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Dynamics of weakly coupled parametrically forced oscillators
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The dynamics of two weakly coupled parametric oscillators are studied in the neighborhood of the primary
subharmonic instability. The nature of both primary and secondary instabilities depends in a critical way on the
permutation symmetries, if any, that remain after coupling is considered, and this depends on the relative phases
of the parametric forcing terms. Detailed bifurcation sets, revealing a complex series of transitions organized
in part by Bogdanov-Takens points, are calculated for representative sets of parameters. In the particular case
of out-of-phase forcing the predictions of the coupled oscillator model are compared with direct numerical
simulations and with recent experiments on modulated cross waves. Both the initial Hopf bifurcation and the
subsequent saddle-node heteroclinic bifurcation are confirmed.
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I. INTRODUCTION

Oscillations arise in an enormous variety of systems, from
basic mechanical devices like a mass on a spring, to surface or
pressure waves in continuous media, to population [1] and cli-
mate [2] cycles in the natural environment. In dissipative sys-
tems such periodic variation typically involves both a restoring
force, which determines the frequency of natural oscillations,
and a driving force, which sustains them against energy losses.
If the driving mechanism depends on time, its interaction with
the restoring force can lead to interesting resonance phenom-
ena. Further possibilities for resonance arise if the oscillatory
system is not isolated, but interacts with other dynamical
systems. In particular, there has been considerable recent
interest in how an oscillatory system couples to other identical
(or similar) systems and the collective behaviors that ensue.

The study of coupled oscillators, which can be traced
to Huygens’ work with pendulum clocks in the 17th cen-
tury [3], is concerned with collective phenomena such as
synchronization, phase locking, and amplitude death. These
features, and others, depend both on the individual dynamics
of the component oscillators and the properties of the coupling
between them.

In many cases it is reasonable to assume that the oscillators
are equivalent in the absence of coupling: identical fireflies, for
example, in a population undergoing synchronous flashing [4].
This permutation symmetry between individual oscillators may
or may not persist when coupling is included, and the extent
to which it does is a key factor in determining the structure of
invariant subspaces and the possible classes of solutions. The
type of coupling that applies (global all-to-all, nonlocal, local,
etc.) plays a central role in determining the residual exchange
symmetry.

The type of forcing mechanism that drives individual oscil-
lations has an important effect as well, particularly with regard
to phase locking. If the forcing mechanism is independent
of time (like a steady wind blowing waves across a water
surface), then the response of the system will inherit this time
translation invariance and there will be no preferred phase of
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the uncoupled oscillation. Collections of such oscillators can,
in the limit of weak coupling, be reduced to phase models [5]
where each oscillator is influenced only by the phase (not
amplitude) of the other oscillators that are coupled to it.

If individual oscillations occur in response to periodic
forcing, then, because there is no continuous time translation
symmetry, phases in the uncoupled problem are not equivalent.
Each oscillator has (one or more) preferred phases that will be
selected when coupling is weak; in this limit, synchronization
depends not on coupling but on the relationship between
the individual forcing functions. If the forcing is direct in
character (i.e., it excites synchronous oscillations for any
forcing amplitude), then a typical oscillator will have, in
the absence of coupling, a single preferred phase. If, on the
other hand, the time-dependent forcing is parametric in nature,
then the typical response is subharmonic, at half the forcing
frequency, and there will be (at least) two preferred phases
related by time translation through one forcing period. Among
other things, this means that collections of weakly coupled
parametrically forced oscillators have more possible solutions
than their directly forced counterparts and hence the potential
for more complicated dynamics.

Coupled parametrically forced oscillators have received
less attention than autonomous or directly forced systems
despite potential applications in microelectromechanical sys-
tems (MEMS) [6,7] and optical parametric oscillators [8], for
example. In this paper, we are particularly interested in the
following application: the dynamics of parametrically excited
surface waves such as cross waves [9]. These subharmonic
waves occur regularly in wavemaker experiments with a
vibrating surface or boundary [10-14]. Horizontally vibrated
containers of fluid, in particular, are often used to study surface
waves [15—18] and, if the container is relatively large compared
to the decay length of the waves, then the excitation patterns
generated at the left and right endwalls (or wavemakers) can
be considered to be weakly interacting. This is the situation in
several recent experiments [19,20].

There are a number of studies of coupled parametrically
forced oscillators in the literature to which the current paper
is related. Bena and Van den Broeck [21] considered a large
collection of linear oscillators in the mean-field limit driven
by square-wave excitation with randomly distributed phases
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for each oscillator. They found complex stability boundaries
for collective behavior with a wider region of instability than
for individual parametric excitation.

Goldobin and Pikovsky [22] studied the collective excita-
tions in a population of globally coupled weakly nonlinear
oscillators parametrically driven by sinusoidal forcing, with
uniformly distributed phases. A traveling wave regime was
found, as was, in general, a primary instability that could be
either steady or oscillatory.

Copelli and Lindenberg [23] studied a pair of linear
oscillators driven by piecewise constant (square-wave) para-
metric forcing and found complicated stability boundaries with
sensitive dependence on the phase difference between the two
forcing functions. They observed that collective behavior (i.e.,
similarity to mean-field models describing many oscillators)
is reflected to a greater extent in the dimer with out-of-phase
forcing; an analytical solution for this case was presented
in [24].

In the context of bifurcation theory, the interaction of two
parametrically forced oscillators, which each undergo steady
state (pitchfork) bifurcations in the absence of coupling, is
associated with the unfolding of a double-zero bifurcation.
This was studied, with both Huygens (exchange) symmetry
and odd-Huygens symmetry by Kitanov et al. [25]. In the
case of odd-Huygens symmetry, which is the relevant one for
subharmonic modes like those considered here, both primary
and secondary pitchfork bifurcations were found, as were,
with certain unfolding parameters, Hopf and heteroclinic
bifurcations.

Danzl and Moehlis [26] considered networks of nonlinear
parametrically forced oscillators with weak coupling, used
the implicit function theorem to prove the persistence of the
uncoupled solution classes, and investigated this numerically.
Far from the weak coupling limit, interesting dynamics such
as antisynchronized chaotic behavior were found.

The current paper shares with [26] an emphasis on symme-
tries and the assumption of weak coupling and with [23,24]
an interest in the effect of the forcing phases. As in [23], we
utilize a bifurcation theory (unfolding) approach. The principal
contributions of the current paper are as follows.

In Sec. II, we briefly review the dynamics of a single
parametrically forced oscillator in the neighborhood of the
dominant subharmonic instability and note the secondary Hopf
and global bifurcations that can occur with a nonconservative
nonlinear term. We consider a pair of coupled oscillators in
Sec. IV. Here the residual symmetry is critical in organizing
the structure of solutions near the initial instability where
the hyperbolicity assumption of [26] fails. Unlike in [23,24],
we do not calculate multiple resonance tongue boundaries,
but instead provide a complete bifurcation picture for the
weakly nonlinear problem in a neighborhood of the dominant
subharmonic instability; this includes secondary local and
global bifurcations, and organizing Bogdanov-Takens points.
Bifurcation sets are calculated as a function of forcing and
detuning for representative sets of parameters. The detailed
bifurcation scenario obtained for two coupled oscillators is
compared, to the extent possible, with the recent experiments
of [20] in Sec. V and with direct numerical simulations of
a corresponding two-dimensional vibrated fluid system in
Sec. VI. Conclusions are presented in Sec. VII.
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II. DYNAMICS OF A PARAMETRICALLY
FORCED OSCILLATOR

A wide range of parametrically forced oscillators can be
approximated by a damped nonlinear Mathieu equation of the
form

X +2yx 4+ [1 4+4f cosQuwt — p)]x + G(x,x) =0, (1)

where y > 0 is the damping coefficient, f > 0 is the forcing
amplitude, G(x,x) denotes nonlinear terms, and time has been
scaled with the natural frequency of the oscillator. For a single
oscillator the phase ¢ is of no consequence and can be removed
by a simple shift in time, but it is left in Eq. (1) to anticipate
the general case of coupled oscillators.

