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A majority of studied models for scale-free networks have degree distributions with exponents greater than
two. Real networks, however, can demonstrate essentially more heavy-tailed degree distributions. We explore
two models of scale-free equilibrium networks that have the degree distribution exponent γ = 1, P (q) ∼ q−γ .
Such degree distributions can be identified in empirical data only if the mean degree of a network is sufficiently
high. Our models exploit a rewiring mechanism. They are local in the sense that no knowledge of the network
structure, apart from the immediate neighborhood of the vertices, is required. These models generate uncorrelated
networks in the infinite size limit, where they are solved explicitly. We investigate finite size effects by the use of
simulations. We find that both models exhibit disassortative degree-degree correlations for finite network sizes.
In addition, we observe a markedly degree-dependent clustering in the finite networks. We indicate a real-world
network with a similar degree distribution.
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I. INTRODUCTION

Scale-free networks have been in the forefront of networks
research for almost two decades. Examples range from social
networks [1,2] and biological networks [3,4] to artificial
networks like the internet [5] and the World Wide Web [6,7].
The widely accepted mechanism for the evolution of growing
scale-free networks is preferential attachment [8]. This mech-
anism has been extensively explored and many generalizations
and modifications of the original model have been suggested
[9–13]. The same principle has also been applied to equi-
librium networks [14]. The preferential attachment mecha-
nism has relationships with random multiplicative processes
([15–18]) which have relevance in many fields of statistical
physics, and are known to produce skewed distributions.
Besides preferential attachment, some other methods of pro-
ducing scale-free networks have been exploited; for example,
fitness-based models [19–21], merging processes [22–24],
optimization models [25,26], urn-based statistical ensem-
bles [27,28], networks embedded into metric spaces [29,30],
and others.

Most well-studied real networks appear to have degree
distribution exponents larger than two. As a result, and also due
to the popularity of the preferential attachment mechanism,
networks with smaller exponents have received much less
attention. In such networks the mean degree diverges, and
consequently the “natural” cutoff of the degree distribution
scales with the system size in a different way compared to
networks with higher exponents [24]. The case of γ = 1 is
even more peculiar: the normalization condition implies that
the cutoff of the degree distribution must remain finite in an
infinite system. This circumstance makes it rather difficult to
clearly identify such distributions in empirical data obtained
from sparse networks. On the other hand, if the mean vertex
degree is sufficiently large, this kind of distribution can be
observed (see below), which justifies our investigation. To our
knowledge, the only studied model for networks with γ = 1,
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was that of trees growing based on “the power of choice”
(local optimization of the new connections) [26]. Note that
variations of the models with hidden variables [31–33] can
also generate such degree distributions if one chooses an
appropriate distribution of hidden variables.

In the present paper we consider two simple equilibrium
network models producing γ = 1. These rewiring models are
local in the sense that the vertices need to “know” only the
structure of their immediate neighborhoods. We show that the
resulting degree distribution has a simple exact solution in
the sparse network limit, where the network is uncorrelated,
which is a power law of γ = 1 with an exponential cutoff
that is determined by the mean degree. We perform extensive
numerical simulations of these models for finite networks, and
observe marked disassortative degree-degree correlations.

II. THE MODELS

A well-studied class of mechanisms that is known to
produce power-law distributions, is random multiplicative
processes [15–18]. The essence of such models is that the
fluctuations of random variables are proportional to their
values (independent fluctuations would result in classical
Brownian dynamics). A simple example of such processes
is discussed in [34] and is shown to generate power-law
distributions of exponent one. We use a similar principle. In
our case, the random variables are the degrees of nodes in
the network. Instead of fluctuations which are proportional to
the values of the random variables, we apply fluctuations of a
fixed size (rewiring one link at a time) with a probability that
is proportional to the values of the random variables (degrees
of nodes). Here we consider a model of equilibrium networks
that realizes this scheme.

Model 1. Consider an arbitrary connected graph. At every
step of the evolution do the following:

(1) Choose an edge uniformly at random (edge e in Fig. 1).
(2) Reattach a neighbor (node A in Fig. 1) of one of its end

nodes to the other (from node B to node C in Fig. 1).
Repeat the above procedure until equilibrium is reached. In

the second step node A is chosen uniformly at random from
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FIG. 1. Schematic representation of the evolution mechanism for
models 1 and 2.

the set of all neighbors of B which are not neighbors of C (and
are not themselves C). If there are no such nodes, then nothing
should be done in this iteration.

