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Temporal network structures controlling disease spreading
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We investigate disease spreading on eight empirical data sets of human contacts (mostly proximity networks
recording who is close to whom, at what time). We compare three levels of representations of these data sets:
temporal networks, static networks, and a fully connected topology. We notice that the difference between the
static and fully connected networks—with respect to time to extinction and average outbreak size—is smaller
than between the temporal and static topologies. This suggests that, for these data sets, temporal structures
influence disease spreading more than static-network structures. To explain the details in the differences between
the representations, we use 32 network measures. This study concurs that long-time temporal structures, like the
turnover of nodes and links, are the most important for the spreading dynamics.
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I. INTRODUCTION

The spread of infectious disease continues to be one of
the major challenges to global health. Despite advances in
genomics and access to large data sets, predicting outbreaks
is still disturbingly difficult [1]. Even knowing fairly much
about an outbreak (at the time of writing the major concern
regards the Zika virus [2]), nobody can be very certain
about its future. The basic mathematics of infectious disease
outbreaks as emergent phenomena is well studied. No paper,
to our knowledge, has strong alternatives to compartmental
models—models dividing individuals into classes with respect
to the disease and assigning transition rules between the
classes. Straightforward implementations of compartmental
models do not, however, explain the difficulties in predicting
emergent outbreaks in real populations [3]. There can be
many reasons for this difficulty to predict the extinction time
outbreaks. One obvious reason is that the data quality is
still not good enough to make high-precision forecasting.
There can, however, be other, more fundamental issues with
how the compartmental models are integrated with models
of contact patterns (describing how people meet in such a
way that disease can spread). In this paper, we investigate
different levels of representing contact structures: as temporal
networks (including information both of the time of contact
and the individuals involved), as static networks (including
information of pairs of people between which the disease
can spread), and as fully connected networks (which is the
traditional contact structure of theoretical epidemiology [4]).

Many studies have pointed out that, to model disease
spreading accurately, we need to understand both static-
network structures [5,6] and temporal-network structures [7].
To make this point, a standard approach has been to first
observe some structure in empirical data, then use models
to prove this structure affects disease spreading, and finally
conclude that this structure is important for epidemics. For
example, Ref. [8] observed power-law distributions of degree
(number of neighbors in the network) in sexual networks,
and Ref. [9] showed that model networks with power-law
degree distributions need not have an epidemic threshold, thus
concluding the degree distribution is an important structure.
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For another example, Ref. [10] found power laws in interevent
time distributions, and Refs. [11,12] showed that outbreaks
are slowed down by such fat-tailed distributions. Can we
from this conclude that timing of contacts is important for
disease spreading? Perhaps, but Ref. [13] argued that other,
longer time-scale temporal structures are even more important.
However, also Ref. [13] tested two a priori chosen structures.
There could of course be other structures present affecting the
spreading processes even more strongly. The idea of this paper
is to scan the possible structures in a less restrictive way, so as to
be open to the discovery of new important temporal-network
structures. For the same reason—that it is hard to a priori
reason about what the important temporal-network structures
are—we use empirical networks as our starting point rather
than models generating the contact structure.

In this paper, we run the susceptible-infectious-recovered
(SIR) compartmental disease spreading model (a canonical
model for diseases that give immunity upon recovery) on
eight human contact networks. We use temporal-network,
static-network, and fully connected representations of these
data sets. Then, to explain the deviations between the three
representations, we explore 32 quantities measuring temporal-
network structure.

II. PRELIMINARIES

In this section, we clarify the methods and precise model
definitions in common with the rest of the paper. We also
mention some computational considerations. In general, we
assume a temporal network H as input. It can be described as
a list of C contacts (i,j,t) where i,j ∈ V are individuals and
t is the time of the contact (assuming a discretized time, as
is common for most data sets). The order of i and j does not
matter. We set the smallest time to zero and label it T .