It is well known that the linear stability problem leads to a
series of resonance tongues [27,28] centered at integer values
of w. We assume here that the system is weakly damped and
near the primary subharmonic (w = 1) instability by writing
o = 1 4 v. Using a perturbation expansion of the form

x(1) = A@D)e @O Lo, )

where c.c. denotes the complex conjugate, leads to the
amplitude equation

A=(—y+iVA+ feA—(a +ia)lAPA+---, (3)

which applies when |A|,y, f,|v| < 1. If when y = f = 0O the

nonlinearity G(x,x) = G(x) is conservative, then the cubic

coefficient is imaginary at leading order and a, = 0.
Equation (3) can be simplified with the rescaling

Yoa @
la; |

(fiv) = (fvyy, A—

t—>t/y,
and, if a; <0, the additional substitutions A — A and

(U,¢) — _(U’¢)7
A=(—1+ivVA+ fe?A—@+DAPA+---, (5

where a = a, /|a;|.

The primary subharmonic instability of a parametrically
forced oscillator is a pitchfork bifurcation that produces two
symmetry-related steady states +A;. This bifurcation occurs
along the curve

pitchfork : 2 =142 6)

Since the nontrivial steady states A, satisfy

v—a f? 1+av)?
AP = 5— =+ 57— (= .
a*+1 a*+1 a‘+1
the primary bifurcation is supercritical if v < a and subcritical
if v > a. In the subcritical case, the initially unstable steady

branch is stabilized in a saddle-node bifurcation along the
half-line,

2

saddle-node : f2 = M; V> a. (8)
1 4 a?

These two bifurcation sets are illustrated in Fig. 1 for the

case a = 0 corresponding to conservative nonlinearity. In this

case there are no additional bifurcations, nor are there any

with dissipative nonlinearity a > 0, although the saddle-node

bifurcation is delayed in that case.
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FIG. 1. Pitchfork (P, thick curve) and saddle-node (SN, thin
curve) bifurcation sets for a single parametrically forced oscillator
in the case of conservative nonlinearity a = 0.

The case a < 0, however, is qualitatively different because
the nonlinearity can provide energy to the oscillator and sustain
motion, even without parametric forcing. With f = 0, Eq. (5)
contains an unstable rotating solution with constant amplitude
|A| = +/—1/a and frequency v + 1/a. Furthermore, the two
(symmetry-related) stable steady states created in a pitchfork
bifurcation for v < a and in a saddle-node bifurcation for
v > a undergo Hopf bifurcation along the curve

1 14+ 2av 2 at—1
Hopf:f2=Z+<T); V<o )

This Hopf bifurcation set terminates at a Bogdanov-Takens
point when it intersects the line of saddle-node bifurcations:
V1+a® a’>—1

Bogdanov-Takens : f = — V= 7 (10)
a

The Hopf bifurcation occurs when the stable steady state
branch [Eq. (7) with the “+” sign] reaches a fixed amplitude
Ay, independent of v,

|A |2——i (11)
H - Za’

while the Hopf frequency wp increases with distance from the
Bogdanov-Takens point,

2 1 —a?
wg=./—(v+ . (12)
a 2a

The normal form (first Lyapunov) coefficient that de-
termines whether the Hopf bifurcation is supercritical or
subcritical can be calculated following [29], for example, and
is found to be negative throughout the region of existence;
contours of this coefficient are shown in Fig. 2. This secondary
Hopf bifurcation is therefore always supercritical. The stable
modulated states generated here grow in amplitude and are
destroyed by a homoclinic bifurcation. As shown in Fig. 3,
the nature of this homoclinic bifurcation changes with the
stability of the trivial state. If £ > 1 4 v? the trivial state
is unstable and the periodic modulated states collide with it
in a homoclinic gluing bifurcation. This gluing bifurcation
transforms the symmetry-related pair of stable modulated
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FIG. 2. Contours of the normal form (first Lyapunov) coefficient
I, (see [29]) in the (v,a) plane. This coefficient is always negative,
showing that the Hopf bifurcation, which occurs for v < (a® —
1)/(2a), is supercritical.

states into the unique rotating (unbounded phase) state, the
one supported at f = O purely by nonlinearity. Note that the
stable rotating branch created in the gluing bifurcation soon
undergoes a saddle-node bifurcation that renders it unstable
(as it is for most parameters).

For forcing below the primary pitchfork bifurcation, f? <
1 + v2, the trivial state is stable and cannot participate in
a global bifurcation. The gluing bifurcation therefore splits
when crossing below the (subcritical) pitchfork bifurcation
set (see Fig. 3) into two separate global bifurcations: a
(nonsymmetric) homoclinic bifurcation where the modulated
states created in the Hopf bifurcation separately collide
with the finite-amplitude saddle fixed points created in the
subcritical pitchfork bifurcation and a heteroclinic bifurca-
tion, at slightly larger f, where the rotating periodic state

SN Per
‘éHom Gluing
\}

FIG. 3. Bifurcation sets in the case of a = —0.3: pitchfork (P,
thick solid curve), saddle-node (SN, thin solid line), Hopf (H,
lower dashed curve), saddle-node of periodic orbits (SN Per, upper
dashed curve), homoclinic gluing (Hom Gluing, thin solid curve
above pitchfork), homoclinic (Hom, lower thin solid curve below
pitchfork), heteroclinic (Het, upper thin solid curve below pitchfork),
saddle-node heteroclinic (SN Het), and Bogdanov-Takens point (BT,
solid dot).
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simultaneously collides with these same two nontrivial steady
states. This heteroclinic bifurcation set eventually merges
with the saddle-node bifurcation set to create (for v > 2.67)
a saddle-node heteroclinic bifurcation, i.e., a heteroclinic
cycle connecting nonhyperbolic stationary solutions with a
simple zero eigenvalue (see, e.g., [29]). We note that this is
a symmetric version of what is also known as Shilnikov’s
saddle-node bifurcation [30], saddle-node on invariant circle
(SNIC) bifurcation, or saddle-node infinite period (SNIPER)
bifurcation. We refer to the usual asymmetric case as a
saddle-node homoclinic bifurcation (following the terminol-

ogy of [29]).
Figure 4 shows one bifurcation diagram obtained with
v = —0.5, when the primary pitchfork bifurcation is super-

critical, and one obtained with v = 1, when this bifurcation is
subcritical. For each of these detuning values, a supercritical
Hopf bifurcation occurs on the stable nontrivial steady solution
branch. With v = —0.5 the periodic modulated states P,
created here collide with the origin in a gluing bifurcation at
f = 2.678 that creates a periodic rotating state P,. Forv =1,
in contrast, there are distinct homoclinic and heteroclinic
bifurcations involving the small-amplitude unstable steady
states. Regardless of the detuning value, when a < O stable
solutions can only be found relatively close to onset (and for
initial conditions not too large); otherwise (most) trajectories
diverge due to the destabilizing nonlinearity considered. In
this case, a more realistic version of Eq. (5) would include
stabilizing fifth-order terms.

