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Dynamical properties of the soft-wall elliptical billiard
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Physical systems such as optical traps and microwave cavities are realistically modeled by billiards with soft
walls. In order to investigate the influence of the wall softness on the billiard dynamics, we study numerically a
smooth two-dimensional potential well that has the elliptical (hard-wall) billiard as a limiting case. Considering
two parameters, the eccentricity of the elliptical equipotential curves and the wall hardness, which defines the
steepness of the well, we show that (1) whereas the hard-wall limit is integrable and thus completely regular, the
soft wall elliptical billiard exhibits chaos, (2) the chaotic fraction of the phase space depends nonmonotonically
on the hardness of the wall, and (3) the effect of the hardness on the dynamics depends strongly on the eccentricity
of the billiard. We further show that the limaçon billiard can exhibit enhanced chaos induced by wall softness,
which suggests that our findings generalize to quasi-integrable systems.
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I. INTRODUCTION

A billiard is a system where a particle moves freely in
a region enclosed by a boundary with which the particle
suffers elastic collisions. The dynamics in such systems can
be very rich and is completely determined by the geometry of
the boundary [1]. Billiards have found several applications
in physics, proving themselves particularly useful for the
study of quantum chaos and its relation to classical nonlinear
phenomena [2–9].

The elliptical billiard presents only regular motion, as
constants of motion restrict the orbits to invariant curves in
phase space [10–13]. These integrable orbits come in two
types: the libration (always passing between the foci) and
the rotation (never passing between the foci). The regions in
phase space that contain each type of orbit are separated by
the so-called separatrix.

This separation of two distinct kinds of motion motivated
the study of the escape rates of an elliptical billiard with a
hole placed on its boundary, considering billiards with both
static and time-dependent walls [14]. The time-dependent
elliptical billiard also permitted the investigation of Fermi
acceleration, where particles can exhibit unlimited energy
growth by impacting with the moving walls [15–20]. Since
the dynamics in a static elliptical billiard is integrable,
the existence of Fermi acceleration in the time-dependent
elliptical billiard effectively extends the scope of the LRA
Conjecture [21]. This conjecture states that static billiards
presenting chaotic dynamics will display Fermi acceleration
whenever their nonstatic counterpart boundaries have a peri-
odic dependence with time. A separatrix is a homoclinic or an
heteroclinic surface in phase space which is very sensitive
to small perturbations and easily replaced by a stochastic
layer due to a resonant interaction phenomena [22–24]. Due
to this fact, even billiards with integrable dynamics but
with a separatrix in phase space exhibit Fermi acceleration
when a time dependence is imposed on the boundaries
[25,26].

Besides time-dependent walls, another possible generaliza-
tion of the concept of a billiard is that of a soft-wall system,
where the Heaviside step potential that corresponds to the
rigid wall of traditional, hard billiards is replaced by a smooth
potential; i.e., the wall is softened. Soft billiard walls provide a
more realistic model for trapped particles [27], since physically
realizable potentials are typically smooth. Wall softness has
so far been observed to have an stabilizing effect on the
dynamics. For instance, the emergence of islands of stability
from the tangent and corner periodic orbits of dispersing
billiards as their walls become soft was shown by Rom-Kedar
and Turaev [28–30]. Cold atoms confined in optical traps have
been investigated numerical and experimentally [31–33], and
soft walls were found to give rise to stable regions in phase
space. These results corroborate previous theoretical results
for dispersing chaotic billiards and also indicate they might
generalize to focusing chaotic billiards. It has already been
suggested that the softness of the wall could be a tunable
parameter to control chaos [33], and, indeed, one could ask
whether wall softness always enhances the stability of a
system.

In this work we investigate a realization of the elliptical
billiard with soft walls considering a two-dimensional smooth
potential as a model [28,33–35]. We intend to determine
the effect of softness on the dynamics of a billiard that
is both integrable at the hard-wall limit and also presents
a heteroclinic structure in phase space. We investigate the
limaçon billiard as well, as an instance of a more general,
nonintegrable system. We find that, similarly to the gener-
alization of the LRA Conjecture, here too the phase space
fragility seems to give rise to unexpectedly rich, unstable
behavior, both in integrable and in quasi-integrable (hard-wall)
billiards.