A. SIR simulation

We use the constant-duration version of the SIR model [14].
In this model, a contact between susceptible and infectious
individuals infects the susceptible (instantaneously) with a
probability λ. Then the infectious recovers a time δ later, and
stays recovered for the rest of the simulation. The infection
seed is chosen randomly and taken to become infectious
immediately prior to its first contact. When there are no
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infectious individuals left, the infection is extinct. The time
from when the infection is introduced until the last recovery
is the extinction time, τ . The fraction of recovered individuals
when the outbreak is extinct is the outbreak size, �.

For the static networks, we consider a disease spreading
on a graph G = (V,E) where (i,j ) ∈ E if there is a contact
(i,j,t) ∈ H . We generate C contacts between individuals con-
nected by a link in E at randomly chosen times between zero
and T . Thus we use as closely as possible the original data (as-
suming the maximum entropy principle—to maximize the ran-
domness of the unknown structures). Analogously, for the fully
connected case, we also generate C contacts at times in the
interval [0,T ], but this time it can be between any pair of nodes.

Each data point of the 20 × 20 parameter combinations is
averaged over 2 × 105 independent runs. We let the sequences
of λ and δ grow exponentially, as will be evident later, and
exponential growth is needed to separate the data sets. For the
same reason it is convenient to use the logarithm (we use the
base-ten logarithm) of these values for discussion.

B. Data sets

As mentioned above, this study is based on empirical data
sets of human proximity. In other words, they record two
persons in close proximity at a certain time. For obvious
reasons, these are interesting for disease spreading. We list
the basic statistics—sizes, sampling durations, etc.—of the
data sets in Table I.

Our first data set (Prostitution) comes from self-reported
sexual contacts between female prostitutes and male sex
buyers [15]. This is a special form of proximity network
in that a contact is sexual. Perhaps it should be classified
as a separate type of network, but it is relevant for disease
spreading. Several other data sets come from the Sociopatterns
project (sociopatterns.org). These data sets are created by
radio-frequency identification sensors that record a contact
when two sensors are within 1–1.5 m. One of these data sets
comes from a conference [16] (Conference), another from a
school (School) [17], a third from a hospital (Hospital) [18],
and a fourth from an art gallery (Gallery) [19]. The Gallery

TABLE I. Basic statistics of the data sets. N is the number of
individuals, C is the number of contacts, T is the total sampling time,
t-res. is the time resolution of the data set, and M is the number of
links in the projected static networks.

Data set N C T t-res. M

Prostitution 16 730 50 632 6.00 yr 1 d 39 044
Conference 113 20 818 2.50 d 20 s 2 196
Hospital 75 32 424 96.5 h 20 s 1 139
Reality 64 26 260 8.63 h 5 s 722
School 1 236 60 623 8.64 h 20 s 5 901
School 2 238 65 150 8.58 h 20 s 5 541
Gallery 1 200 5 943 7.80 h 20 s 714
Gallery 2 204 6 709 8.05 h 20 s 739

data set comprises 69 days where we use the first two. School
consists of 2 days and we use both.

A similar data set to the Sociopatterns data sets comes from
the Reality mining study [20] (Reality). Here contacts within
a cohort of university students were recorded by the Bluetooth
channel of smartphones. The range of such connections is
between 10 and 15 m. We use the same subset of the data set
as in Ref. [21].

C. Temporal network descriptors

To characterize the temporal-network structures of the data
sets, we use 32 different quantities, which we call network
descriptors. We choose these both to be relatively simple and
straightforward to interpret and to cover as wide a spectrum of
structures as possible.

1. Time evolution

We measure nine network descriptors characterizing the
long-term behavior of the contact dynamics—briefly speaking,
how the contact process differs from a stationary process.
Some of these data sets (e.g., Prostitution, Gallery 1 and
Gallery 2) are growing throughout the sampling period, and
this has been argued to influence the spreading dynamics

0 T/2 Tt

0 T/2 Tt 0 T/2 Tt

0 T/2 Tt0 T/2 Tt

0 T/2 Tt

0 T/2 Tt

0 T/2 Tt

School 2School 1

ConferenceProstitution Hospital Reality

Gallery 1 Gallery 2

FIG. 1. A visualization of the temporal structures of the data sets. The nodes are represented by a coordinate of the vertical axis. A contact
at a certain time is displayed as a horizontal line between the coordinates of the nodes involved. The assignment of coordinates is optimized to
reduce the total vertical distance of the lines.
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FIG. 2. The network structure of the networks of aggregate contacts displayed using the “Force Atlas 2” method of the software package
GEPHI (gephi.org).

strongly [13]. In such a system, the disease could burn
out in the population even before some individuals have
entered it.