III. WEAKLY COUPLED PARAMETRICALLY
FORCED OSCILLATORS

If two or more parametrically forced oscillators are coupled
together, the dynamics is potentially much richer than that
described above. This dynamics depends on both the coupling
between the oscillators and the individual forcing terms, which
act to select particular phases for each oscillator. Motivated by
its relevance to recent experiments on horizontally vibrated
fluids [20] (see Sec. V), we consider below the case of two
coupled oscillators in detail. Since the symmetry arguments
are quite general, however, we first describe these in a broader
context.

A collection of n linearly coupled parametrically forced
oscillators can be described by the equation

A=LA+ fOA—-G(AD)A+ AA, (13)

where A = (A1, A,, ..., A,)T. The diagonal matrices L, P,
and G represent the uncoupled problem of Eq. (5): £;; =
—1+iv,®;; = €'%,G;; = (a+i)|A;|*. The coupling matrix
A is assumed to be symmetric (the jth and kth oscillators affect
each other in the same way) and we further assume that the
forcing differs only in phase (i.e., each oscillator loses stability
at the same critical value of the bifurcation parameter f).

A. General symmetry considerations

If there is no coupling, A =0, each of the oscillator
equations is individually equivariant under reflection A; —
—A; due to the subharmonic nature of the critical modes.
In addition, the identical oscillators may be exchanged, or
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FIG. 4. Bifurcation diagrams for a = —0.3 and (a) v = —0.5
and (b) v = 1, showing the (time-averaged) norm of the nontrivial
steady states (A;), periodic modulated solutions (P,,), and periodic
rotating solution (P, ). Solid (dashed) curves denote stable (unstable)
solutions. With increasing v, the primary bifurcation transitions
from supercritical to subcritical and the gluing bifurcation splits
into distinct homoclinic and heteroclinic bifurcations. A selection of
periodic orbits at particular points labeled a—# in these diagrams are
shown in (c) and (d), respectively. a, e, rotating orbit at f = 0; b, limit
point at f = 2.747; ¢, symmetric homoclinic orbit at f = 2.678; d,
small modulated orbits at f = 2.3; f, heteroclinic orbitat f = 1.275;
g, homoclinic orbits at f = 1.071; h, small modulated orbits at
f=009.

permuted, in n! distinct ways. These permutations form a
representation of the symmetric group S,,. For example, the
jth and kth oscillators can be exchanged with the operation

(Aj,Ap) — (€7 Ag,e " A)), (14)

where §j; = (¢; — ¢x)/2 = —d;;. Given a set of possible limit
sets for each oscillator (trivial state, stable steady states,
unstable steady states, periodic orbits, etc.), there is a larger set
of solution classes formed by different combinations of these
individual oscillator states. The members of each symmetry
(isotropy) class are related by a combination of reflections and
permutations.
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As discussed in Danzl and Moehlis [26], the implicit func-
tion theorem guarantees that these various uncoupled solution
branches persist with the same stability properties in the pres-
ence of sufficiently weak coupling, provided they are hyper-
bolic. Bifurcation points, however, where solutions are nonhy-
perbolic, will be strongly influenced by the nature of the resid-
ual symmetry of the coupled problem and this includes the pri-
mary bifurcation, which not only can be shifted by the coupling
terms, but may also be transformed from steady to oscillatory.

Coupling breaks the symmetry of the uncoupled problem
for two reasons. First, unless the coupling is trivial (A = 0) or
uniform all-to-all, it will not commute with all permutations
of the oscillators even in the case of identical forcing phases
(® o« 1). Second, a nontrivial set of phase differences
(¢; # ¢ for some j,k) means that exchanging oscillators
while preserving the parametric forcing terms requires a
phase shift as in Eq. (14); ® only commutes with ordinary
permutations if ® o 1. The phase matrix ® can be formally
eliminated with the transformation A; — ¢%//2A; but this, in
general, introduces asymmetric phase shifts into the coupling
matrix A. Generally, whether or not a subset of exchange
symmetries is preserved by the coupling depends both on the
structure of the coupling matrix A and on the choice of forcing
phases ¢;.

The case of maximum symmetry occurs with uniform
all-to-all coupling and identical forcing phases. In this case, ar-
bitrary permutations are permitted, although the subharmonic
reflection symmetry can only be applied collectively with

R:A— —A. (15)

This case, with the maximum number of exchange (permuta-
tion) symmetries and corresponding fixed point subspaces, is
most similar to the uncoupled problem.

The case of minimum symmetry occurs if the coupling
and/or forcing phases are general enough that no permutation
symmetries remain. The only symmetry is then the basic
subharmonic reflection (15).

B. Motivation from vibrated fluid experiments

Vibrated fluid experiments can produce a wide range of
surface wave patterns [9,31], some of the most studied being
due to a parametric forcing mechanism [32,33]. Vertically
forced Faraday waves, which are (usually assumed to be)
excited uniformly throughout the container, cannot easily be
described as a system of weakly coupled oscillators. Cross
waves, on the other hand, whether driven by wavemakers or
by direct (horizontal) motion of a rigid container, are excited
by a spatially nonuniform oscillatory field [19,20,34] that can,
in many cases, be considered localized. If more than one
wavemaker is used, the situation may naturally arise where
different parametrically forced surface wave patterns interact
“weakly” in the far-field (subcritically forced) region of the
surface or interface.

If, for example, two identical wavemakers are spatially
separated and driven in phase, then the surface wave pat-
terns they excite after a subharmonic instability may be
approximated as weakly coupled parametrically forced os-
cillators with synchronized forcing. If, instead, these same
two wavemakers are driven with distinct phases, then the
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coupled system behaves differently (it is equivalent to
introducing asymmetry in the coupling between the two
patterns/oscillators). We note that this second situation au-
tomatically occurs when the subharmonic surface waves
are excited by rigid horizontal motion of an open fluid
container [19,35,36]. In this case, while the left endwall is
moving into the fluid (leading to upward displacement near
the surface), the right endwall is pulling away from the
fluid (causing downward displacement near the surface). If
the aspect ratio is large enough (the patterns are sufficiently
localized), such a system may be approximated by two weakly
coupled parametrically forced oscillators with out-of-phase
forcing. Each of the two cases mentioned above are considered
in detail in the following section, and the case of out-of-phase
forcing is compared to recent experimental results in Sec. V
and to two-dimensional Navier-Stokes simulations in Sec. VI.
To the best of our knowledge, there are no experiments to
compare with in the case of synchronous forcing, or more
general forcing phase difference, although it is easy to imagine
a fluid experiment with independent wavemakers exciting
localized cross waves that could test the predictions of the
following section in these cases too. We may undertake such
an experiment in the near future.

IV. TWO COUPLED PARAMETRICALLY
FORCED OSCILLATORS

We now consider in detail the case of two weakly coupled
parametrically forced oscillators. This situation constitutes the
simplest interaction possible and allows a relatively complete
analysis. As mentioned above, and discussed in more detail in
Sec. V, it is relevant to experiments on horizontally vibrated
fluids in rigid containers [19,20]. In this system, the parametric
forcing mechanism [34-36] is concentrated near opposing
boundaries (endwalls or wavemakers) and, in containers of
sufficiently large aspect ratio, this leads to relatively isolated
patterns of subharmonic surface waves that can be considered
as weakly interacting.

