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We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their
application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency
is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues
of the connectivity matrix, which even for very large structures allows a complete analytical solution for this
particular choice of network. In the case of MDs we observe an interplay between strong localization effects,
due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is
enhanced by interconnecting more layers of dendrimers.
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I. INTRODUCTION

In the past decade, complex network models have been
used to explain a wide range of physical, chemical, biological,
sociological, or economic systems (see [1–3] and references
therein). In these works, statistical and dynamical features of
networks were studied. A prime example is the Internet, which
can be understood using the scale-free network model. It has
as its main ingredient the existence of hubs, nodes with a high
number of connections, and the degree distribution follows a
power law [4,5]. A different kind of complex network model,
the multilayer network or network of networks [6–12], has
instigated continuously growing interest from the research
community. These more complex networks are composed of a
succession of interconnected layers, each of them containing
the same number of nodes. Moreover, they have two types of
links: those between nodes belonging to the same layer and
links between nodes from different layers. Here, for simplicity
and to facilitate an analytical solution, we consider layers
with the same topology and each node is connected to one
node from two neighboring layers (or one in the case of
peripheral layers). As an example we choose as the underlying
topology the dendrimer, which allows for analytical results
[13,14].

From the classical point of view, the dynamics of random
walks (RWs) on networks and its relation with the network’s
topology have been investigated for many decades [15]. The
problem of transport efficiency amounts to determining the
probability of the RW to return to its origin. As in the case of
the classical random walk, the quantum mechanical transport is
basically divided into two models: the discrete-time quantum
walk and the continuous-time quantum walk. The concept of
quantum walk was introduced by Aharonov et al. [16] and
the discrete-time quantum walk, which requires an additional
degree of freedom, the coin, was introduced by Meyer [17].
The continuous-time quantum walk is based on identifying the
quantum mechanical Hamiltonian with the classical transfer
matrix. It was introduced in the seminal paper of Farhi and
Gutmann [18]. However, these two models can be related
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[19]. In this article we choose to follow the continuous
model.

For any undirected network the transfer matrix of the
continuous-time random walk (CTRW) is given by the con-
nectivity matrix of the structure [20]. In order to correlate
the results with the CTRW we choose the model of a
continuous-time quantum walk (CTQW) to study the quantum
transport on networks [21]. In this model the Hamiltonian is
also determined from the connectivity matrix, as its classical
counterpart. However, the quantum dynamics is more complex
than the classical dynamics: Due to the propagation of
amplitudes rather than probabilities, wave properties such as
interference strongly influence the object (particle) dynamics.
We know from the literature that for branched trees, such as
dendrimers [22], the quantum transport efficiency is lower
compared to translationally invariant graphs. In order to
enhance the spreading of the quantum walks on graphs one
should add more links to the given structure [23]. In this
paper we focus on another way of increasing the efficiency
of transport on a graph: Create a multilayer network, or
more precisely, we couple the graph to copies of itself.
Recently, such an approach was also considered in Ref. [24]
for multiplex networks. In the case studied in this paper,
however, we can provide a systematic theoretical study also for
very large regular networks, facilitated by the fact that all the
eigenvalues are known analytically. It is worth mentioning that
our diagonalization method can be applied to any multilayer
network, for which all the eigenvalues of its connectivity
matrix of the underlying graph (the dendrimer in our case)
are completely determined.

The problem of quantum transport in nontrivial topologies
is of current interest due to its relevance for energy transfer
in molecular (e.g., light harvesting) aggregates [25,26], due
to quantum computing [27] and most remarkably due to
an impressive increase in experimental techniques. These
experiments allow for a better understanding of the theoretical
models. They are based on ultracold atoms in optical lattices
[28] or on microwave cavities [29], Rydberg atoms [30,31],
atoms or ions trapped in optical lattices [32–34], or photons in
waveguide arrays [35–38], on an optical circuit [39], or on an
optical fiber network [40].

In presenting our results, we choose the following organiza-
tion of the paper. In Sec. II we focus on a general description
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of the classical and quantum quantities used throughout the
paper. In Sec. III we show the construction principles of our
multilayer dendrimer network. Section IV is devoted to the
analytical determination of the eigenvalue spectrum of the
connectivity matrix, necessary to compute all the physical
(quantum and classical) quantities of our model. In Sec. V
we focus on findings for quantum transport on networks and
we compare our results to classical random walks. The paper
ends with a summary.