The first of these measures focuses on the time when nodes
and links first appear in the data. First, we measure the fraction
of nodes (links) present at half the sampling time relative to
the final number of nodes, fT N (links, fT L). Some studies
argue that the order of events is a more natural measure of time
than the actual time. Thus we also measure the corresponding
quantities fCN and fCL, where half the sampling time is
replaced by half the contacts.

The second class of network descriptors focuses on the
persistence nodes or links. Let FT N (FT L) be the fraction of
nodes (links) present in the first and last 5% of the time. The
corresponding quantities for the sequence of contacts are FCN

and FCL.
Yet a measure related to the time evolution is the largest

gap g on the contact sequence. (During a gap, the disease
cannot spread, and for long enough gaps, the disease could die
out.)

2. Node and link activity

The node- and link-activity descriptors capture the bursty
nature of human behavior, i.e., intense periods of activity
separated by long periods of inactivity [22]. One can imagine
many ways to measure burstiness. The common starting point
is interevent times—the time gap between consecutive contacts
of a node or link. We measure four descriptors characterizing
this kind of time series—the mean μ, standard deviation σ ,
coefficient of variation, c (i.e., the standard deviation divided
by the mean), and the skewness,

γ = (n2 − n)1/2

n − 2

μ3

μ
3/2
2

, (1)

where μ2 and μ3 are the second and third moment of the
distribution, respectively.

Some studies have pointed out that the duration (time
from the first to the last observation) of nodes or links can
be important for spreading phenomena [13]. Therefore, we
also study the distribution of node and link durations by the

School 2

ConferenceProstitution Hospital Reality

Gallery 1School 1 Gallery 2
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FIG. 3. Average extinction times for the SIR model on eight temporal-network data sets of human proximity.
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FIG. 4. The difference between the average time to extinction of static- and temporal-network representations of the contact patterns.

same four descriptors as the interevent times. In total, for
this category, we define 16 network descriptors—μ, σ , c, and
γ , for both interevent-time and duration distributions and for
both nodes and links. See Fig. 1 for visualizations of the time
structure of the data sets.

3. Measures of static-network structure

How contact structures affect dynamic processes, such as
epidemic spreading, is more established for static-network
structures than for temporal structures. We measure the static-
network structure for the networks of accumulated contacts;
i.e., if there has been at least one contact between two nodes
we consider them connected by an link.

Arguably, the most important static-network structure is the
degree distribution describing how frequent it is to observe
a node of a particular degree. Essentially a broad, right-
skewed degree distribution (such as that frequently observed
in real systems) speeds up spreading phenomena [6]. Usually
researchers are interested in inferring the functional form of
the degree distribution. For our purpose, we need to summarize
the structures to numbers, no matter the functional forms.
Therefore, we measure the same four quantities—μ, σ , c,
and γ —as for the interevent time and duration distributions.

In addition to the degree distribution, we also measure
other static-network descriptors. First, and simplest, is the
number of nodes, N (but not the number of links since it
is equal to Nμdeg/2). The next static-network descriptor is the
assortativity r . This is, in essence, the Pearson correlation of

the degrees at either side of a link. One only has to symmetrize
the arguments of the correlation coefficient (since the first
and second arguments are different, but links are unordered
with respect to the nodes—see Ref. [23] for details). The
assortativity captures the tendency for nodes of similar degree
to connect to each other. A large assortativity means that
high-degree nodes connect to other high-degree nodes, and
low-degree nodes connect to other low-degree nodes. It has
been shown to have an influence on disease dynamics—
assortative networks have lower epidemic thresholds [24].
Finally, we study the clustering coefficient—the number of
triangles in the network normalized to the unit interval [23].
A high clustering coefficient is known to slow down disease
spreading [25].