The governing equations for the complex amplitudes, A
and B, characterizing the two oscillators are

A=(1+iVA+ fA—(@+DIAPA+uB,  (162)

B=(~1+iv)B+ feB —(a+i)|BI’B + A, (16b)
where the forcing phase of the first equation has, without loss
of generality, been set to zero.

It was noted earlier that if the oscillator is affected only
by conservative nonlinearities, then the nonlinear coefficient
is purely imaginary (a = 0). The complex coupling coef-
ficient u = u, +iu; similarly splits into conservative and
nonconservative parts, as seen with the energy function

E = 1A +|BP), (17)
which satisfies
E = —(A* +|B*) — a(|Al* + |B[*)
+ fRe(A” + e PB*) + 21, Re(AB).  (18)

The first two terms reflect linear and nonlinear dissipation,
respectively, while the forcing may provide or extract energy
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depending on the phases of A and B. The final term shows that
only the real part u, of the coupling term can affect the energy
E, while the imaginary part p; is conservative. The sign of the
contribution to E from the coupling depends on the phase of
AB.

A. Symmetries

Uncoupled problem. Due to the odd character of the critical
subharmonic modes under translation through one period
of the forcing, the uncoupled problem possesses a separate
reflection symmetry for each oscillator,

Ry:A— —A, Rp:B— —B.

Permutation symmetry with two oscillators is represented
by the single operation,

k : (A,B) — (e "¢?B.e'?/2 7). (19)

These symmetries of the uncoupled problem generate a
representation of the dihedral group (of order eight) D4; one
may take as generators, for example, R4 and p = Ruk.

Coupled problem. Coupling implies that the modes can
no longer be reflected independently and only the single
(subharmonic) reflection symmetry holds:

R:(A,B) = —(A,B). (20)

Since a pair of (identical) oscillators is described by a single
coupling coefficient, the residual symmetry of the coupled
problem depends entirely on the phase difference ¢. Itis easy to
show that only two choices of ¢ permit any type of permutation
symmetry.

Symmetric forcing. If ¢ =0, there is an interchange
symmetry,

ko : (A,B) — (B,A), (21)

which, together with R, generates the group Z, x Z,. There
are two invariant subspaces,

Fix(ko) = {(A,B)| A = B},
Fix(koR) = {(A,B)| A = —B},

in which the system is equivalent to a single oscillator.
Antisymmetric forcing. If ¢ = m, there is a cyclic exchange
symmetry generated by

p:(A,B) — i(B,A). (22)

The corresponding symmetry group, C4, has no nontrivial
fixed point subspaces. Note that p> = R.

General forcing. If ¢ # 0,7 then the only symmetry is the
reflection R, representing the group Z,.

Table I summarizes the three ways, depending on phase, that
coupling breaks the D4 symmetry of the uncoupled problem.

B. Parameter symmetries

Parameter symmetries can be used to reduce the range of
parameters that needs to be considered.
The system (16) is equivariant under the transformation

(A,B) — €"*(B,A), ¢ — —¢, (23)

PHYSICAL REVIEW E 94, 022216 (2016)

TABLEI. Diagram showing the three ways that the D4 symmetry
of the uncoupled problem is broken for u # 0.

uw=0 D,
Z2 X Z2 Zz C4
r70 | (=0 0<oé<m) @=m)

which means that ¢ can be restricted, without loss of generality,
to 0 < ¢ < m. Physically, this symmetry reflects the fact that
the sign of ¢, which determines whether the parametric forcing
of Aisleading or lagging that of B, is not important. Equivalent
solutions exist for ¢ — —¢ and an appropriately phase shifted
exchange of A and B.

The equivariance of Egs. (16) under the parameter symme-

try
A— —A, u— —u, 24)

means that u can be restricted, without loss of generality, to
wy > 0.

C. Bifurcation analysis

As shown above, the manner in which the D4 symmetry of
a pair of identical uncoupled parametrically forced oscillators
is broken by (symmetric) coupling depends only on the relative
phase of the parametric forcing at each oscillator. We consider
now in more detail the three distinct cases.

The coupling coefficient p is assumed to be small but,
at the same time, we use illustrative values that are large
enough to clearly show the different behavior in each case.
Specifically, we choose u = 0.2i or . = 0.05 + 0.2i for most
of the calculations below, electing u, < u; for a nearly
conservative coupling term. The bifurcation sets, when not
available analytically, are obtained numerically [37].

1. Symmetric forcing, ¢ =0

In this case the equations governing the two subharmonic
modes A and B are

A= (=14+ivA+ fA—(a+i)|APA+uB, (252)
B=(—1+iv)B+ fB—(a+i)|B’B+pnA. (25b)

Recall that the exchange symmetry kg :(A,B) — (B,A)
and subharmonic symmetry R : (A,B) - —(A,B) generate
a representation of the group Z, x Z; and that there are two
nontrivial fixed point subspaces,

Y: ={(A,B)|A=*B},

corresponding to Fix(kp) and Fix(kgR), respectively, and
representing in-phase (synchronous) and out-of-phase (an-
tisynchronous) motion. Within each subspace the system
behaves as a single oscillator and the coupled linear problem
separates into corresponding 2-by-2 blocks. Primary Hopf
bifurcations cannot occur.

Within the subspaces X the real and imaginary parts of
the coupling coefficient i contribute to damping and detuning,
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respectively. Primary bifurcations in ¥ therefore occur along
curves that are shifted with respect to Eq. (5). Pitchfork
bifurcations occur on

FP=0F )+ £w)? (26)
while saddle-node bifurcations appear when

1F w) +a £ u)P?
ol ”)H‘;(z” PV S U F e T @7)

These bifurcations produce Z,-symmetric steady-state solu-
tions of Egs. (25) denoted by S...

In the case of a < 0, secondary Hopf bifurcations within
the ¥ subspaces occur when a critical amplitude, depending
only on a and u,, is reached,

1+ u,
AP = |BP = —1*.
2a

These secondary Hopf instabilities are located on the curves

o (1:Fu,>2+ |:1:F,ur+2a(ViMi)T,

(28)

2 2a

a? -1

is 29
g TH (29)

which terminate at the Bogdanov-Takens points

1 - a”—1
f=TEV TR @ v=Fu = Fu G0)

The Hopf frequency is given by

12
on z\/m[vim +(1wr>12—a"}- G31)

a

v < Fu)

Note that taking © — —pu switches the roles of the in-phase
and out-of-phase solutions, as indicated in Eq. (24).

Nonsymmetric solutions not contained in Xy can arise in
saddle-node bifurcations or in secondary pitchfork bifurca-
tions. These solutions, with A # =+ B, are neither synchronous
nor antisynchronous and are referred to here as mixed modes
(M). They do not arise in primary bifurcations.

Figure 5 shows the bifurcation sets for conservative non-
linearity, a = 0, and a representative value of the coupling,
= 0.05 4 0.2i. There are two pitchfork bifurcations within
the invariant subspaces Xy (labeled P.) defined by Eq. (26)
and, in the subcritical regime, associated saddle-node bifur-
cations (labeled SN.). In addition to these single oscillator
instabilities, there is a smooth curve of symmetry-breaking
(pitchfork) bifurcations from the X_ subspace to mixed
mode (asymmetric) states and two more symmetry-breaking
bifurcations, one from X and one from X_ emerging from the
mode interaction point where P cross; these three dash-dotted
curves are labeled SB. according to the subspace of the
(pure) mode undergoing the instability. Finally, near the mode
interaction point is a cusp that forms the leftmost boundary of
two saddle-node bifurcations on the mixed mode branch.