The paper is organized as follows. In Sec. II we present
the elliptical billiard potential, its equations of motion, and
typical trajectories. In Sec. III we define a Poincaré surface
of section and investigate the transitions in the phase space
as we vary the hardness of the billiard walls. In Sec. IV
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we present the parameter space of the system and reveal its
nontrivial order-chaos transitions. In Sec. V we consider a
different billiard geometry, the limaçon, which also presents
softness-induced chaos. Finally, we draw our conclusions and
final considerations in Sec. VI.

II. SOFT-WALL BILLIARD

The motion of a particle in a soft-wall elliptical billiard is
governed by the two-dimensional Hamiltonian

H = p2
x

2
+ p2

y

2
+ V (x,y), (1)

where (x,y) is the particle position in rectangular co-
ordinates, px,y are the corresponding momenta, and the
potential V (x,y) defines the force exerted on the particle,
i.e., the shape of the billiard. In order to obtain a tunable
softness and the desirable geometry of the billiard, we
choose

V (x,y) = erf

[
h

(
x2 + y2

b2
− 1

)]
, (2)

where erf(z) = 2π−1/2
∫ z

0 e−τ 2
dτ is the error function. The

parameter h controls the hardness of the billiard: higher
values correspond to steeper walls, and the equipotential
curves are ellipses centered at the origin, with eccentricity
e = √

1 − b2. The potential V is null over an ellipse with
semimajor axis equal to 1 and semiminor axis equal to b,
and V is negative in the interior of this curve and positive
outside. The hard-wall billiard is recovered as h �→ ∞,
when V �→ 1 (−1) outside (inside) the null equipotential
curve. The dependence of V on the hardness h is illustrated
in Fig. 1.

FIG. 1. Potential V (x,y) for e = 0.72 and hardness (a) h = 1, (b)
h = 3, and (c) h = 8.

FIG. 2. Trajectories of energy E = 0 for the soft-wall elliptical
billiard at several hardness values. The eccentricity is e = 0.72, and
the initial condition is (x,y) = (0.9,0.3025), (px,py) = (0,0). The
hardness is (a) h = 0.5, (b) h = 1, (c) h = 2.5, (d) h = 6, (e) h = 8,
and (f) h = 18. Also displayed is the equipotential curve V (x,y) = 0,
an absolute “wall” for the particles with the chosen energy.

The time evolution of the system is determined by Hamil-
ton’s equations:

dx

dt
= ∂H

∂px

= px,

dpx

dt
= −∂H

∂x
= −4hx√

π
exp

[
−h2

(
x2 + y2

b2
− 1

)2]
,

dy

dt
= ∂H

∂py

= py,

dpy

dt
= −∂H

∂y
= −4hy

b2
√

π
exp

[
−h2

(
x2 + y2

b2
− 1

)2]
, (3)

which must be solved numerically. We use the Runge-Kutta
method with adaptive step size dt and choose dt = ε0 +
ε1|V (x,y)|, with ε0 = 10−5 and ε1 = 10−3, so that the step
has an upper limit of order ε1 and takes the smaller ε0 value
where the potential varies more abruptly, around V (x,y) = 0.

Typical trajectories lying on the energy surface E = 0
obtained from integrating Eq. (3) can be seen in Fig. 2 and
Fig. 3, where the two different initial conditions considered for
each figure correspond to a librator orbit and a rotator orbit,
respectively, at the hard-wall limit. These figures show how the
Lissajous-like orbits of the bow-shaped potential well change
into the well-known regular orbits of the hard-wall elliptical
billiard [10,14] as the hardness h increases. Remarkably,
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FIG. 3. The same as in Fig. 2, with the initial condition (x,y) =
(0,0.3), py = 0 and px determined by imposing E = 0. Hardness
values are (a) h = 0.5, (b) h = 1, (c) h = 2.5, (d) h = 6, (e) h = 8,
and (f) h = 18, with px varying between 0.932 and

√
2.

for h = 2.5, the system exhibits chaotic behavior [Figs. 2(c)
and 3(c)].

