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Multiple peaks of species abundance distributions induced by sparse interactions
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We investigate the replicator dynamics with “sparse” symmetric interactions which represent specialist-
specialist interactions in ecological communities. By considering a large self-interaction u, we conduct a
perturbative expansion which manifests that the nature of the interactions has a direct impact on the species
abundance distribution. The central results are all species coexistence in a realistic range of the model
parameters and that a certain discrete nature of the interactions induces multiple peaks in the species abundance
distribution, providing the possibility of theoretically explaining multiple peaks observed in various field
studies. To get more quantitative information, we also construct a non-perturbative theory which becomes
exact on tree-like networks if all the species coexist, providing exact critical values of u below which extinct
species emerge. Numerical simulations in various different situations are conducted and they clarify the
robustness of the presented mechanism of all species coexistence and multiple peaks in the species abundance
distributions.
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I. INTRODUCTION

The currently progressing serious reductions in the diversity
of ecosystems force us to consider in depth the relation-
ships between ecosystem stability and species abundance
distributions (SADs) quantifying community diversity [1,2].
Theoretical knowledge about SADs for systems at a given
trophic level has greatly advanced in the last decade, based
on Hubbell’s neutral theory [3–6]. Meanwhile, two pioneering
works [7,8] opened the possibility of theoretical treatment of
more complicated systems with multiple trophic levels, using
linear models which continue to provide useful suggestions [9].

Beyond the linear model, a nonlinear model, called replica-
tor dynamics (RD), has been employed to study ecosystems,
and has offered qualitative knowledge about the global
behavior of population dynamics [10–16]. In the RD, the
population of species evolves by its own fitness function which
consists of two contributions: interactions with other species
and self-productivity of the species itself. Depending on the
intricacy of the interactions, the RD yields various SADs
[12–15]. Although it is a highly nontrivial task to identify the
fitness functions of species in a given real community, the RD
provides a useful description of real ecosystems in a qualitative
level in SADs. However, analytical treatment of it has so far
been limited to the case where each species interacts with all
other species. These dense interactions are not only seemingly
unrealistic but also involve an undesirable simplification in
SADs, due to the extensive sum of contributions in the fitness
function. Thus, it is expected that novel and various SADs can
be observed when sparse interactions, or specialist-specialist
interactions, are employed.

II. PROBLEM SETTING

Consider a community consisting of N species, denote
the fitness function of ith species by Fi , and assume that
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Fi consists of two terms of pairwise interactions Jij and of
self-productivity u

Fi(x|J,u) = 1

2

∑
j (�=i)

Jij xj − 1

2
uxi, (1)

where xi(�0) denotes the ith species’ population. We assume
the productivity u is common among all the species, to purely
see the effect of interactions. In the RD, each species is
governed by the following equation:

dxi

dt
= xi(Fi − F̄ ), (2)

where the averaged fitness is introduced as

F̄ (x|J,u) =
∑

i xiFi(x|J,u)∑
i xi

. (3)

The total population
∑N

i=1 xi is preserved in the RD, and
without loss of generality we normalize this to the number of
species as

∑N
i=1 xi = N . Properties of interactions crucially

influence the dynamics. Here we treat sparse interactions: the
number of interacting species of the ith species, ci , is bounded
by a fixed constant cmax independent of N . In addition, we
investigate the case of symmetric relations, where Jij = Jji .
This case is relatively simple, since the dynamics necessarily
converges to a fixed point depending on the initial condition.
Despite this simplicity, symmetric RDs can describe several
communities such as a certain class of selection equation
in population genetics and a classical model of community
competing for resources [17].

For symmetric interactions, the averaged fitness F̄ plays the
role of a Lyapunov function whose local maxima correspond
to fixed points of the dynamics. Among those maxima, we
focus on the global maximum stated as

x∗ = argmax
{xi�0}Ni=1

{F̄ (x|J,u)}, (4)
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and the SAD is defined as

P (x) = 1

N

N∑
i=1

δ(x − x∗
i ), (5)

where δ(x) is the Dirac delta function. A typical shape of
the SAD resembles a skewed log-normal distribution [18,19].
We investigate how these quantities change if the interactions
become sparse.