The bifurcation diagram in Fig. 6 shows the three bi-
furcations that occur for v = —1.5. There is a primary
pitchfork bifurcation in ¥, at f =1.61 and in ¥_ at f =
1.998; these produce the two Z,-symmetric branches, Sy. A
symmetry-breaking bifurcation on the S_ branch at f = 2.196
stabilizes that branch and gives rise to a branch of (four
symmetry-related) asymmetric M states.

PHYSICAL REVIEW E 94, 022216 (2016)
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FIG. 5. Bifurcation sets for ¢ =0, a =0, u = 0.05 4 0.2i: pri-
mary pitchfork in ¥ subspaces (P, thick solid curves), saddle-node
in X1 (SNg, thin solid lines), symmetry-breaking (pitchfork) from
Y.+ to mixed mode state (SB.., dash-dotted curves), saddle-node on
mixed mode state (SN, thin solid curves). In the larger regions the
types of solutions that exist there are indicated in parentheses.

Phase portraits illustrating the different types of solutions
are shown in Fig. 7 for the parameters of Fig. 6 and f =
2.5; here A = A, +iA; and B = B, +iB;. The projections
onto (A,,B,) and (A;,B;) show the invariant subspaces X
where the solutions Sy are found, and the effect of the
symmetry-breaking bifurcation from S_ that produces the
(four) asymmetric M states.

With positive detuning the scenario is more complex,
as illustrated for v = 1.5 in Fig. 8. The primary pitchfork

|A+B|

201

|A-B|

1.0

0 . . [ .
0.5 1.0 1.5 2.0 2.5 f

FIG. 6. Bifurcation diagram for v=—1.5,¢ =0,a=0, p =
0.05 4+ 0.2i showing |A + B| (projection onto ¥,) and |A — B|
(projection onto ¥_). Solid (dashed) curves denote stable (unstable)
solutions. Solutions in the ¥, subspaces are labeled with Sy and
asymmetric mixed modes with M.
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FIG. 7. Phase space portraits corresponding to the case of Fig. 6
with f = 2.5. There are two stable steady states S, (solid dots)in X,
two stable steady states S_ (asterisks) in X_ and four unstable asym-
metric steady states M (open circles); one representative solution on
each group orbit is labeled. Panels (a) and (b) show projections onto
A=A, +iA;and B = B, +iB;, respectively, while the projections
in (c) and (d) illustrate the interchange symmetry (21). The trivial
state is not shown.

bifurcations in X, at f = 1.947 and f = 1.671, respectively,
are subcritical. The nontrivial Z,-symmetric branches created
at these bifurcations, S, are stabilized (within the correspond-
ing subspace) in saddle-node bifurcations at f = 0.95 and
f = 1.05, respectively. In the intermediate region between
these saddle-node bifurcations and the original pitchfork
bifurcations is a branch of asymmetric M states connecting
to Sy at f =0.977 and S_ at f = 1.548. This M branch
undergoes two saddle-node bifurcations, at f = 1.011 and
f = 1.52; between these values are three distinct M solutions,
one of which is stable. A separate unstable asymmetric M
branch bifurcates at f = 1.077 from S_ and stabilizes it. Both
S+ branches are thus stable for large forcing values.

We remark that the case a = u, = 0, where neither nonlin-
earity nor coupling contribute to dissipation, is degenerate in
certain respects. The three leftmost saddle-node bifurcations,
for example, on the S; and M branches, occur exactly at
f =1, while the two symmetry-breaking bifurcations nearest
f =1,oneon S, and one on S_, coincide as well.

It is also worth pointing out that, in the limit of large
forcing, there are always four stable steady states and four
unstable steady states. This fact, which can be seen in Figs. 6
and 8 and in the following two sections, is independent of
the forcing phase ¢ because, at large amplitude, the coupling
term becomes negligible compared to the nonlinearity. In
this limit the coupled system will increasingly resemble two
uncoupled oscillators. The uncoupled system has four stable
states, corresponding to the four possible phases with both

PHYSICAL REVIEW E 94, 022216 (2016)
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FIG. 8. Bifurcation diagram for v=1.5, ¢ =0, a =0, u =
0.05 + 0.2i showing |A + B| and |A — B|. Solid (dashed) curves
denote stable (unstable) solutions. Solutions in the ¥ subspaces are
labeled with S and asymmetric mixed modes with M.

oscillators excited, and four unstable states, corresponding to
the four possible equilibria with only one oscillator excited.
Thus, one does not expect complicated dynamics for large
forcing regardless of the forcing phase; the residual symmetry
that depends on ¢ is important near onset where the weak
coupling is relevant, but not at large amplitude.

2. Antisymmetric forcing, ¢ =

With antisymmetric forcing the governing equations for the
two coupled oscillators are

A= (=14+ivA+ fA—(a+i)|APA+uB, (32a)
B=(—1+iv)B— fB—(a+i)|B*B+pA. (32b)

Recall that these equations are equivariant under the cyclic
permutation p : (A,B) — i(B,A), which generates a repre-
sentation of the group C,4. There are no nontrivial fixed
point subspaces and, consequently, the primary bifurcation
cannot be reduced to the case of a single oscillator. The four
eigenvalues describing the stability of the trivial state are
given by

e = —1+ip+ \/fz V2 42 420, (33a)
Bi=—lkim —\[f> = v+ u2£2ivp,, (33b)
which are, in general, complex.
A Hopf bifurcation occurs along the curve
2 2 2 Hi
FF=0+v)(1—pl); v#E—=, (34)

I
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where Ap = £i€2, creating a C4-symmetric periodic orbit
(Pc,)- The Hopf frequency is given by

Q=i +viu,. 35)

We emphasize that this is a primary bifurcation, in contrast to
the secondary Hopf bifurcations that already arise in a single
oscillator system with a < 0 [see Eq. (9) and Eq. (29)]. It
results from the linear coupling and the symmetry properties
of antisymmetric forcing and not nonlinear effects. Note also
that the Hopf frequency €2 is small if the coupling p is small,
as assumed in this analysis.

If the interaction is conservative (i, = 0), then the location
of the primary instability, which is now oscillatory rather than
steady, is unchanged from the uncoupled problem and given
by f? = 1 4 v?. If the interaction is not conservative, then the
Hopf bifurcation is shifted to lower forcing values; i.e., the
interaction is always destabilizing.

The periodic modulated solution Pc, generated in the
primary Hopf bifurcation is not expected to persist for
large values of f, where the influence of the coupling term
diminishes compared to the nonlinear and forcing terms, but
only an O(Ju|) distance above onset. Beyond that point, this
C4-symmetric limit cycle must be replaced by steady states ()
approximating the solutions of the uncoupled problem given
by Eq. (7). We find that this transition generally takes the form
of a saddle-node heteroclinic bifurcation. This heteroclinic
bifurcation is codimension one because the four steady states
involved lie on the same group orbit.