II. THEORETICAL FRAMEWORK

In this article we study the quantum dynamics of an
excitation on multilayer networks in the CTQW model and
compare these results with its corresponding classical model,
the CTRW. In general, a network is defined as a set of N

nodes coupled to each other by bonds. A state |k〉 is associated
with each node, corresponding to an excitation localized at
node k. The CTRW and CTQW dynamics are determined
by the connections between the nodes of the network, i.e.,
by the connectivity matrix A. This N × N matrix is real
and symmetric: Its nondiagonal elements Ajk are equal to
−1 if the ith and j th nodes are connected by a single bond
and 0 otherwise, while the diagonal elements Ajj = fj equal
the number of bonds fj connected to node j . Due to its
construction, the connectivity matrix has only positive real
eigenvalues and only one vanishing eigenvalue ξmin = 0.

For CTRWs in the simplest case, where the transition rates
for all bonds are equal (and chosen to be 1), the transfer matrix
is simply T = −A. The probability for a CTRW to go from
node k to node j at time t reads pj,k(t) = 〈j | exp Tt |k〉. For
CTQWs we assume that all the states |j 〉, which represent the
nodes, are orthonormal and complete [18,21] and the dynamics
is described by the quantum mechanical Hamiltonian, identi-
fied with H = A. In this case the quantum transition probabil-
ities are given by πj,k(t) = |〈j | exp(−iHt)|k〉|2. Knowing the
eigenvalues ξn and eigenstates |�n〉 (with n = 1, . . . ,N) of the
connectivity matrix, we can write the transition probability for
CTRWs as

pj,k(t) =
N∑

n=1

exp(−ξnt)〈j ||�n〉〈�n||k〉 (1)

and for CTQWs as

πj,k(t) =
∣∣∣∣∣

N∑
n=1

exp(−iξnt)〈j ||�n〉〈�n||k〉
∣∣∣∣∣
2

. (2)

We focus on the average return probability as a measure of the
transport efficiency. It is defined as the probability to remain
or return to the initial node k, averaged over all nodes

p(t) = 1

N

N∑
k=1

pk,k(t) (3)

for CTRWs and

π (t) = 1

N

N∑
k=1

πk,k (4)

for CTQWs. A fast decay of p(t) or π (t) implies a quick
propagation of a walker on the network and a slow decay
implies a slow propagation. For CTRWs the average return
probability simplifies considerably, such that it will depend
only on the eigenvalues of the connectivity matrix

p(t) = 1

N

N∑
k=1

exp(−ξkt), (5)

and for CTQWs π (t) additionally depends on the eigenstates.
However, by making use of the Cauchy-Schwarz inequality
we get a lower bound, which is independent of the eigenstates:

π (t) = 1

N

N∑
k=1

πk,k �
∣∣∣∣∣

1

N

N∑
k=1

αk,k(t)

∣∣∣∣∣
2

= |α(t)|2 =
∣∣∣∣∣

1

N

∑
k

exp(−iξkt)

∣∣∣∣∣
2

. (6)

In Eq. (6) we defined the transition amplitude between two
nodes as αk,k = 〈k| exp(−iHt)|k〉. From Eq. (5) one gets in the
long-time limit the equipartition value 1/N . In the quantum
case, π (t) and |α(t)|2 do not decay to a fixed value, but they
oscillate around the long-time average [21]

χ ≡ lim
t→∞

1

t

∫ t

0
dt ′|α(t ′)|2 � lim

t→∞
1

t

∫ t

0
dt ′π (t ′) ≡ χ. (7)

Knowing the spectral density ρ(ξ ), one can write the long-time
average transition probability as [41,42]

χ =
∑

ξ

ρ2(ξ ) � ρ2(ξ ∗) + 1

N
[1 − ρ(ξ ∗)] ≡ χ∗, (8)

where ξ ∗ is the most degenerate eigenvalue. As stated in
Ref. [41] χ∗ provides a good approximation of χ in two
extreme situations. The first one corresponds to the case of ξ ∗
being a single highly degenerated eigenvalue in comparison
with the other eigenvalues, for instance, for a star with N − 1
arms. In this case, there will be only three eigenvalues,
namely, 0, 1, and N , with degeneracies 1, N − 2, and 1,
respectively; thus it is straightforward to show that χ = χ∗ =
[2 + (N − 2)2]/N2. In the limit of very large structures, we
obtain χ∞ = 1, suggesting an inefficient transport. The second
situation occurs when all the eigenvalues are nondegenerate,
which occurs, for example, for a linear chain. In this case all
the eigenvalues have degeneracy ρ(ξ ) = 1/N , which yields
χ = χ∗ = 1/N . For extremely long chains we get an efficient
transport χ∞ = 0.