III. POINCARÉ MAP

In conservative systems, the energy is an integral of motion
that reduces the effective dimension of the system by one unity.
Specifically, adopting polar coordinates (r,θ ) centered at the
bottom of the potential well to describe the particle position
in the elliptical billiard, r , can be shown to be a dependent
variable, given by

r =
√

b2

b2 cos2 θ + sin2 θ

[
h − erf−1(p2/2 − E)

h

]
. (4)

An additional dynamical variable can be eliminated from the
system description by using a Poincaré surface of section [36],
allowing us to describe the dynamics of the soft-wall elliptical
billiard by means of a two-dimensional map. We devote
Sec. III A to describing our surface of section and the map
phase-space variables. The corresponding numerical results
are in Sec. III B

A. Poincaré surface of section

Poincaré surfaces for hard-wall billiards are typically
defined by reflections with the boundaries, while for smooth
dynamical systems the surfaces are usually defined [37–39]
by a condition such as x = 0. Although it would also be
reasonable to define the Poincaré surface on x = 0 for the soft-
wall elliptical billiard, displaying our results in a similar phase

FIG. 4. Schematic representation of a trajectory traced by a
particle in the soft-wall elliptical billiard. The trajectory crosses the
Poincaré surface at each reflection at (tangency to) an equipotential
curve. The angle with the horizontal direction of the equipotential
curve at each reflection is ϕ.

space facilitates comparisons to the well-known properties of
the hard-wall elliptical billiard. Therefore we need to define
a Poincaré surface which is analogous to the reflections in
hard-wall billiards. Reflections are characterized by reversal of
the perpendicular component of the momentum relative to the
wall, p⊥ �→ −p⊥, a reversal that in soft-wall billiards happens
when p⊥ = 0. Thus, we consider that a reflection takes place
when the trajectory is tangent to an equipotential curve, as
illustrated in Fig. 4. The condition for such a reflection can be
written, from Eq. (3), as

�p · �F = xpx + y

b2
py = 0. (5)

We define the Poincaré surface as the plane p⊥ = 0, which
is pierced by a trajectory when the condition above is satisfied,
as the dot product changes signal from positive to negative.
This corresponds to a reflected trajectory in configuration
space (x,y) and to a point in the map phase space (θ,p‖),
where p‖ is the component of the momentum parallel to the
equipotential ellipse at the reflection and can be normalized
with respect to its maximum value

pmax =
√

2[E + erf(h)]. (6)

In the coordinates used in the phase-space portraits, the
Poincaré map is not symplectic, as (θ,p‖) is not a canonically
conjugated pair. Our numerical calculations, however, were
performed in rectangular coordinates (x,y,px,py). The trans-
formation between these variables at the reflection (p⊥ = 0)
is given by

x = r cos θ, y = r sin θ,

px = p‖ cos ϕ, py = p‖ sin ϕ, (7)

where ϕ is the angle between the equipotential (and therefore
p‖) and the horizontal direction, as illustrated in Fig. 4, and is
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given by

ϕ = tan−1

[ −b′x

a′2√1 − x2/a′2

]
, (8)

where b′ =
√

x2(1 − e2) + y2 and a′ = b′/
√

(1 − e2) are,
respectively, the semiminor axis and the semimajor axis of
the equipotential ellipse.

B. Influence of hardness on the dynamics

Much of the research on billiards aims to determine the
influence of the control parameters on the dynamics of the
system [40–43]. In this subsection, we focus on the transition
between integrable and chaotic regimes in the soft-wall
elliptical billiard as the hardness is varied. We begin this
investigation by analyzing Poincaré plots for various values
of hardness h. In each plot 160 initial conditions uniformly
distributed over the phase space are integrated for 5000
reflections. We show in Fig. 5 some representative Poincaré
plots for eccentricity e = 0.72 and energy E = 0. Empty
regions at high |p‖| values indicate that the dynamics does
not present reflections close to the direction tangent to the
equipotential curves.

Some important features of the elliptical billiard with very
soft, bowl-shaped walls [h = 1; see Fig. 1(a)] are revealed
in Fig. 5(a): (1) absence of chaos; (2) absence of integrable
spanning surfaces along θ direction in the phase space, i.e.,
rotator orbits as those observed in the hard-wall billiard; and
(3) the stability of the orbit over the semimajor axis of the
ellipse. The last mentioned orbit corresponds to the points

FIG. 5. Poincaré plots for the soft-wall elliptical billiard with
eccentricity e = 0.72, energy E = 0, and hardness (a) h = 1, (b)
h = 1.7, (c) h = 2, (d) h = 2.5, (e) h = 6, and (f) h = 18.

(θ,p‖) = (0,0) and (π,0) in the Poincaré plot, which is unstable
for the hard-wall case. The islands of quasiperiodicity around
(θ,p‖) = (0,0) and (π,0) correspond to a set of librator orbits
similar to those shown in Fig. 2(b).