The bifurcation sets corresponding to the conservative case
a =pu, =0 are shown in Fig. 9. The primary Hopf (H)
bifurcation is supercritical for v < 0 and subcritical for v > 0,
just as the primary symmetry-breaking bifurcation is for a
single oscillator (cf. Fig. 1). In the supercritical region, the
C 4-symmetric periodic orbit created in the primary bifurcation
is stable and exists until a saddle-node heteroclinic (SN Het)
bifurcation. In the subcritical region for v < 1.322, this stable
periodic orbit exists between the saddle-node heteroclinic
bifurcation and a saddle-node of periodic orbits (SN Per);
the unstable C4-symmetric periodic orbit involved in this
saddle-node is the one generated in the subcritical primary
Hopf bifurcation. For v > 1.322 there is a curve of saddle-node
(SN) bifurcations generating (four) asymmetric steady states
and, for v > 1.466, a second such curve originating in a
cusp. Bogdanov-Takens (BT) points on each of these SN
curves form the boundaries of associated Hopf and homoclinic
(Hom) bifurcation sets (only visible in the lower plot) between
which (four) asymmetric periodic solutions can be found. The
termination of these two bifurcation sets at the BT point on
the right is preceded by a couple of transitions. First, the
homoclinic bifurcation set collides with the upper SN curve,
marking the upper boundary of a set of saddle-node homoclinic
(SN Hom) bifurcations. The homoclinic bifurcation then
detaches again from the SN curve before reaching the cusp
and moves toward the Bogdanov-Takens point on the lower
SN curve.

As with the case of symmetric forcing, the bifurcation
structure is quite complex for positive detuning and is
characterized for ¢ = 7 by multiple saddle-node bifurcations,
secondary Hopf bifurcations, and Bogdanov-Takens points.
The periodic solutions characteristic of antisymmetric forcing

PHYSICAL REVIEW E 94, 022216 (2016)
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FIG. 9. Bifurcation sets for ¢ =m, a =0, u=0.2i: Hopf
(H, dashed curves) and saddle-node of periodic orbits (SN Per,
dashed curve), saddle-node (SN), heteroclinic (Het), saddle-node
heteroclinic (SN Het), homoclinic (Hom), saddle-node homoclinic
(SN Hom), Bogdanov-Takens points (BT). In the larger regions, the
types of solutions that exist there are indicated in parentheses. In
(a) the regions of one and two C4-symmetric periodic orbits (Pc,)
are further marked with “1” and *“2”, respectively. In (b) a close-up
of the complex region between two BT points near the cusp of SN
bifurcations is shown, as is, in the inset, a further magnification
showing the cusp region.

exist in a finite region near the primary Hopf bifurcation and are
destroyed in global bifurcations (heteroclinic or saddle-node
heteroclinic).

Several bifurcation diagrams are shown in Fig. 10. For
v = —0.5and v = 0.5, the C4-symmetric periodic orbit (Pc,)
created in the primary bifurcation at f = 1.118 terminates
in a saddle-node heteroclinic bifurcation at f = 1.491 and
f = 1.273, respectively; for v = 0.5, the periodic orbit first
undergoes a saddle-node bifurcation at f = 1.011. The stable
and unstable branches of steady states (§) created in the saddle-
node heteroclinic bifurcation persist for large f.

For v = 1.4, this scenario is interrupted by an isola of steady
states existing for 1.057 < f < 1.271. The initial (unstable)
C,-symmetric periodic orbit created via Hopf bifurcation
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FIG. 10. Bifurcation diagrams for¢ = 7,a = 0, u = 0.2i show-
ing the norm |A| = |(A,B)| of steady states (S), Cs-symmetric
periodic orbits (Pc,), and asymmetric periodic orbits (F,): (a) v =
—0.5, ) v=0.5,(c) v=14, (d) v =2. For v = 1.4, there is a
secondary supercritical Hopf bifurcation on the isola of steady states
that generates stable asymmetric periodic orbits, shown in the inset.
Stable (unstable) solutions are shown with solid (dashed) lines.

at f =1.721 is destroyed in a saddle-node heteroclinic
bifurcation at the right boundary of this isola. A heteroclinic
bifurcation on the lower branch of the isola generates a
stable C4-symmetric periodic orbit, which terminates on the
unbounded steady state branch in a saddle-node heteroclinic
bifurcation at f = 1.23. A secondary Hopf bifurcation at
f = 1.0808 on the upper branch of the isola produces stable

PHYSICAL REVIEW E 94, 022216 (2016)
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FIG. 11. Phase space portraits corresponding to the case of
Fig. 10(c) with f = 1.5. There are four stable steady states S, (solid
dots) and four unstable steady states S, (open circles) related by the
symmetry (22); one representative solution on each group orbit is
labeled. The C4-symmetric periodic orbit, Pc,, is also shown. Panels
(a) and (b) show projections onto A = A, +iA; and B = B, +iB;,
respectively, while the projections in (c) and (d) illustrate the C,
symmetry. The trivial state is not shown.

asymmetric periodic orbits (F,) that quickly collide with the
lower branch in a homoclinic bifurcation at f = 1.0818.

With v =2, the primary subcritical Hopf bifurcation
occurs at f = 2.236 and the C4-symmetric periodic orbit
created there again terminates in a saddle-node heteroclinic
bifurcation, at f = 1.944. The lower branch of steady
states created here is stabilized in a second saddle-node
bifurcation at f = 1.021 and destabilized again in another
saddle-node at f = 1.368, then once more at f = 1.131. The
unbounded steady states appear in a saddle-node bifurcation at
f=1218.

Phase portraits illustrating both steady and periodic solu-
tions are shown in Fig. 11 for the parameters of Fig. 10(c)
and f = 1.5. At this forcing value there are four stable steady
states, related by the symmetry p of Eq. (22), and four unstable
steady states, likewise related by the rotation p. The projections
onto (A,,B;) and (A;, B,) best reveal this C, symmetry and
further show that the limit cycle itself is symmetric.

In the case of real coupling p there are differences with
the scenario described above, most notably the absence of
Bogdanov-Takens points in the cusp region [cf. Fig. 9(b)].
Because of degeneracies that make the numerical calculations
difficult in the purely real case, we show the bifurcation sets
for © = 0.2 + 0.04i in Fig. 12. With complex coupling there is
a double-zero (degenerate Hopf) bifurcation at v = —u; /i,
where the Hopf frequency €2 vanishes; see Eq. (35). Note
that we use the term “double-zero bifurcation” to refer
to the case of a pair of zero eigenvalues described by a
semisimple (diagonalizable) Jordan block, while the term
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FIG. 12. Bifurcation sets for ¢ =, a =0, © = 0.2+ 0.04i:
Hopf (H, dashed curve) and saddle-node of periodic orbits (SN
Per, dashed curve), saddle-node (SN), heteroclinic (Het), saddle-node
heteroclinic (SN Het), and double-zero point. In the larger regions,
the types of solutions that exist there are indicated in parentheses.

“Bogdanov-Takens bifurcation” refers throughout this paper
to the usual nonsemisimple case; some authors use these terms
synonymously [29]. In this case, since the codimension-two
point corresponds to the vanishing of the Hopf frequency along
a curve of Hopf bifurcations, it may also be called a degenerate
Hopf bifurcation.

The curve of saddle-node heteroclinic bifurcations that
follows the primary Hopf bifurcation for negative v appears
to pinch off here at the double-zero point (v = —0.2 for this
choice of coupling), then continues to the right before sepa-
rating into distinct saddle-node and heteroclinic bifurcations
at about v = —0.132; this region is shown in more detail in
Fig. 13(a). We note that the details of this double-zero point can
be very complicated [38] and include, in a small neighborhood,
many other bifurcations: pitchfork, homoclinic, heteroclinic,
gluing, Bogdanov-Takens, etc. We did not attempt to resolve
these in Fig. 12 or Fig. 13.