III. RESULT

Our analysis is based on direct evaluation of Eq. (4),
neglecting the non-negativity of xi . This treatment provides
exact results as long as no extinct species exist, which is the
case for moderate values of u, but becomes less precise as the
proportion of extinct species grows. Despite this limitation,

our analysis is sufficient to observe novel interesting SADs as
seen below.

Taking a direct variation of the averaged fitness with respect
to x on the above assumption and imposing the constraint∑

i xi = N , we get

x∗
i = N

∑
j K−1

ij∑
i,j K−1

ij

, (6)

where K = uI − J and I is the unit matrix. To obtain clear
information from Eq. (6), the perturbative expansion with
respect to u−1 is performed under the assumption that u is
sufficiently large. The inverse of the matrix K is expanded as

K−1 = (uI − J )−1 = 1

u

∞∑
p=0

u−pJ p. (7)

Inserting this into Eq. (6) gives

x∗
i = 1 + u−1 ∑

j Jij + u−2 ∑
j,k Jij Jjk + u−3 ∑

j,k,l Jij JjkJkl + · · ·
1 + u−1 1

N

∑
i,j Jij + u−2 1

N

∑
i,j,k Jij Jjk + u−3 1

N

∑
i,j,k,l Jij JjkJkl + · · · . (8)

Retaining higher-order terms gives more precise results, but the computation becomes more complicated. Up to the second order
of u−1, the topology of the network does not affect the result and a clear discussion is possible. It is instructive to see an explicit
formula of the SAD, the distribution of x∗

i , in the first-order expansion

P (x) ≈
∫

d JP ( J)δ

⎛
⎝x −

⎧⎨
⎩1 + u−1

⎛
⎝∑

j

Jij − (1/N )
∑
i,j

Jij

⎞
⎠

⎫⎬
⎭

⎞
⎠, (9)

where P ( J) is the distribution of the interactions J .
Hence, if the distribution of interactions exhibits a certain
discrete nature, i.e., if the marginal distribution Pij (Jij ) ≡∫ ∏

〈k,l〉(�=〈i,j 〉) dJklP ( J) consists of discriminable multiple
peaks, the SAD correspondingly takes multiple peaks. The
mechanism of multiple peaks here is based only on two
assumptions: that u is sufficiently large and that the distri-
bution of interactions is discrete, providing the possibility
of theoretically explaining multiple peaks observed in sev-
eral field studies [20–22]. Note that similar multiple peaks
were observed in the RD with a specific distribution of
dense interactions [13,14], but we stress that our mechanism
producing multiple peaks is completely different from the
one in [13,14]. Their model’s interactions are given by
Hebb’s rule of p binary traits, meaning that all species are
strictly categorized into p + 1 groups by the symmetry in
the N → ∞ limit, and accordingly the SAD consists of
p + 1 (or less if multiple groups are extinct) δ peaks. In
contrast to those δ peaks, our theory can naturally provide
rounded discrete peaks and as well standard (log-normal like)
functional forms by changing a single parameter u. Thus far
such a flexibility has been absent in the densely interacting
networks [10–16].

One interesting outcome of treating sparse interactions is all
species coexistence at moderate values of u. This coexistence
starts to collapse at a critical value of uc. A general upper
bound of the critical value, u(UB)

c , can be derived by examining
the condition where the numerator of Eq. (8) vanishes. Each

term in the numerator is bounded as∣∣∣∣∣∣
∑

j1,j2,··· ,jp

Jj1j2Jj2j3 · · · Jjp−1jp

∣∣∣∣∣∣ � cp
maxJ

p
max, (10)

where Jmax is the maximum absolute value of the pairwise
interaction Jij . Thus, the numerator can be bounded from
below

1 + u−1
∑

j

Jij + u−2
∑
j,k

Jij Jjk + · · ·

� 1 −
∞∑

p=1

(
cmaxJmax

u

)p

= u − 2cmaxJmax

u − cmax
. (11)

This gives the general upper bound as

u(UB)
c = 2cmaxJmax. (12)

As long as u > u(UB)
c , all species coexistence is guaranteed.