See Fig. 2 for visualizations of the networks of accumulated
contacts. Just like Fig. 1, this figure does not tell us more than
that there are rich structures in the network topology that can
influence the outbreak dynamics.

D. Overlap statistics

We look at groups of data sets with different behavior of the
SIR model with respect to the three levels of representations
of the contacts. A good candidate network descriptor should
separate the two groups well. With more samples, we could
use, e.g., the mutual information or Kullback-Leibler diver-
gence, but with only eight data points, we can use a simpler
quantity relying on the extreme values of the quantity for
the two groups. Let A be one subset of the data sets and B
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FIG. 5. The difference between the average time to extinction of fully mixed and temporal-network representations of the contact patterns.
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FIG. 6. Average outbreak sizes for the SIR model on eight temporal-network data sets of human proximity.

its complement. Let v(G) be the value for a quantity as a
function of the data set G. Furthermore, assume (without loss
of generality) that maxG∈A v(G) � maxG∈B v(G). Then, more
specifically, we measure

xv(A,B) = minG∈A v(G) − maxG∈B v(G)

maxG∈A v(G) − minG∈A∪B

. (2)

In other words, if {v(G) : G ∈ A} and {v(G) : G ∈ B} do
not overlap, then x is the smallest difference between values
in the two sets divided by the largest difference. If x = 1,
the separation is maximal. If A and B do overlap, x will
be negative, reaching a minimum of −1 if the range of
{v(G) : G ∈ A} and {v(G) : G ∈ B} are the same.

III. RESULTS

A. Extinction time

One of our main quantities is the mean time to extinction,
τ . Figure 3 shows the values for the SIR model simulated on
temporal-network representations. τ is strictly increasing with
the disease duration δ but has a maximum in the per-contact
transmission probability λ. The maximum comes from two
conflicting mechanisms [26]. For small λ, decreasing λ gives
fewer chances for contagion and an increasing chance of the
disease dying out. For large λ, the disease burns out fast in the
population. The actual location of the peak varies much, from
close to the maximum λ = 1 for the Prostitution data set to
log10 λ ≈ −1.8 for the Hospital data.

The effect of removing the temporal information by
aggregating the contacts to a static network is seen in Fig. 4.
This figure shows the deviation �τ between τ of the static and
temporal networks (so negative values mean the outbreaks
last longer in temporal networks). We see the Prostitution,
Gallery 1, and Gallery 2 data sets are different than the
others in that they do not have regions of negative �τ—the
static networks always give longer outbreaks. If we proceed,
removing the network structure by making the network fully
mixed (i.e., fully connected), then not much more happens
(Fig. 5). �τ becomes larger for some regions of, in particular,
the Gallery data sets. The qualitative picture is, however,
the same. Except for Prostitution, Gallery 1, and Gallery
2, extinction times are underestimated for the largest log10 λ

and log10 δ and overestimated for intermediate log10 λ and
log10 δ. This seems to suggest that the extinction time is
more dependent on temporal than on topological structures—a
hypothesis in line with previous studies [27] but still open for
future studies. For some data sets, this is somewhat trivial—the
Hospital data, as the most extreme example, has 1,139 links
(i.e., ∼41% of the pairs of nodes are connected). On the one
hand, this can certainly be true in many real situations, like
a disease spreading at a hospital ward, farm, or some other
closed community. On the other hand, the observation is still
true even for the sparsest of data sets.

B. Outbreak size

The average expected outbreak size � is perhaps a
more common quantity than τ to characterize outbreaks in
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FIG. 7. The difference between the average outbreak size of static- and temporal-network representations of the contact patterns.
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FIG. 8. The difference between the average outbreak size of fully mixed and temporal-network representations of the contact patterns.

computational studies of disease spreading. Figure 6 shows
the values of � throughout the parameter space (for most data
sets, these values were also presented in our Ref. [28]). �

is monotonically increasing with log10 λ and log10 δ which
probably is inevitable on average (even though, for specific
seeds i, a larger log10 δ can lead to the disease burning out so
fast around i that it is already extinct when a contact leading
away from i’s vicinity appears).