The curve of heteroclinic bifurcations collides with the
(smooth) curve of saddle-node bifurcations at v = 0.98, cre-
ating a short region of saddle-node heteroclinic bifurcations,
before detaching again at u = 0.982 and heading toward the
cusp on the other curve of saddle-nodes and merging (just
beyond the cusp) with the upper branch. Figure 13(b) shows
this scenario in more detail. Note the absence, compared
to Fig. 9, of Bogdanov-Takens points and the associated
asymmetric periodic states.

The bifurcation sets in the examples above were obtained
for a = 0. In this case the transition from supercritical to
subcritical Hopf occurs at v = 0 and the complicated (cusp)
region with multiple saddle-node bifurcations appears for
v 2 1. If a # 0 these features can be shifted left (a < 0) or
right (a > 0). Figure 14 shows the transition from supercritical
to subcritical Hopf bifurcation in the (v,a) plane, which does
not depend on ;. If u, = 0, the transition occurs along the
line a = v, while for i, > O there is a critical value of |a| = a,
such that for a > a, the Hopf bifurcation is supercritical for
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FIG. 13. (a) Close-up of the double-zero bifurcation point and
(b) cusp region of Fig. 12 showing bifurcation sets: Hopf (H, dashed
curve), saddle-node of periodic orbits (SN Per, dashed curve), saddle-
node (SN), saddle-node heteroclinic (SN Het), and heteroclinic (Het).
The heteroclinic bifurcation set near the cusp does not collide there,
but with the upper branch, although this cannot be distinguished on
the scale of the plot. In the larger regions, the types of solutions that
exist there are indicated in parentheses.

a

1 supercritical

subcritical

FIG. 14. Contours showing the transition from supercritical
to subcritical Hopf bifurcation for coupling values with u, =
0,0.1,0.2,0.3,0.4,0.5. The transition is independent of ;.
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all v and fora < —a, the Hopf bifurcation is subcritical for all
v. For u, = 0.4, for example, this critical value is a, ~ 2.98.

3. General forcing phase

With ¢ # 0,7 the governing equations (16) do not simplify.
They possess only the subharmonic symmetry R of Eq. (20).
This case is intermediate between symmetric forcing (¢ = 0),
where the primary instabilities can be identified with the
pitchfork bifurcations of single oscillators, and antisymmetric
forcing (¢ = m), where the primary instability is a Hopf bi-
furcation. Transitions between steady and oscillatory behavior
are observed as parameters are varied.

In the limiting case of conservative (u, = 0) and purely
dissipative coupling (u; = 0) the location of the primary
bifurcations are given by relatively simple expressions.

In the case of conservative coupling, when u, =0, a
primary Hopf bifurcation, which produces Z,-symmetric
periodic orbits (Pyz,), occurs for

| < /14 u? tan% (36)

, (4 p)d+v?) 37
f= 1+ u?sin22 ©7
i 2

along the curve

and the Hopf frequency satisfies

(14 u7) sinzg —? COSZ% 38)
2 029 ’
14 p; sin?§

Q=

Primary pitchfork bifurcations, producing steady states (),

occur for
lv| > tan?,/l Jru,?cos2¢—5 (39)
2 2
on the curves

fr= l—i—vz—i—ufcosgb

4
:EZ\/UZ[,LZ-Z COSZ%5 — u? sinzg - % sin¢.  (40)
The codimension-two points where the pitchfork and Hopf
bifurcation curves meet are given by

w,f) = m(:& tang , sec%). (4D

Such transitions are referred to here as Bogdanov-Takens
bifurcations with Z, symmetry (see, e.g., [38,39]) since the
pair of zero eigenvalues corresponds to a nonsemisimple block
of the Jordan normal form. Note that a Bogdanov-Takens
bifurcation with Z, symmetry will occur when the equilibrium
in question is the symmetric (trivial) state A = B = 0, while
Bogdanov-Takens bifurcations occurring on finite-amplitude
branches (where the Z, symmetry has already been broken)
will be the usual (asymmetric) kind.

In the case of purely dissipative coupling, with u; = 0,
primary Hopf bifurcation occurs for

v > /1 —u? cot% (42)
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FIG. 15. Contour map showing the location of the Z,-symmetric
Bogdanov-Takens point with v > 0 in the conservative and purely
dissipative cases, as given by Egs. (41) and (47) . Curves for v <
0 are obtained by reflection. Curves are shown for constant p, in
steps of 0.2 (i« € Im) and 0.2 (i € Re), and for constant ¢ (radial
lines), in steps of 7 /6. The central curve intersecting (v, f) = (0,1)
corresponds to the uncoupled case u = 0.

along the curve

2 2
f2 — w (43)

1 — p2cos??

and the Hopf frequency is

2 — 1) cos?? + v2sin22
(’ur ) 2 2 . (44)

QL=pu
' 1 — p2cos?

Primary pitchfork bifurcations occur for
¢ .0
v| < cot=,/1 — u?sin>= 45
v] R A > (45)
on the curves

fP=1+v>+pu’cosg

4
+ 2\//1} cosz(g —v2p? sinzg — % sin2¢.  (46)

Bogdanov-Takens bifurcations with Z, symmetry terminate
the set of Hopf bifurcations at

W, f)=,/1- ,u%(:l: cot(;—b , csc%). 47)

Figure 15 shows the location of the Z,-symmetric
Bogdanov-Takens points in the conservative and purely
dissipative cases. Note that for p imaginary (upper set of
curves in Fig. 15), increasing ¢ moves the Z,-symmetric
Bogdanov-Takens points outward, while for  real (lower set
of curves) the Z,-symmetric Bogdanov-Takens points move
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FIG. 16. Primary Hopf (H) and pitchfork (P) bifurcation sets for
(@) u =0.2i, (b) u =0.04 +0.2i, (c) u =0.2, and (d) u = 0.2 +
0.04i. Z,-symmetric Bogdanov-Takens points (not marked) lie on
the intersection.

inward with increasing ¢. In both cases the region of Hopf
bifurcation increases with ¢. Note that, although Egs. (41)
and (47) have well-defined limits as u; — 0 and u, — 0,
respectively, there are no primary Hopf bifurcations in the
uncoupled problem since the Hopf frequency 2 is zero; see
Eqgs. (38) and (44). For p = 0 there is a double-zero (dual
pitchfork) bifurcation for any value of detuning.