This is actually observed in Fig. 1 for a specific choice of
P ( J) (see below for the detail). A similar general upper bound
can be derived even if the self-interactions can vary depending
on species as long as its mean is large enough. In that case,
the expansion with respect to J/u is replaced to the one with
respect to J/U where U is a diagonal matrix whose entries
are species-dependent self-interactions.

Beyond the perturbation and the general bounding method,
we can provide a non-perturbative theory. Terms of higher
orders than 2 can be categorized into those with and without
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FIG. 1. Critical values of productivity uc plotted against � for
c = 3. The points are the non-perturbative results, and the dashed
line corresponds to the second-order perturbation. Both of the values
locate well below the general upper bound u(UB)

c = 2c = 6.

loops. For example, in the case of third-order terms,∑
j,k,l Jij JjkJkl , terms of JijJjkJki(j �= i,j �= k,k �= i) have

a closed loop, and other terms do not have loops. It is known
that summing terms without loops is possible for all orders in
a systematic manner, which is known to be equivalent to the
so-called Bethe approximation, or cavity method [23–25]. For
a single instance of network, this method evaluates influences
to a newcomer species from an existing species, which are
termed cavity biases, in a self-consistent manner.

For clarity of the following discussion based on the cavity
method, we treat a single degree network ci = c, and fix the
distribution of interactions as

P (Jij ) = 1 + �

2
δ(Jij − 1) + 1 − �

2
δ(Jij + 1). (13)

This simple function maintains a discrete nature and also
has a parameter, �, controlling the ratio of mutualistic and
competitive relations. This setup enables us to see the effects of
productivity u, of the ratio of mutualistic relations �, and of the
degree of network c, in an unified manner. The distribution of
the cavity biases, q̂(Ĥ ), satisfies the following self-consistent
equation:

q̂(Ĥ ) =
∫ c−1∏

l=1

dĤl q̂(Ĥl)δ

(
Ĥ − J â

(
r +

c−1∑
l=1

Ĥl

))
, (14)

α(0)

α(1)

(a) (b)

α(0)

α(1)

FIG. 3. The diversity α(0) and α(1) are plotted against � for
u = 6 (a) and 3 (b) at c = 3. The dependence on � is not monotonic.

where · · · denotes the average over the interaction J , and â

and r are given by the external parameters as

â = u −
√

u2 − 4(c − 1)

2(c − 1)
, (15)

r = (u − câ)

(
1 − câ�

1 + â�

)
. (16)

Using the solution of Eq. (14), the SAD P (x) is assessed as

P (x) =
∫ c∏

l=1

dĤlq̂(Ĥl) δ

(
x − r + ∑c

l=1 Ĥl

u − câ

)
. (17)

Solving Eq. (14) and inserting the solution into Eq. (17) give
the results shown in Figs. 1–3. This gives an exact treatment
for the interaction network without loops, as well as for the
randomly generated network which has some global loops but
their influence can be neglected in the large size limit.

Figure 1 displays uc plotted against � for c = 3. The points
are based on the non-perturbative theory, and the dashed line
is derived by keeping only up to the second-order terms of u−1

in Eq. (8). The qualitative shape of the uc curve is captured by
the second-order approximation, but the quantitative deviation
is not small. An interesting, and perhaps somewhat counter-
intuitive, observation is the dependence on �. Larger values of
� provide more mutualistic relations, and hence Fig. 1 shows
more mutualistic communities tend to be more extinct-prone,
in the sense that extinct species start to appear even at larger
u. The critical value uc drastically drops off around � = ±1,
which exhibits singularities at those points. This is natural
since � = ±1 corresponds to the case where all the species
are equal and thus xi = 1(∀i) holds irrespective of the value
of u. We also calculate the c-dependence of uc for fixed � and
find that uc monotonically increases as c grows.

FIG. 2. The SADs for � = −0.8 (a), 0 (b), and 0.8 (c) at c = 3.
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FIG. 4. The SAD with the interactions generated from Eq. (18),
the network structure of which is a random graph of single degree
c = 3. The parameters are u = 6.03, N = 16000.