We denote the degree distribution by P (q). The joint
degree distribution, i.e., the probability that the end nodes

of a uniformly randomly chosen link have degrees q and q ′
is denoted by P (q,q ′), and the conditional probability that an
end node of a random link has degree q given that the other
end node has degree q ′, by P (q|q ′). In a given step of the
evolution the probability of a node of degree q to be chosen as
node B is

PB(q) = 1

2

qP (q)

〈q〉 (1)

and, similarly, the probability of a node of degree q to be
chosen as node C is

PC(q) = 1

2

qP (q)

〈q〉 = PB(q). (2)

Assuming that in equilibrium, clustering is purely a result
of degree-degree correlations, we introduce R(q,q ′), the
probability that if a node of degree q is chosen as B and a
node of degree q ′ as C, then a rewiring is possible, i.e., that B

has at least one neighbor that is not a neighbor of C:

R(1,q ′) = 0,

R(q > 1,q ′) = 1 −
⎧⎪⎪⎪⎪⎩

∑
k

P (k|q)P (q ′|k)
(q ′ − 1)(k − 1)

Nq ′P (q ′)

⎫⎪⎪⎪⎪⎭
q−1

= 1 −
⎧⎪⎪⎪⎪⎩ 〈q〉2(q ′ − 1)

Nqq ′P (q)P (q ′)

∑
k

P (k,q)P (q ′,k)(k − 1)

kP (k)

⎫⎪⎪⎪⎪⎭
q−1

, (3)

where N is the number of nodes in this network. Now we can
write the probability that a node of degree q is chosen as B

and rewiring is possible:

PB,r (1) = 0,

PB,r (q > 1) = 1

2

qP (q)

〈q〉
∑
q ′

P (q ′|q)R(q,q ′). (4)

Similarly, the probability that a node of degree q is chosen as
C and rewiring is possible:

PC,r (q) = 1

2

qP (q)

〈q〉
∑
q ′>1

P (q ′|q)R(q ′,q). (5)

It is easy to see from Eq. (3) that in the limit N → ∞,
R(q,q ′) = 1 for any q > 1,q ′ and R(1,q ′) = 0. In this case,
Eq. (4) reduces to

PB,r (1) = 0,

PB,r (q > 1) = 1

2

qP (q)

〈q〉 , (6)

and Eq. (5) becomes

PC,r (q) = 1

2

qP (q)

〈q〉 b(q), (7)

where b(q) = 1 − P (1|q). Noting that in the stationary state
the probability of a node of degree q + 1 losing an edge must
match the probability of a node of degree q gaining an edge, we
can write the stationary equation for the degree distribution:

PC,r (q) = PB,r (q + 1). (8)

Substituting Eqs. (6) and (7) into Eq. (8), we have

1

2

qP (q)

〈q〉 b(q) = 1

2

(q + 1)P (q + 1)

〈q〉 . (9)

We see that degree-degree correlations appear only in b(q). If
we assume that b(q) is constant (this is a weaker assumption
than assuming that correlations are entirely absent), then
b(q) = c = 1 − 1P (1)/〈q〉. This can be easily seen in the
following way. For any network, regardless of degree-degree
correlations, the degree distribution of end nodes of links is
qP (q)/〈q〉 (the probability that a randomly chosen end node
of a randomly chosen link has degree q). The probability that
an end node of a randomly chosen link has degree 1 is therefore
1P (1)/〈q〉. This probability can also be written as

1P (1)

〈q〉 =
∑

q

P (1|q)
qP (q)

〈q〉 . (10)

Assuming that P (1|q) is constant [P (1|q) = h], we have

1P (1)

〈q〉 =
∑

q

P (1|q)
qP (q)

〈q〉 =
∑

q

h
qP (q)

〈q〉 = h. (11)

Therefore b(q) = 1 − P (1|q) = 1 − 1P (1)/〈q〉 = c. Then
Eq. (9) is simply

qP (q)c = (q + 1)P (q + 1). (12)