Figures 7 and 8 show, respectively, the deviation when
the temporal and both temporal and topological information
is removed. Unlike τ , the static-network structure creates a
qualitative difference—but only for the Prostitution data. For
this data set, the outbreak sizes are consistently underestimated
for the fully connected networks, while for the static networks,
λ = δ roughly separates two regions—for δ > λ the outbreak
sizes are overestimated whereas for δ < λ they are underesti-
mated. Below, we look for a structural explanation behind this
phenomenon.

C. Structural explanations

In this section, we try to find which network structures affect
the effects found above. First, the Prostitution and Gallery data
sets differ from the others in that they lack a region of parameter
space where the representations without temporal structure
overestimate the time to extinction. Second, the Prostitution
data set has a different response to removing the network
structure than all the other data sets.

First, we investigate which network descriptors that sepa-
rates A = {Prostitution,Gallery 1,Gallery 2} from the rest
[A refers to Eq. (2) and the discussion about it]. The top three
quantities v with respect to xv along with their values for the
two groups of data sets are plotted in Fig. 9(a). (Values of
the other quantities can be found in the Appendix.) These
three quantities—the average life time of nodes, μNt , and
links, μLt , and the fraction of nodes present at half of the
contacts, fnC—are all temporal in nature and all related to
the turnover of individuals in the data, rather than higher
frequency properties like the interevent time statistics. In
more detail, we see that the data sets without regions of
negative �τ are characterized by a short average presence
of the nodes and links in the data, and thus a high turnover
of individuals. Representing such temporal networks as static
networks destroys the long-time-scale effects, such as that a

node present early in the data cannot be infected by a node
present only late in the data.

Our second investigation concerns how Prostitution differs
from the other data sets [Fig. 9(b)]. We find that the quantities
with the largest v values are the number of nodes, N , the
average interevent time of nodes, μNt , and the skewness of the
degree distribution, γk . These three quantities are very different
from the ones that explain the other effect [in Fig. 9(a)]. The
number of nodes is probably not an explanation for this effect
in itself, but it could help accentuate other effects. The long
average interevent times of Prostitution come from a very
skewed distribution of the number of contacts (a quantity
we do not measure directly). The few-contact individuals
can have long dormant periods and thus increase the average
interevent time. (Individuals with only one contact, of which

50000 10000 15000
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0 0.01
average interevent time, μNt

0.020.005 0.015

0 10.5
average life time of nodes, μNd

0.10 0.2 0.3
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fraction of nodes predent after half the contacts, fNC
0.5 10.6 0.7 0.8 0.9

0 105
skewness of degree distribution, γk

(b)

(a)

x = 0.9895 

x = 0.9242 

x = 0.9193

x = 0.3924

x = 0.4177

x = 0.4867

Prostitution Conference Hospital

Gallery 2Gallery 1School 1 School 2

Reality

FIG. 9. (a) The top three temporal-network structures separating
the Prostitution, Gallery 1, and Gallery 2 data sets from the rest
of the data sets and (b) separating Prostitution from the rest. x is
the difference between the smallest value (of the network structural
measure in question) of the set containing the largest value, and the
largest value of the other set divided by the difference between the
largest and smallest values in the union of the sets.
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there are around 35%, do not contribute to μNt .) The degree
distribution is a very well studied quantity, responsible for
many peculiar features in static-network epidemiology (such
as the vanishing of epidemic thresholds or the emergence
of superspreaders [6]). It is therefore reassuring to see
its skewness as one of the top explanatory descriptors. It,
furthermore, makes sense that the difference between the static
networks and the fully connected networks is best explained by
static-network quantities. However, except for the Prostitution
data, the static and fully connected networks deviate from
the temporal network in the same way, which means that the
temporal structures are more influential with respect to disease
spreading for these data sets, not only for τ but also for �.