III. MULTILAYER DENDRIMER NETWORKS

We consider our multilayer structure as a sequence of,
say, L layers, each of them being identical copies of the
original layer. Here we choose as the original layer the
dendrimers and we denote by G their generation number. All
the nodes from a layer are connected to a single node from
the neighboring layers (two layers for inner layers and one
neighbor for peripheral layers). We can divide the construction
of this multilayer dendrimer network (MD) into two parts.
The first one corresponds to the construction of the basic
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FIG. 1. Multilayer dendrimer with generation number G = 2 and
L = 3 layers.

structure (in our case the dendrimer), while the second part
represents the reproduction (L times) of the above structure
and the connection to nodes from next-nearest-neighbor layers
according to our prescription.

The construction of a dendrimer follows the steps well
established in the literature [14,43]. One starts from a central
node (generation 0) and adds f (in our case f = 3) nodes,
all connected to the central node. These nodes correspond
to the first generation. Then, from each node of the first
generation sprout another f − 1 bonds, inserting f − 1 new
nodes into the structure, all of them forming the second
generation. This process is iterated until we reach the desired
generation G. Each internal node of the dendrimer has f = 3
neighbors and the peripheral nodes, i.e., nodes from generation
G, have f − 2 = 1 neighbors from the previous generation.
The total number of nodes of a dendrimer of generation G

and functionality f equals [14] ND = 3[(f − 1)G − 1]/(f −
2) + 1, which for a dendrimer with functionality f = 3
becomes

ND = 3(2G − 1) + 1. (9)

Next, in the second part of the construction, we copy
L times the above structure (the dendrimer of generation
G) and connect all nodes of an internal layer j with the
nodes belonging to its neighboring layers j − 1 and j + 1.
Each node of the peripheral layer is connected to a single
node from the neighboring layer. Thus, the total number of
nodes of a MD equals NMD = LND . In Fig. 1 we sketch the
multilayer dendrimer of generation number G = 2 and having
three identical layers L = 3. For a better visualization, each
layer’s nodes are depicted with the same color, the connections
between nodes belonging to the same layer are displayed with
solid lines, and the links between nodes of different layers are
shown with dashed lines.

IV. EIGENVALUE SPECTRUM

One can clearly see from Eqs. (5) and (6) that we need to
determine the whole eigenvalue spectrum of the connectivity

matrix A for the MD. The connectivity matrix is a real and
symmetric sparse matrix and for this particular topology we
are able to analytically compute all the eigenvalues. The
matrix A has the size NMD × NMD ≡ (LND) × (LND) and it
is composed of blocks of square submatrices Aij of ND × ND

size, where L represents the number of layers from the MD
and ND is the number of nodes in each layer. The matrix A is
a block matrix and it is defined as follows: The off-diagonal
blocks equal Aij = −1 if layers i and j are connected and
Aij = 0 otherwise. Here 1 is the identity matrix and 0 is the
matrix having all its elements equal to 0. The diagonal block
matrices are given by Aii = AL + 2 × 1 if i is an inner layer
1 < i < L and Aii = AL + 1 if i is a peripheral layer, namely,
i = 1 or i = L. Here AL is the connectivity matrix of a single
dendrimer.

We define the eigenvalue spectrum of the MD as �MD =
(�0,�1, . . . ,�j , . . . ,�L−1), where �0 contains the first ND

eigenvalues, �1 the next ND eigenvalues, and so on up to the
last eigenvalue. The eigenvalues of each set of eigenvalues �j

can be written as [6]

�j = 2 − 2 cos

(
jπ

c

)
+ ξi, (10)

where j = 0,1, . . . ,L − 1 denotes the number of the layer, ξi

are the eigenvalues of the connectivity matrix AL of a single
layer, and here we have i = 1, . . . ,N . The eigenvalues ξi can
be found by implementing a normal mode analysis and by
making use of the symmetries of the structure [14,43,44].
Following this procedure, one is able to find analytically all the
eigenvalues and end up with a simple physical explanation of
the normal modes. For every network there are two groups
of eigenmodes: the symmetric modes, when all the nodes
are oscillating, and nonsymmetric modes, when some nodes
(including the central core) are immobile. In our quantum
mechanical excitation transport picture, any vibration of the
nodes of the dendrimers can be understood as a linear
combination of all NMD normal nodes.