The solution of Eq. (12) is the following:

P (q) = Aq−1e−q/qcut , (13)

where qcut = −1/ ln c. The cutoff qcut may also be expressed
in terms of the mean degree 〈q〉. The constant A in Eq. (13),
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from the normalization condition, is

A = 1∑∞
q=1 q−1e−q/qcut

= − 1

ln(1 − e−1/qcut )
∼= 1

ln qcut
, (14)

and the mean degree is

〈q〉 = A

∞∑
q=1

e−q/qcut = A

1 − e−1/qcut

∼= qcut

ln qcut
, (15)

so qcut

qcut
∼= 〈q〉 ln〈q〉 (16)

is independent of the system size.
Using Eq. (3), it is possible in principle to write the complete

master equation for the degree-degree distribution P (q,q ′)
in the general case and solve it numerically. However, this
undertaking would be very cumbersome, therefore, instead, in
Sec. III we present simulation results. Let us first introduce an
alternative formulation of the above model.

Model 2. Consider an arbitrary connected graph. At every
step of the evolution do the following:

(1) Choose a node uniformly at random (node A in Fig. 1).
(2) Choose a neighbor of A uniformly at random (node B

in this figure).
(3) Choose a second neighbor of A through B (node C)

uniformly at random from all second neighbors of A through
B. If no such node exists, do nothing in this iteration.

(4) Rewire A from B to C (as in the figure).
Repeat the above procedure until equilibrium is reached. In

other words, a node rewires its connection from a randomly
chosen nearest neighbor to a “descendant” of this neighbor.
We can write the probability PB(q) that in a given step of the
evolution a node of degree q is selected to be node B:

PB(q) =
∑
q ′

PA(q ′)P (B:q|A:q ′) = 〈q〉
∑
q ′

P (q,q ′)
q ′ , (17)

where P (B:q|A:q ′) is the conditional probability that a node of
degree q is chosen to be node B, given that a node of degree q ′
was chosen to be node A. Assuming, again, that in equilibrium,
clustering is purely a result of degree-degree correlations, and
considering the limit N → ∞ (i.e., assuming that clustering
goes to zero), we can write the probability PBC(q,q ′) that at
a given step a node of degree q is chosen as B and a node of
degree q ′ as C:

PBC(1,q ′) = 0,

PBC(q > 1,q ′) = PB(q)P (C:q ′|B:q)

= 〈q〉
∑
q ′′

P (q,q ′′)
q ′′

P (q,q ′)
qP (q)

〈q〉

= 〈q〉2 P (q,q ′)
qP (q)

∑
q ′′

P (q,q ′′)
q ′′ . (18)

Again, requiring that in the stationary state the probability of a
node of degree q + 1 losing an edge match the probability of

a node of degree q gaining an edge, we can write the equation∑
q ′

PBC(q + 1,q ′) =
∑
q ′

PBC(q ′,q). (19)

We see that even in the limit of infinite size, the situation is
much more complex than Eq. (9). If we further assume that
if N → ∞, then the equilibrium network is uncorrelated, i.e.,
that the degree-degree distribution factors, we find that Eq. (17)
reduces to

PB(q) = qP (q)

〈q〉 . (20)

Then Eq. (18) takes the simple form:

PBC(1,q ′) = 0,

PBC(q > 1,q ′) = qP (q)q ′P (q ′)
〈q〉2

, (21)

and the stationary equation [Eq. (19)] is now simply

(q + 1)P (q + 1)

〈q〉 = qP (q)

〈q〉 c (22)

with c = 1 − 1P (1)/〈q〉, which is identical to Eq. (12).
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FIG. 2. Degree distribution of sparse equilibrium networks of
mean degree 〈q〉 = 20 and different sizes for model 1 (a) and
model 2 (b).
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FIG. 3. Degree dependence of the mean degree qnn of the nearest
neighbours of a node of degree q for sparse equilibrium networks of
mean degree 〈q〉 = 20 and different sizes. (a) model 1, (b) model 2.
The mean degree qnn is normalized by its value for the corresponding
uncorrelated network.