It is possible to observe in Fig. 5(b) that by considering a
higher value for the hardness parameter, h = 1.7, the trajectory
over the semimajor axis rapidly loses its stability and bifurcates
generating chaotic orbits close to the now unstable point.
The two big islands remaining in phase space located around
(θ,p‖) = (π

2 ,0) and ( 3π
2 ,0) correspond to the librator orbits

close to the straight line trajectory over the semiminor axis,
which are also stable for the hard-wall elliptical billiard.
Increasing further the hardness, the area occupied by chaotic
orbits in the phase space expands and constitutes a stochastic
layer around the islands of librator orbits, as can be seen in
Figs. 5(c) and 5(d).

Remarkably, the stochastic layer reverts its tendency of
growth with h and starts to shrink at around h = 6. The
integrable spanning curves at the top and at the bottom of
Fig. 5(e), for h = 6, correspond to the rotator orbits around
the two foci. In Fig. 5(f) it is possible to see that for an even
higher hardness, for h = 18, the integrable spanning curves
correspondent to the rotator orbits invade the stochastic layer,
significantly reducing the presence of chaotic dynamics. At
the limit h → ∞, the hard-wall elliptical billiard is expected
to be recovered. In this case, the stochastic layer must vanish
and is replaced by a separatrix that segregates the only possible
types of orbits in phase space: librations close the semiminor
axis and rotations around the two foci.

This general scenario holds over a wide range of eccentrici-
ties. We illustrate this in Fig. 6, with Poincaré plots for the same

FIG. 6. Same as in Fig. 5, but with eccentricity e = 0.84. The
squares indicate initial conditions for the trajectories shown in Fig. 7.
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FIG. 7. Trajectories corresponding to different regions of the
phase space plots shown in Fig. 6, where the trajectories initial
conditions are also indicated. Trajectories in panels (a), (b), and (c)
start, respectively, on the points marked by squares on the left side,
on the center, and on the right side in Fig. 6(a). Trajectories in panels
(d) and (e) correspond, respectively, to the squares on the left side
and on the right side in Fig. 6(d); and panel (f) corresponds to the
initial condition marked in Fig. 6(f).

values of parameter h and energy E as in Fig. 5, but for a higher
eccentricity e = 0.84. Although we also observe an increase
followed by a reduction of stochastic layer for e = 0.84, the
area occupied by chaotic orbits is slightly greater when we
compare Figs. 5(d) and 5(e) to Figs. 6(d) and 6(e).

The variety of behaviors exhibited by the soft-wall elliptical
billiard is illustrated by the configuration space trajectories
of Fig. 7, whose initial conditions are shown in the phase
space portraits of Figs. 6(a), 6(d), and 6(f). The square on the
left-side island in Fig. 6(a) originates the librator orbit close to
the semiminor axis of Fig. 7(a). The initial condition marked
by a square on the center island of the same figure leads to
a librator orbit close to the semimajor axis of Fig. 7(b): a
type of librator orbit that is possible only for low values of h.
The larger libration orbit shown in Fig. 7(c) corresponds to the
initial condition marked by the square on the outer curve of the
island at the right side of Fig. 6(a). The distinctive trajectory
of Fig. 7(d) corresponds to the initial condition marked by a
square on the small island of Fig. 6(d). Such satellite islands
persist with the changes in parameter h, and the corresponding
trajectories are typical of soft-wall elliptical billiards. An initial
condition in the stochastic layer, as indicated by the square on
the right-hand side of Fig. 6(d), originates a clearly irregular
orbit as shown in Fig. 7(e) and an initial condition over an
integrable spanning curve, as that marked by the square in

Fig. 6(f), results in the rotator orbit around two foci depicted
in Fig. 7(f).

IV. PARAMETER SPACE

The Poincaré plots of Fig. 5 and of Fig. 6 paint the
following picture of the billiard dynamics, as the hardness h is
increased from zero: an initially regular dynamics experiences
a break-up of integrability, and chaoticity reaches a maximum
for a specific value of h followed by a gradual reduction
of the chaotic sea in phase space, which asymptotically
approaches to the hard-wall limit (h → ∞) where the system
becomes integrable again. This scenario also depends on the
geometric parameter e, and, in this section, we investigate
the two-dimensional parameter space (e,h) with respect to the
fraction of phase space occupied by the chaotic sea, as well as
to the largest Lyapunov exponent of the system.