In the following we will not present the detailed evaluation
of the eigenvalues, since our main focus is their influence
on properties of quantum walks. Instead, we only summarize
how the whole spectrum of a trifunctional dendrimer, i.e.,
dendrimer of functionality f = 3, is obtained. For a dendrimer
of generation number G there are G symmetric modes with
their nondegenerate eigenvalues given by [14,43]

ξ
(s)
k = 3 − 2

√
2 cos

(
πk

G + 1

)
for k = 1, . . . ,G. (11)

In addition, we have the totally symmetric eigenvalue ξ
(s)
G+1 =

0, which corresponds to an overall translational motion. Then
all the nodes vibrate in the same direction and with the same
magnitude.

The second group of eigenvalues is formed by modes
that have an immobile core. This class contains nonsymmet-
ric eigenmodes with degenerate eigenvalues. In the special
case when only one central node (G = 0) is immobile, the
eigenvalues are determined by solving a system of two
equations

ξ
(n)
k = 3 − 2

√
2 cos ψk (12)
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(a)

(b)

FIG. 2. Normal modes for a multilayer dendrimer network of G = 2 and L = 2.

and

sin(G + 1)ψk =
√

2 sin Gψk. (13)

For G < 3 Eqs. (12) and (13) provide G distinct solutions. For
G � 3 these equations give only G − 1 solutions. Then there
is one hyperbolic eigenvalue, which has the form

�(n) = 3 − 2
√

2 cosh ψ, (14)

where ψ fulfills the equation

sinh(G + 1)ψ =
√

2 sinh Gψ. (15)

All these G eigenvalues for this particular case are doubly
degenerate.

In more general cases there are more nodes that remain
immobile, apart from the central node, and the eigenvalues are
still given by Eq. (12) with ψk now obeying

sin(G + 1 − m)ψk =
√

2 sin(G − m)ψk, (16)

where we have denoted by m (with 0 < m < G − 1) the
last generation number in which all the nodes are immobile.
Equation (16) has G − m distinct solutions if G − m +
1 >

√
2(G − m). Otherwise, there are G − m − 1 distinct

eigenvalues of the form (16) and an additional eigenvalue of
hyperbolic form given by Eq. (14) with ψ obtained from

sinh(G − m + 1)ψ =
√

2 sinh(G − m)ψ. (17)

Thus, for every m there are G − m distinct eigenvalues and
each of them is (3 × 2m−1)-fold degenerate. Finally, there is the
special case of m = G − 1 that gives rise to a (3 × 2G−2)-fold
degenerate eigenvalue ξ = 1, corresponding to all pairs of
peripheral nodes from the same branch, oscillating in opposite
directions.

For a deeper understanding of the results we choose a small
multilayer dendrimer network and we display in Fig. 2 its
normal modes. Our chosen network has generation number
G = 2 and two layers. For this particular example there are

two types of eigenmodes, shown on the left side of the figure,
which can be analytically obtained from Eq. (10) by deploying
j = 0 and 1. The first value corresponds to the situation
when the nodes from the two layers oscillate in the same
fashion and with the same magnitude; while the second value
j = 1 corresponds to the case where the nodes from one
layer oscillate in the same manner but in opposite direction
compared to nodes belonging to the other layer. Thus, one can
envisage this by two layers moving in the same direction and
by the layers moving in opposite directions, respectively. The
eigenvalues of the first situation are the same as for a single
dendrimer of the same generation number, as can be easily
seen from Eq. (10) by substituting j = 0. The eigenvalues
corresponding to the second class of eigenmodes are obtained
by replacing j = 1 in Eq. (10), thus they are shifted by 2
from the single dendrimer’s eigenvalues. In the right panel of
Fig. 2 we display all the eigenmodes of a single dendrimer
layer. In Fig. 2(a) we show the G + 1 symmetric eigenmodes,
i.e., all the nodes are oscillating, namely, ξ (s) = 0 (which
represents the overall translation), 2, and 5, in which monomers
from the same generation move together. In Fig. 2(b) there
are the nonsymmetric eigenmodes, from left to right: ξ (n) =
2 − √

3 and ξ (n) = 2 + √
3, both with degeneracy 2, in which

the nodes of the two branches move in opposite directions, and
ξ (n) = 1 with degeneracy 3, which represents the motion of
two connected peripheral nodes, respectively. Thus, summing
up all the eigenvalues and their degeneracies, we have ten
eigenmodes for the first class (layers oscillate in the same
direction) and another ten eigenmodes for the second class
(layers oscillating in opposite directions).