We see that in the limit N → ∞, assuming that the
network is then uncorrelated, the two model formulations are
equivalent. Models 1 and 2 are closely related, exploiting the
same mechanism. While model 1 is in fact a null model,
there is a rationale behind model 2. In this model, a node
redirects one of its connections to get the farthest possible reach
by using only local information from its nearest neighbors
(the lists of their neighbors). The redirection of a link, instead
of the addition of a new one, corresponds to evolution with
limited resources. In the following we employ simulations to
investigate the behavior of the two models in a wide range
of system sizes. The simulations indicate that in the infinite
sparse network limit, both formulations lead to uncorrelated
equilibrium networks, although the models are significantly
different for finite networks.

III. SIMULATIONS

We performed simulations of varying system sizes and
mean degrees, averaging over at least ten realizations for
each combination of parameters. The starting graph in each
simulation was a connected random graph generated in the
following way: first all the nodes were linked in a chain to
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FIG. 4. Degree dependence of the local clustering coefficient of
sparse equilibrium networks of mean degree 〈q〉 = 20 and different
sizes. (a) model 1, (b) model 2. The local clustering coefficient is
normalized by its value for the corresponding uncorrelated network.

ensure connectedness, then all remaining links were assigned
to the nodes randomly. T = 1010 time steps (rewiring attempts)
were used in each simulation; this ensured that equilibrium
was reached in each case. The success rate for rewiring was
above 95% for all parameter settings. First we investigate
the case of N � 〈q〉, approaching the limit of large sparse
networks. Clustering and degree-degree correlations are found
diminishing as this limit is approached. Secondly we analyze
more dense networks to compare the behavior of the two model
formulations.

A. Sparse networks

Degree distributions at equilibrium are shown in Fig. 2 for
both models, for different system sizes, and fixed mean degree
〈q〉 = 20. In both cases, for large system sizes, the uncorrelated
form of the degree distribution Eq. (13) is approached, but this
convergence is much slower for the second model. The choice
of mean degree was limited by the system size for which
simulations run in reasonable time for the computationally
more demanding model 2.

To study correlations and clustering, we measured the
degree dependence of the average degree of nearest neighbors
and the clustering coefficient (Figs. 3 and 4). In the plots
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FIG. 5. Degree distribution of denser (than in Fig. 2) equilibrium
networks of different sizes. (a) 〈q〉 = 200, model 1; (b) 〈q〉 = 50,
model 2.

we normalized the measured values qnn(q) and C(q) by the
values expected in the uncorrelated case. These corresponding
uncorrelated values, denoted by (qnn)c and (C)c, are just the
values calculated in the configuration model using the same
structural characteristics N , 〈q〉, and 〈q2〉 as those obtained in
the simulations:

(qnn)c = 〈q2〉
〈q〉 , (23)

(C)c = 1

N〈q〉
( 〈q2〉 − 〈q〉

〈q〉
)2

. (24)

Figures 3 and 4 confirm a convergence to an uncorrelated
equilibrium state for large networks. It is interesting to note
that although correlations are smaller in the second model,
Fig. 3(b), compared to the first one, Fig. 3(a), the degree
distributions in the second model at the same sizes are still
further away from the form of Eq. (13). Model 1 exhibits
stronger correlations and stronger degree dependence of the
local clustering coefficient [Fig. 4(a) compared with Fig. 4(b)],
even though the degree distributions in model 1 [Fig. 2(a)], for
the system sizes considered, already practically coincide with
the uncorrelated form of Eq. (13).
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FIG. 6. Degree dependence of the mean degree of nearest neigh-
bors of dense equilibrium networks of varying size. (a) 〈q〉 = 200,
model 1; (b) 〈q〉 = 50, model 2.

