hand, it is very easy to show [42] that
the NoPAD integrated networks exhibit dissasortative degree
correlations [55], at odds with empirical observations in real
static social networks. Correcting this effect emerges also as
an important future objective.

ACKNOWLEDGMENTS

We acknowledge financial support from the Spanish
MINECO, under project FIS2013-47282-C2-2, and EC FET-
Proactive Project MULTIPLEX (Grant No. 317532). M.S.
acknowledges financial support by the James S. McDonnell
Foundation. R.P.-S. acknowledges additional financial sup-
port from ICREA Academia, funded by the Generalitat de
Catalunya.

[1] M. E. J. Newman, Networks: An Introduction (Oxford University
Press, Oxford, 2010).

[2] S. N. Dorogovtsev, Lectures on Complex Networks, Oxford
Master Series in Physics (Oxford University Press, Oxford,
2010).

[3] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[4] P. Holme, Eur. Phys. J. B 88, 234 (2015).
[5] E. Agliari, R. Burioni, D. Cassi, and F. M. Neri, J. Phys. A 41,

015001 (2008).
[6] M. Jackson, Social and Economic Networks (Princeton

University Press, Princeton, 2010).
[7] D. Lazer, A. S. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D.

Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann et
al., Science 323, 721 (2009).
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Satorras, and A. Vespignani, Phys. Rev. Lett. 109, 238701
(2012).

[22] J. I. Perotti, H. Jo, P. Holme, and J. Saramäki, arXiv:1411.5553
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