V. RESULTS

A. Space-time structures

First, we focus on three distinct small multilayer dendrimer
networks and study the quantum mechanical transition prob-
abilities in the framework of the CTQW model. In Fig. 3 we
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FIG. 3. Contour plots of the probability for a CTQW to start at node k and to be encountered at node j after times t = 10 (left column),
t = 20 (middle column), and t = 30 (right column) for the following sets of MD parameters: (a)–(c) (G,L,ND) = (1,11,4), (d)–(f) (2,4,10),
and (g)–(i) (3,2,22).

show the probability 
j,k of a CTQW to start at node k and
to be at node j after a certain time, given by Eq. (2), for
small MDs. For comparison, we choose three particular cases
of multilayer dendrimers with almost the same total number
of nodes. The first case corresponds to a long and thin MD
with L = 11 layers and a generation number G = 1 of the
dendrimer [Figs. 3(a)–3(c)]. The second case is a compact
MD with its dendrimer extension equal to the number of layers,
with G = 2 and L = 4 [Figs. 3(d)–3(f)], and the last one is
a large MD made of dendrimers of higher generation G = 3,
but only L = 2 layers [Figs. 3(g)–3(i)]. The probabilities for
three different times are shown in Fig. 3, namely, t = 10,
20, and 30 from left to right, respectively. For a long and
thin MD (first case) and t = 20 one can easily notice larger
probabilities on the antidiagonal, i.e., walkers that started at
t = 0 from the first layer are now more likely localized on the
last two layers and so on. Increasing the time to t = 30, we
observe a visible mixture of regions with higher probabilities
(green in the figure) and low probabilities (blue). The highest
probability, equal to 0.41, was encountered for a CTQW
that started at node 5 (center of the second layer), which at
time t = 30 is located at node 37 (center of the tenth layer)

37,5(30). For the most compact MD, with G = 2 and L = 4,
the localization effects on layers are immediately apparent
and the transport is more efficient through the bonds between

layers. For t = 20 (middle snapshot) one can see that all
walkers end up having higher probabilities at a central node
belonging to any of the four layers. However, this situation
becomes smoother at time t = 30, when we encounter a very
mixed pattern with fewer very low or very high probabilities.
The highest probability equals 0.17 and is obtained in 24
situations corresponding to a walker that starts at one node
from a layer’s periphery and ends up at another peripheral node
of the next neighboring layer, for example, 
5,16, 
6,15, 
25,36,
and 
26,35. The second highest probability is 0.16, which is
encountered also 24 times, corresponding to a walk between
any peripheral node of a layer and another peripheral node
from the next-nearest-neighbor layer, for instance, 
5,26 and

6,25. The last case, which corresponds to a MD with G = 3
and L = 2, is displayed in the last three snapshots of Fig. 3.
Here the localization effects are dominate for all the times,
because there are more nodes belonging to a dendrimer than
linear segments. For instance, in the snapshot of t = 30 one
can clearly notice that all the walks have 0.66 as their highest
probability and physically this means that a walk that started
at a certain node reaches its corresponding node from the other
layer.

In Fig. 4 we have the same three types of small MDs as in
Fig. 3. Here we monitor the time evolution of 
j,k(t) [Eq. (2)]
for some particular starting points and we display the results
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FIG. 4. Contour plot of the probability 
j,k for a CTQW on some small MD, namely, (a)–(c) (G,L,ND) = (1,11,4), (d)–(f) (2,4,10), and
(g)–(i) (3,2,22), as a function of time t . The starting node of the walker corresponds to the central node k = 1 of the peripheral layer (left and
right columns) and to the central node k = 21 (middle column, top row), central node k = 11 (middle column, middle row), and peripheral
node k = 11 (middle column, bottom row) of the middle layer.