The method used to estimate the occupation fraction is the
box-counting analysis [44,45]. The phase space is divided in
a grid, and the fraction of boxes that contain at least one point
of a given orbit is a good approximation of the area this orbit
fills. Regular orbits describe points or curves in the Poincaré
phase space and have zero area. Chaotic orbits, on the other
hand, belong to a chaotic sea of finite area. As a rule of thumb,
the number of computed orbit points should be at least five
times the number of boxes to ensure a good estimate [45].
We choose a 145×145 grid and evolve 51 initial conditions
(one at the origin and the remaining randomly scattered) for
105 reflections, values we found to be sufficient to ensure
numerical convergence. The occupation fraction related to
each initial condition is thus obtained. The largest value for
these fractions is our estimative for the size of the chaotic
sea. Performing this calculation for a grid of (e,h) values, we
obtain a detailed picture of the chaoticity of the billiard in its
space of parameters.

We show in Fig. 8(a) the fraction of phase space occupied
by the chaotic sea, as a function of the eccentricity and
hardness, for orbits of energy E = 0. The chaoticity of the
system displays a clearly nonmonotonic dependence on both
parameters. We consider e > 0.5, since for lower eccentricities
the system does not exhibit a relevant stochastic layer. Chaos
is more prevalent for 2 < h < 5 and 0.8 < e < 0.9, reaching
the largest value 51% of phase space occupation for (e,h) ≈
(0.84,2.5). For hardness h � 2 the billiard potential well
approaches a harmonic-oscillator-like potential [erf(hz2) ≈
hz2 for small h] and regular behavior prevails. For h � 2
chaos is always present, but as h is further increased the
chaotic sea can be less or more persistent depending on the
eccentricity, being, for example, more fragile for e = 0.625
and more robust for e = 0.9. The fish-bone-like fine structure
is a result of high-order resonances taking place [46,47], with
the corresponding satellite islands becoming alternately larger
and smaller as the parameters are varied.

A remarkably similar picture is found for orbits of higher
energy (E = 0.7, not shown), suggesting that the particle
energy is not a decisive parameter for the elliptical billiard
dynamics.

While the relative size of the chaotic sea measures the
prevalence of chaos in the phase space, another important
quantifier of chaoticity is the largest Lyapunov exponent,
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FIG. 8. Parameter space for the soft-wall elliptical billiard for
orbits of energy E = 0. The scale indicates (a) the phase space
fraction occupied by chaotic orbits and (b) the largest Lyapunov
exponent.

which measures the chaos strength. The Lyapunov exponent
is the average rate of exponential divergence of nearby orbits,
and, following Wolf et al. [48,49], we evaluate the exponent
by directly computing the divergence of probe orbits, for a
range of parameter values. Our results for orbits of energy
E = 0 in the soft-wall elliptical billiard are displayed in
Fig. 8(b). A comparison between Figs. 8(a) and 8(b) reveals
that, except for low chaoticity at very low hardness levels,
there is little correlation between the two different measures, a
result already known for billiards [44]. In particular, the decline
of the stochastic layer size with increasing hardness is not
accompanied by a decrease in sensitivity to initial conditions.

Also, the largest chaotic seas and the strongest chaos do not
occur in the same regions of the parameter space.

V. STOCHASTIC LAYER IN THE SOFT-WALL
LIMAÇON BILLIARD

Our results for the soft-wall elliptical billiard indicate that
softness-induced chaos arises in this system through the break-
up of its separatrices. As the elliptical billiard is integrable in
the hard-wall limit, it is enlightening to investigate how this
mechanism plays out in a more general, nonintegrable billiard.
The perturbative effect of smoothness should be evident,
e.g., on the separatrix-like heteroclinic tangles KAM theory
tells us enclose island chains in perturbed, quasi-integrable
systems.

A simple perturbation of the (integrable) circular billiard
is the one-parameter family of limaçon billiards introduced in
Ref. [50], defined in polar coordinates by r(θ ) = 1 + ε cos θ ,
where ε is the fractional deformation from the unit circle. The
circular billiard is recovered for ε = 0, and ε = 1 results in
the fully chaotic cardioid billiard [51].

As with the elliptical billiard, the soft-wall limaçon billiard
can be described using the two-dimensional Hamiltonian H ,
Eq. (1), with the interaction between the particle and the
billiard determined by the potential

V (x,y) = erf

[
h

(√
x2 + y2 − εx√

x2 + y2
− 1

)]
, (9)

where h is the hardness parameter and the term in-
side the parentheses is the billiard boundary in rectan-
gular coordinates. The potential of Eq. (9) is null over
the boundary curve, negative in its interior and positive
outside.