Figure 2 shows the SAD for several values of u and � at
c = 3. For u = 5.5(> uc), the distribution is symmetric about
x = 1 for � = 0, though it is biased to x > 1 or to x < 1 for
� �= 0. For the competitive case � = −0.8, the largest peak
appears with x < 1, and the long tail persists in the x > 1
region, while for the mutualistic case � = 0.8 the opposite
is true. As u decreases, the discreteness becomes weaker and
the functional forms become closer to a standard skewed log-
normal distribution, irrespective of �, as seen at u = 3(< uc).
Hence, our theory smoothly connects the standard functional
form and that with multiple peaks, by a single parameter u. The
c-dependence of the SAD appears as the number of peaks for
large u which is equal to c + 1, as understood by Eq. (9). For
small u, tails of the SADs in x < 0 appear because we neglect
the non-negativity constraint. These tails mean there occurs
a partial extinction in the corresponding parameters. In this
situation, our analysis is not exact, but it is possible to interpret
the cumulative distribution in x < 0 as an approximation of
the ratio of the extinct species.

An interesting finding appears in the survival function
α(y) = 1 − ∫ y

0−
P (x)dx, an index quantifying community

diversity [15]. Figure 3 shows α(1) and α(0) plotted against
� for u = 6(>uc) and u = 3(<uc) at c = 3. We observe
non-monotonic behavior of diversity, and particularly α(1)
shows an oscillating behavior as � changes. This is related
to the multiple peaks of the SAD: the height and location of
the highest peak and the tail sensitively change as � deviates,
leading to nontrivial behavior of the diversity.

To see the robustness of SAD discreteness in large u regions
discussed so far, we perform a numerical simulation. Figure 4
shows the result for the case where the interaction network is
a random graph of the degree c = 3 and the values of Jij are
drawn from a sum of two Gaussian distributions

P (Jij ) = 1√
8V π

{
e− (Jij −1)2

2V + e− (Jij +1)2

2V

}
(18)

with V = 0.1. Two peaks are symmetrical and thus correspond
to � = 0. The result clearly demonstrates the presence of
multiple peaks. This is not trivial, since the value of Jij

drawn from Eq. (18) is not bounded. We also perform other
numerical simulations in several different situations, and the
result is given in Fig. 5. Panel (a) is for the square lattice;
N = 16384 and u = 8. Panel (b) is for a heterogeneous
random network with degrees c = 3,4,5,6, each ratio of which
is p = 0.45,0.35,0.1,0.1, respectively; N = 1000 and u = 10.
Panel (c) is for random self interactions, whose values are
uniformly taken from (9.4,10.6), and the network is single
degree c = 3 and the simulated size is N = 1000. In all these
cases the interactions are unbiased binary.

All these numerical simulations universally exhibit multiple
peaks in the SADs, as long as P (Jij ) has a discrete nature
and the self-interactions are sufficiently large, and thus the
presented mechanism is fairly robust. Therefore, we again
stress the importance of this mechanism in explaining actually
observed multiple peaks in several field studies [20–22].

IV. CONCLUSION

Our analysis of the RD with sparse interactions has provided
several nontrivial behavior in the SADs: coexistence of all the
species, multiple peaks. These consequences were transpar-
ently understood from the perturbative expansion assuming
the self-interaction u is large enough and the interactions have
a certain discrete nature. The general upper bound of critical
value of u, below which extinct species emerge, has also been
evaluated.

We also provided a non-perturbative theory which is
exact on tree-like networks without loops, to obtain more
quantitative information. As a result, exact critical values
of u and the SADs’ dependence on model parameters have
been calculated for a specific network. We have found a
nontrivial dependence of diversity on the ratio of mutualistic
relations and a drastic change of the abundance distribution’s

FIG. 5. The SADs for the square lattice with unbiased binary interactions (a), a heterogeneous random network with degrees c = 3,4,5,6
and unbiased binary interactions (b), and random self interactions on a single degree network c = 3 with unbiased binary interactions (c).
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shape from the one with multiple peaks to a standard skewed
log-normal distribution. We stress that this drastic change is
controlled by a few parameters, the self interaction u and the
ratio of mutualistic relations �. Thus our theory provides a
possibility of unifying different shapes of the abundance distri-
butions. Comparison with experimental observations is highly
desired.

Our results so far are derived by investigating the RD with a
few assumptions, and thus they can be applied to other contexts
in which the RD appears, such as population genetics, game
theory, and chemical networks in living cells [26,27].
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