only for integer values of time. As for single dendrimers,
it is worth mentioning that also for MDs the transition
probabilities from the central node to nodes belonging to the
same generation are equal due to rotational symmetry. Thus,
there is no need to study CTQWs for all possible starting nodes
of the excitation. The first column of Fig. 4 corresponds to
walks for which the starting point is the central node of the first
layer k = 1. For all three classes the walk is mainly localized
at the central nodes of the layers, with higher probabilities for
MDs with fewer layers. For all three small structures the walker
will return to the origin at different times and with different
magnitudes. It is important to stress that, due to the complexity
of the structures, an analytical expression for the revival time,
computed for ring chains [21], is not possible. The revival time
τ is obtained by solving the equation αj,k(τ ) = αj,k(0), where
αj,k is the transition amplitude between two nodes [see Eq. (6)].
However, only for small rings we encounter a full revival of
the initial condition; in general, we obtain partial revivals. For
our structures we understand by (incomplete) revival time τ

the numerically obtained time for which the probability 
j,k is
higher than 0.5. For our first structure with G = 1 and L = 11,
the revival time τ equals 80 and the initial localization (at node
1) is only partially retrieved, 
1,1(80) ≈ 0.59. For the second
network with G = 2 and L = 4 the revival time is shorter
τ = 44, but the return probability is higher, 
1,1(44) ≈ 0.86,

while for the third structure with G = 3 and L = 2 we obtain
the partial revival 
1,1(τ = 47) ≈ 0.91. It is important to
mention that for the last structure we encounter high values for
the probability 
j,k also at earlier times, such as t = 3,6,41,
giving weight to our statement that MDs with a low number of
layers lead to very strongly localized walks. We find more such
values by considering also noninteger values of time, as it will
be shown in Fig. 5. In the second column of Fig. 4 we show
results for the probability of a walker being at node k starting
from node 21 [Figs. 4(a)–4(c)] and node 11 [Figs. 4(d)–4(i)].
Notice that 21 in the top row corresponds to the central
node of the sixth layer, i.e., it is the node at the middle of
the structure of the first MD. Node 11 in Figs. 4(d)–4(f)
corresponds to the central node of the second layer, for the
second MD considered. Finally, node 11 for Figs. 4(g)–
4(i) is situated at the periphery of the first layer of the
third MD.

From all these frames one can see that the walks have
higher probabilities to be localized at the initial starting point
and at their corresponding nodes from other layers. This fact
strengthens our observation that the walker travels faster along
the linear segments than along the dendrimer’s segments of
the layers. Thus, an MD will experience two opposing effects
related to their mixed topologies, namely, a fast dynamics
arising from the linear segments and a strong localization
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FIG. 5. Probability 
j,k(t) for CTQW on three small multilayer dendrimer networks having as the starting node the origin k = 1 and as
the ending node (a) the origin and (b) the central node of the last layer.

due to the dendrimer parts of the network. In the rightmost
column of Fig. 4 we monitor the probability of the walk
being situated on a particular layer starting from the central
node of the first layer, node 1. For the first case (MD with
L = 11 layers), we notice a more disperse situation, which is
similar to the linear chain [21] due to the fact that the linear
segments are predominant here too. As in Figs. 4(a) and 4(b)
of this particular MD the incomplete revival time also occurs at
τ = 80, with 
1,layer1 ≈ 0.61. For the second MD considered
here, we observe that the walker returns more frequently to
the first layer and its return probability gets higher than in the
previous case: 
1,layer1(τ = 9) ≈ 0.84, 
1,layer1(22) ≈ 0.96,
or 
1,layer1(31) ≈ 0.88, to name a few. One can also see that
even though the probability for the walk to be on one of the
two peripheral layers gets very high for some values of time,
the probability to be on either of the inner layers (2 or 3)
is quite low. Its maximum is encountered at time t = 2 and
equals 0.45. In the last case, the MD with G = 3 and L = 2,
we observe an alternation of high and low probabilities, since
the MD contains only two layers.