IV. DISCUSSION

We have compared SIR simulations (the entire param-
eter space) on three levels of representations of empirical
contact data—temporal networks, static networks, and fully
connected networks. We used two quantities characterizing
the evolution of the outbreak—the time to extinction and the
average outbreak size. We see that going from a temporal-
network representation to static-network or fully connected
network representations can lead to both a severe under- and

overestimation of both the extinction time and the average
outbreak size. In general, short disease durations and high
transmission probabilities lead to an overestimation when
the temporal information is discarded. Going from a static-
network representation to a fully connected topology does not
make much of a difference except for one data set (Prostitution)
and one of the quantities (average outbreak size). Looking
closer at the quantities determining the patterns of over-
and underestimation of τ and � also gives that quantities
describing the time evolution of the network are the most
influential structures (in agreement with Ref. [28]). Static-
network structure and shorter-time-scale temporal structure
such as interevent times matters less. These observations are,
of course, specific for the particular data sets we study (which
is in line with other studies [13,27]). The results should be
generalized with care. On the other hand, the contact data
sets we use are as good as we can possibly obtain. There
are no obvious structures in these data sets that disqualify
them as representative of real data sets (except, perhaps,
the limited sizes). At the very least, this should encourage
more research into the role of time structures in disease
spreading.

There are many possible extensions of this work. Even
though we used a generous amount of 32 network descriptors,

TABLE II. Symbols and brief explanations of the network descriptors.

Descriptor A1 A2

fNC , fraction of nodes present when half of the contacts happened 0.4177 −0.8875
fNT , fraction of nodes present at half the sampling time 0.0240 −0.0294
fLC , fraction of links present when half of the contacts happened 0.1289 0.0020
fLT , fraction of links present at half the sampling time 0.3113 −0.3005
FNC , fraction of nodes present at both the first and last 5% of the contacts 0.0762 0.0702
FNT , fraction of nodes present at both the first and last 5% of the sampling time 0.0263 −0.0989
FLC , fraction of links present at both the first and last 5% of the contacts 0.0610 0.0332
FLT , fraction of links present at both the first and last 5% of the sampling time −0.2930 −0.0515
μLt , mean link interevent time −0.6539 0.3460
σLt , standard deviation of interevent times of links −0.0022 −0.6815
cLt , coefficient of variation of interevent times of links, i.e., the average link burstiness 0.1274 0.0839
γLt , skewness of interevent times of links −0.7223 0.1574
μLd , mean duration (time between first and last contact) of links 0.3924 0.0205
σLd , standard deviation of the duration of links 0.2138 0.3460
cLd , coefficient variation of the duration of links −0.8187 −0.6815
γLd , skewness of the duration distribution of links −0.0097 0.0839
μNt , like μLt but for nodes −0.0590 0.9242
σNt , like σLt but for nodes −0.3793 0.6206
cNt , like cLt but for nodes, i.e., the node burstiness 0.1882 0.0382
γNt , like γLt but for nodes −0.1489 0.2697
μNd , like μLd but for nodes 0.4867 −0.1257
σNd , like σLd but for nodes −0.3577 −0.5342
cNd , like cLd but for nodes 0.1160 0.4076
γNd , like γLd but for nodes 0.1922 −0.9673
g, the longest gap between any two contacts in the data 0.1022 −0.1808
μk , average degree of the network of accumulated contacts 0.3378 0.0545
σk , standard deviation of the degree distribution of the network of accumulated contacts 0.0956 −0.3605
ck , coefficient of variation of the degree distribution of the network of accumulated contacts 0.1009 0.8177
γk , skewness of the degree distribution of the network of accumulated contacts −0.0169 0.9193
N , number of nodes −0.0022 0.9895
C, clustering coefficient of the network of accumulated contacts −0.1388 0.6517
r , degree assortativity of the network of accumulated contacts −0.4554 −0.0989
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one can imagine many others—describing how static-network
quantities change over the sampling time, how the activity
level of nodes and their network position are correlated, etc.
It would also be interesting to include a weighted network
representation as an intermediate between the static and
temporal representations. Ultimately, one would like to use
results from this type of study to construct generative models
for outbreak scenarios, retaining the important structures but
not more. Indeed, some such models have already been
proposed [29,30] but, to our knowledge, none that focuses
on the longer-time-scale features that we find important.
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APPENDIX

This Appendix contains the x values for all network
descriptors and the two splits A1 = {Prostitution,Gallery 1,

Gallery 2} and A2 = {Prostitution}, respectively. See Table II.
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