B. Denser networks

We performed simulations of networks with higher mean
node degrees, 200 and 50 (models 1 and 2, respectively),
than in the preceding section. This enabled us to observe
stronger size effects in the degree distributions, Figs. 5(a) and
5(b), than in Fig. 2 at the same network sizes. Simulations
for model 2 are particularly time consuming, so the mean
degree, 50, has to be chosen smaller than 200 for model 1.
The system sizes were chosen in a way to capture a wide
range of behaviors in both models, using the highest possible
mean degree (limited by computational time). Figures 5(a) and
5(b) demonstrate markedly different degree distributions for
models 1 and 2 at low network sizes. Note that the difference
is not only in a hump present in Fig. 5(b) but this difference
is well observable even in the range of small degrees. The
degree-degree correlations for these networks demonstrate a
stronger disassortative mixing, Figs. 6(a) and 6(b), than for
their less dense counterparts in Figs. 3(a) and 3(b). The degree
dependence of the local clustering coefficient is also more
pronounced in denser networks Figs. 7(a) and 7(b), than in
their less dense counterparts, Figs. 4(a) and 4(b). This is
especially well seen for model 1; compare respective Fig. 7(a)
(〈q〉 = 200) and Fig. 4(a) (〈q〉 = 20).
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FIG. 7. Degree dependence of the clustering coefficient of dense
equilibrium networks of varying size. (a) 〈q〉 = 200, model 1; (b)
〈q〉 = 50, model 2.

C. A real-world example

To demonstrate that degree distributions of γ = 1 do exist in
reality, we explore data from Facebook. The analyzed sample
consists of all of the user-to-user links from the Facebook
New Orleans (2009) networks [35]. This sample has size
N = 63 731 and mean degree 〈q〉 = 25.64. Figure 8 shows
the measured Facebook degree distribution and the degree
distribution from our model 1 using the same system size
and mean degree. Notice the closeness of the two curves
although no fitting was done. In this parameter range, the
degree distribution of the model is already very close to the
analytical form given by Eq. (13).

We see that the curve from our model 1 provides a good
approximation of the empirical distribution. We stress that
the underlying structures of the two networks are different,
and so our models cannot be applied directly. Facebook is
growing, and like the majority of social networks, it exhibits
assortative correlations, while our equilibrium models produce
disassortative ones. The Pearson correlation coefficients are
0.175 and −0.004 for the Facebook sample and our model 1,
respectively; with these parameters model 1 is already close
to the uncorrelated sparse limit. Also, social networks have
strong clustering, whereas our models have very low clustering
coefficients for large systems (and clustering actually vanishes
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FIG. 8. Degree distribution taken from a Facebook sample,
compared to the degree distribution of model 1, using the same system
size and mean degree: N = 63 731 and 〈q〉 = 25.64.

in the infinite size limit). The corresponding clustering
coefficients are 0.148 and 0.006. Nevertheless, Fig. 8 indicates
that such low exponents of the degree distribution do appear
in reality. Therefore it may be useful to think outside the
realm of conventional preferential attachment models in order
to come closer to a full explanation of real-world network
structures.

IV. DISCUSSION

Previously studied network models generating degree
distributions with exponents γ smaller than two exploited
a set of rather intricate mechanisms and nontrivial ideas. In
particular, these included fitness models [19,20], accelerated
growth (where the network becomes denser with time) [12,13],
aggregation processes [24], the power of choice [26], etc. At
first sight, the two equilibrium network models that we have
considered in this paper are simpler. In the infinite size limit,
both these rewiring models generate uncorrelated networks
with the degree distributions P (q) ∼ q−1e−q/(〈q〉 ln〈q〉). In finite
networks, however, these models become essentially nontrivial
due to constraints for rewiring which occur in this situation. We
have found that these constraints lead to strong disassortative
degree-degree correlations and to degree-dependent local
clustering. They also markedly change the form of the degree
distributions. The structural constraint is particularly strong
for model 2, so the results for these two closely related models
in finite systems significantly differ from each other.

Finally, we emphasize a strong difference of these rewiring
models from well-studied equilibrium networks based on the
preferential attachment mechanism [14]. While networks in
the present work demonstrate a power-law degree distribution
in a wide range of mean degrees, the networks from Ref. [14]
are scale-free only at a critical mean degree value.

The resulting degree distributions are observable only if
the mean number of connections of nodes in a network is
sufficiently large. This is the case for a number of real-world
networks, including social and neural networks. (The mean
number of friends of adult Facebook users was already 338 in
2014 [36] and the mean number of synapses in brain neuronal
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networks is generally of the order of 103 [37,38]). We suggest
that our results may be useful for understanding the structural
properties of networks of this kind.
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