For a more detailed picture of the walker’s time evolution
we plot in Fig. 5 the probability to return 
1,1(t) [Fig. 5(a)]
and the probability to reach the center node of the last
layer 
j,1(t) [Fig. 5(b)]. Here we choose the same three
small multilayer dendrimer networks used in the previous two
figures, but in contrast we display also noninteger values of
time. As observed in Fig. 4, the walker returns to the origin
with higher probability for MD with fewer layers. For the
multilayer dendrimer network with G = 3 and L = 2 one can
easily notice many peaks with probabilities higher than 0.5,
with the most pronounced peaks being at 
1,1(46.95) ≈ 0.92,

1,1(43.85) ≈ 0.86, and 
1,1(90.79) ≈ 0.84. Remarkably, the
second network, with G = 2 and L = 4, shows higher values
for the probability to return, which were also were encountered
at earlier times. This is due to the mixture of strong localization
effects, which is a feature of the dendrimer’s topology, and
higher spreading from and to the origin, which is a feature of
linear chain’s topology. The highest values are 
1,1(75.41) ≈
0.98, 
1,1(31.38) ≈ 0.93, and 
1,1(44.04) ≈ 0.87. For the
MD with a higher number of layers with G = 1 and L = 11,
we encounter fewer points with probability higher than 0.5

and the maximum is 
1,1(80.08) ≈ 0.61. The walker initially
evolves by following the linear chain’s behavior, namely, a
power-law decay with exponent −1, which is displayed by
the dotted line in the figure and is more evident for the
multilayer with 11 layers. From Fig. 5(b) we also notice
that the probability to reach the center of the last layer is
higher for the MD with fewer layers, due to dendrimer’s
predominance. The network with G = 3 and L = 2 has
the highest number of points with probability higher than
0.5, having the maximum 
23,1(74.04) ≈ 0.90. However, the
structure with G = 2 and L = 4 shows stronger localization
properties, having higher values for the probability with its
maximum 
31,1(37.71) ≈ 0.99. The small MD with G = 1
and L = 11 has fewer points with high probability with their
magnitude being lower: Its maximum is 
41,1(61.21) ≈ 0.57.
The multilayer dendrimer networks with fewer layers reach
the region of high probabilities faster.

B. Average return probabilities

In Fig. 6 we show the average probability for the excitation
to return to its initial starting point. Both the classical CTRW
p(t) [Eq. (5)] and the quantum mechanical CTQW |α(t)|2
[Eq. (6)] are considered. Here, to render the comparison easier
we choose networks with almost the same number of nodes,
but with vastly different topologies. We display results for two
limiting cases: a very long linear chain, with G = 0 and L =
98 302, and a very large dendrimer, with G = 15 and L = 1,
both structures having a total of N = 98 302 nodes. The third
structure is an MD composed of interconnected dendrimers
of generation G = 11 and L = 16 layers, corresponding to
N = 98 272 nodes. The asymptotic behavior of the classical
average probability p(t) at very long times, namely, a 1/N

dependence, is reached for all three structures, but at different
times. Remarkably, the multilayer dendrimer network gets to
the equipartition value faster than the other two structures.
This can be explained by the fact that MD contains a high
number of nodes with functionality higher than the nodes of
one-layer dendrimers. In the intermediate time domain the
classical average probability p(t) shows a power law with
slope −0.5008 for the line, similar to the expected theoretical
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FIG. 6. Comparison between quantum (CTQW) and classical
(CTRW) average return probabilities for multilayer dendrimers with
almost the same number of nodes, but with totally different geometry:
a lone large dendrimer (G = 15), a linear chain with N = L = 98 302
nodes, and a mixed situation (L = 16 layers of dendrimers with
generation number G = 11).

value 1/2, and an exponential decay exp(−0.0563t), followed
by another power law of slope −0.9744 for the dendrimer. For
the MD considered we obtained a power-law behavior with
slope −1.0417, while the exponential behavior gets very short.
Now we turn our attention to the quantum mechanical average
probability |α(t)|2. Immediately apparent is the behavior for
the linear chain, which follows the t−1 decay at intermediate
times and fluctuates around the long-time average at long
times, as obtained also in Ref. [21]. For a single dendrimer the
situation changes: The walks stay in a region close to the initial
node. The transport to other distant nodes is highly unlikely,
meaning that at long times the probabilities |α(t)|2 and |π(t)|
for any excitation to reach other nodes of the dendrimer stay
very low. For our MD considered, with G = 11 and L = 16,
we obtain a mixed situation because we have a combination of
two topologies: linear and dendrimer. The oscillating behavior
is also observed at short times, as for dendrimers. However,
the dynamics is no longer as localized as in the single
dendrimer case. Here the addition of connections between
various dendrimer layers enhances a long-range dynamics, the
excitation has higher probability to reach other branches of the
dendrimer.