The time evolution of the system is determined by the
Hamilton’s equations, written now as

dx

dt
= ∂H

∂px

= px,

dpx

dt
= −∂H

∂x
= −2h√

π

[
x − ε√
x2 + y2

+ εx2

(x2 + y2)3/2

]

× exp

[
−h2

(√
x2 + y2 − εx√

x2 + y2
− 1

)2]
,

dy

dt
= ∂H

∂py

= py,

dpy

dt
= ∂H

∂x
= −2h√

π

[
y√

x2 + y2
+ εxy

(x2 + y2)3/2

]

× exp

[
−h2

(√
x2 + y2 − εx√

x2 + y2
− 1

)2]
, (10)

which must solved numerically. We use the same Runge-Kutta
method with adaptive step size described in Sec. II and the
same Poincaré surface, defined by p⊥ = 0. This surface is
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FIG. 9. Softness as a perturbing factor. Poincaré plots for the soft-
wall limaçon billiard with fractional deformation ε = 0.15, energy
E = 0 and hardness (a) h = 2.5, (b) h = 3.5, (c) h = 5, and (d)
h = 20.

pierced at the instants of reflections, when �p · �F = 0, and
hence the following relation is satisfied:

px√
x2 + y2

(
x − ε + εx2

x2 + y2

)

+ py√
x2 + y2

(
y + εxy

x2 + y2

)
= 0. (11)

The phase space for the lightly deformed limaçon billiard
(Fig. 9) exhibits a stochastic layer for a low value of the
hardness parameter h, i.e., as a result of the soft walls.

FIG. 10. Softness as a stabilizing factor. Poincaré plots for the
soft-wall limaçon billiard with fractional deformation ε = 0.3, energy
E = 0, and hardness (a) h = 2.5, (b) h = 3.5, (c) h = 5, and (d)
h = 20.

As the hardness is increased, the size of stochastic layer
decreases abruptly and becomes restricted to a markedly thin
area around the main island chain at the center of phase
space.

The more strongly deformed limaçon billiard has a mixed
phase space, with a sizable chaotic sea in the hard-wall
limit [52]. For this case, the phase portraits of Fig. 10 reveal
that softness has the opposite influence on the dynamics of
that observed for the quasi-integrable situation (Fig. 9). As
conjectured by Rom-Kedar and Turaev [28–30] and Kaplan
et al. [31–33], the dynamics of the chaotic hard-wall billiard is
stabilized by softness: as h increases, the regular tori spanning
the top and bottom of the phase space are destroyed, giving
place to an expanding chaotic sea.

VI. CONCLUSIONS

In order to investigate the dynamical properties of the
soft-wall elliptical billiard, we introduce a Hamiltonian model
consisting of a smooth two-dimensional potential well that
has the hard-wall elliptical billiard as a limiting case. We
also define a Poincaré surface of section using an analogue
to the reflections with the hard walls, which allows a direct
comparison of our results to the well-known properties of
hard-wall elliptical billiard.

We find that the soft-wall elliptical billiard, in contrast to
its integrable hard-wall counterpart, presents chaos for wide
ranges of eccentricity and hardness. The soft-wall limaçon
billiard with a low deformation replicates this observation,
presenting increased chaoticity as hardness is decreased.
This result complements the conclusions of Rom-Kedar and
Turaev [28–30] and Kaplan et al. [31–33], who argue that
the dynamics of hard-wall billiards turns more regular when
softness (inverse of hardness) is incorporated into the model:
The softness introduces resonances to the system, and, while
Rom-Kedar and Turaev show that these resonances lead to the
appearance of islands in phase space which reduce the size of
the chaotic sea, we have shown that these resonances can also
destroy the heteroclinic structure that constitutes a separatrix,
giving rise to a stochastic layer which can grow into a
chaotic sea.

In the elliptical billiard, this stochastic layer expands as
the potential becomes softer (h is reduced) and reaches a
maximum. As we continue to reduce the hardness of the walls,
the system recovers stability through a bifurcation cascade
that culminates with the separatrix heteroclinic orbit at the
origin, and its associated stochastic layer, being replaced by
an island. We found the effect of h on the chaotic sea to depend
nontrivially on the eccentricity e of the potential. The interplay
of both quantities, h and e, results in a rich parameter space
structure which remain to be fully explored.
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