C. Quantum transport

Finally, we monitor quantum transport on MDs by focusing
on the long-time average χ and its approximation χ∗, as given
by Eq. (8). We regard the quantum transport as being efficient
if χ is small, with its maximum efficiency at χ = 0, and
inefficient if χ approaches one. In Fig. 7 we plot in logarithmic
scale χ for MDs with the same generation number G = 6,
but a variable number of layers L ranging from 1 to 100.
In this way we are able to monitor the transition from a
dendrimer behavior to a predominant linear chain behavior.
For each set of parameters (G,L) we compute the eigenvalue
spectrum of the connectivity matrix A, using the results from
Sec. IV. Substituting into Eq. (8), we determine the quantum

0 20 40 60 80 100
L

10-3

10-2

10-1

χ

0 3 6 9 12 15
G

10-2

10-1

χ

FIG. 7. Long-time average χ for multilayer dendrimers with fixed
generation number G = 6 and a variable number of layer L. The inset
shows χ for a fixed number of layers L = 3 and different generation
number.

mechanical lower bound χ . For L = 1, i.e., a single dendrimer,
we obtain the value 0.11, which is close to the theoretical value
[41] of χ∞

D = 1/9. By a continuous increase of the number of
layers we switch to a predominantly linear topology and the
value of χ gets lower. In this case G = 6, in the limit of
a very large number of layers we observe a tendency to a
constant value for χ , equal to 0.0023. In Fig. 7 we present by
a dashed red line the best fit, namely, a power law χ ∝ L−0.8.
Regarding the quantum transport efficiency, we clearly observe
an increase in efficiency by almost two orders of magnitude if
the dendrimers are connected in a multilayer network fashion.
In the inset of Fig. 7 we display χ for MDs with the same
number of layers L = 3, but formed by dendrimers with
different generation numbers. In this case, for dendrimers with
a large generation number, we encounter the constant value of
0.038, which is close to the value of the above-proposed fitting
parameter χD/L0.8 ≈ 0.046.

In Fig. 8 we plot the results for the transport efficiency
measure χ and its approximation χ∗ [Eq. (8)] for MDs with
generation number G and number of layers L as a function of
both parameters (G,L). The left panel corresponds to the exact
χ and the right panel is the approximation χ∗. For a better
visualization we display these results in logarithmic scale
as a three-dimensional plot. The quantum transport on these
networks is better enhanced by adding more layers to a given
dendrimer than by increasing the generation number of the un-
derlying dendrimer. The lowest value of χ , which corresponds
to (G,L,NMD) = (15,31,3 047 362), equals 0.0046. This value
represents an increase in the transport efficiency on MDs
relative to a single dendrimer, with χ∞

D = 1/9 ≈ 0.111. Still,
it is higher if compared with a line: χN

line = 1/N . However,
by keeping constant the dendrimer’s generation number and
increasing the number of interconnected layers, χ gets lower,
meaning that the quantum transport efficiency is higher. As
for the approximate χ∗, we only observe the same trend as
χ , but this approximation does not hold for these structures.
This is due to the fact that the eigenvalue spectrum is not
as discrete as in the case of single treelike structures [41].
In particular, for a single dendrimer of generation G the most
degenerate eigenvalue equals 1 and its degeneracy is 3 × 2G−2.
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FIG. 8. Long-time average χ and its approximation χ∗ for multilayer dendrimers.

Substituting in Eq. (8) one gets χ∗ = (N2 + 16N − 4)/16N2,
which for very large dendrimers becomes 1/16.

VI. CONCLUSION

In this article we have focused on continuous-time quan-
tum walks on multilayer dendrimer networks, which are
constructed by adding identical layers on top of each other
and connecting them with their nearest neighbors. We have
monitored how the quantum mechanical transport is influenced
by increasing the number of layers. In the continuous-time
quantum walk model all physical quantities can be related
to the eigenvalues of the connectivity matrix. Deploying
the normal mode analysis, the eigenvalues for multilayer
dendrimer networks were computed analytically in a straight-
forward manner. In this way we managed to increase the

size of the networks, which allowed us to monitor the
transition between predominant dendrimerlike to predominant
linear topology. For a single dendrimer, the quantum walks
remain localized at the starting point, while for a line the
propagation of the walk is fast. We have shown that the slow
quantum mechanical transport observed for dendrimers can be
overcome by increasing the number of layers. We expect our
results to be of interest in several areas, such as quantum and
classical transfer of excitons, quantum transport on graphs, or
quantum computing, to name only a few.
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