Figure 16 shows the primary Hopf and pitchfork bifurcation
sets corresponding to two sets of values from Fig. 15: ¢ = 7/2,
@ = 0.2i, shown in Fig. 16(a), with Z,-symmetric Bogdanov-
Takens points at (v, f) = (£1.0198,1.4422), and ¢ = 7/2,
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FIG. 17. (a) Bifurcation sets for ¢ = 7/2,a = 0, u = 0.2i: Hopf
(H, dashed curves), saddle-node of periodic orbits (SN Per, dashed
curve), saddle-node (SN), heteroclinic (Het), saddle-node hetero-
clinic (SN Het), homoclinic (Hom), Bogdanov-Takens points (BT).
Some bifurcation sets (SN Per, homoclinic, and gluing bifurcations,
for example) are hard to see on the scale of the plot and are not
labeled. Panel (b) shows a close-up of the complex transitions for
positive detuning. In the larger regions, the types of solutions that
exist there are indicated in parentheses.

n = 0.2, shown in Fig. 16(c), with Z,-symmetric Bogdanov-
Takens points at (v, f) = (£0.9798,1.3856). Observe that
conservative coupling produces a region of Hopf bifurcations
centered at v = 0 with pairs of pitchfork bifurcations outside
of this, in accordance with Eqs. (36) and (39). Purely dissi-
pative coupling produces the opposite, a region of pitchfork
bifurcations centered at v = 0 with Hopf bifurcations outside
of this, in accordance with Egs. (42) and (45). Perturbations of
these conservative and purely dissipative cases are similar, but
with asymmetrically located Z,-symmetric Bogdanov-Takens
points, as seen for u = 0.04 4+ 0.2 [panel (b)] and for u =
0.2 + 0.04i [panel (d)].

A more complete bifurcation picture is shown in Fig. 17
for the case of @ = 0 and p = 0.2i, when the primary Hopf
bifurcation set is centered around v = 0. We first note the
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broad similarities with Fig. 9. Primary periodic solutions
are destroyed via saddle-node heteroclinic or (less often)
heteroclinic bifurcation. The bifurcation structure is most
complex for positive detuning where a series of saddle-node
bifurcations leads to hysteresis and isolas of steady states.
Again, there is a very complicated region near the cusp
of saddle-node bifurcations at (v, f) = (1.116,1.099), where
a homoclinic bifurcation set arising from one Bogdanov-
Takens point collides with the upper branch of saddle-node
bifurcations, initiating a set of saddle-node homoclinic bifur-
cations before quickly detaching and moving towards another
Bogdanov-Takens point on the lower saddle-node branch; see
the inset of Fig. 9 for the detail of this scenario, which is not
visible on the scale of Fig. 17.

The main difference between this case and that of ¢ = 7
is the transition from primary Hopf to a pair of pitchfork
bifurcations for |[v| 2 1. These transitions, the details of which
are shown in Fig. 18, are associated with an additional three
Bogdanov-Takens points, two with Z, symmetry and one
without. The leftmost transition is organized by a Bogdanov-
Takens bifurcation with Z, symmetry (the simplest “s = 1”
case of [29], Sec. 9.5.3, and of [40]; see also [41]) that, in
addition to the Hopf and pitchfork bifurcations, generates
a heteroclinic bifurcation set. This heteroclinic bifurcation
set soon collides with a curve of saddle-node bifurcations
originating very near the same Bogdanov-Takens point (similar
to the scenario seen in [39]).

The transition from Hopf to pitchfork bifurcation near v =
1 [see Fig. 18(b)] is again organized by a Bogdanov-Takens
bifurcation with Z, symmetry, but according to the more
complex case (the “s = —1” case of [29], Sec. 9.5.3, and
of [40]), which generates an additional set of asymmetric Hopf
bifurcations, producing asymmetric periodic orbits (P,), and
a set of homoclinic gluing bifurcations; a set of saddle-node
bifurcations on the Z,-symmetric periodic orbits is not shown.
The asymmetric Hopf and gluing bifurcation sets remain close
as f is decreased until the lower pitchfork bifurcation curve
is crossed; at this point a gluing bifurcation is forbidden
by the stability of the trivial (Z,-symmetric) state and it
splits into separate homoclinic and heteroclinic bifurcations
(as occurs for the single oscillator case of Fig. 3). The
homoclinic bifurcation set terminates in another (asymmetric)
Bogdanov-Takens point located on the set of saddle-node
bifurcations originating from the lower pitchfork bifurcation
near this crossing. The heteroclinic bifurcation set merges with
the saddle-node bifurcation set near this same point, creating
a set of saddle-node heteroclinic bifurcations.

Four representative bifurcation diagrams are shown in
Fig. 19 for this set of parameters and should be compared with
those of Fig. 10. For v = —1.5 there is no Hopf bifurcation, but
a pair of pitchfork bifurcations at f = 1.714 and f = 1.888,
respectively. These are followed by a saddle-node bifurcation
at f = 2.275. Note, in comparison with Fig. 10, the splitting
of the stable and unstable steady state branches (for large f)
into two distinct pairs.

For v = 0 the primary instability at f = 1.01 is a Hopf
bifurcation, which produces a stable Z,-symmetric periodic
orbit that persists until a saddle-node heteroclinic bifurcation
at f = 1.15. This is followed by a second saddle-node
bifurcation at f = 1.389.
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FIG. 18. Close-up of the (a) left and (b) right transition, between
pitchfork and Hopf bifurcation of Fig. 17 showing bifurcation sets:
pitchfork (P), Hopf (H, dashed curves), saddle-node (SN), saddle-
node heteroclinic (SN Het), heteroclinic (Het), homoclinic gluing
(Hom Gluing), and Bogdanov-Takens points (BT). Some bifurcation
sets [homoclinic and heteroclinic, near the lower, asymmetric BT
point in panel (b)] are not visible on the scale of the plot and are not
labeled. In the larger regions, the types of solutions that exist there
are indicated in parentheses.

For v =1 there is again a Hopf bifurcation, now at f =
1.428, but the unstable Z,-symmetric periodic orbit created
here is soon destroyed in a saddle-node heteroclinic bifurcation
at f = 1.374 that forms the right boundary of an isola of
steady states. The upper branch of this isola experiences a Hopf
bifurcation [see the inset of Fig. 19(c)] at f = 1.076, leading
to a branch of stable asymmetric periodic orbits that is quickly
destroyed by homoclinic collision with the lower branch at
f = 1.0773. A heteroclinic bifurcation near this point, at f =
1.0848, generates an unstable Z,-symmetric periodic orbit that
undergoes a saddle-node bifurcation at f = 1.084 61, quickly
followed by symmetry-breaking bifurcations at f = 1.084 63
and f = 1.084 67; the stabilized periodic orbit is eventually
destroyed in another heteroclinic bifurcation at f = 1.121
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FIG. 19. Bifurcation diagrams for ¢ = /2, a =0, p =0.2i
showing the norm |A| = |(A, B)| of steady states (S), Z,-symmetric
periodic orbits (Pz), and asymmetric periodic orbits (F,): (a)
v=—1.5 (b)) v=0,(c) v=1, (d v=2. For v=1 there is a
secondary supercritical Hopf bifurcation on the isola of steady states
that generates stable asymmetric periodic orbits, shown in the inset.
Stable (unstable) solutions are shown with solid (dashed) lines.

involving a larger-amplitude steady state branch created via
saddle-node bifurcation at f = 1.112. The final saddle-node
bifurcation occurs at f = 1.249.

For v =2 the primary instability is again steady, with
subcritical pitchfork bifurcations at f = 2.124and f = 2.343.
The first branch is stabilized in a saddle-node bifurcation
at f = 1.01, then destabilized again at f = 1.567 before
merging with the second branch in a third saddle-node
bifurcation at f = 1.145. An isola of steady states is present
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FIG. 20. Phase space portraits corresponding to the case of
Fig. 19(c) with f = 1.374 at the saddle-node heteroclinic bifurcation.
There are two stable steady states (upper branch denoted by solid dots,
and the lower branch by asterisks) and two (larger amplitude) unstable
steady states (upper branch denoted by open circles, and the lower
branch by open squares). The Z,-symmetric periodic orbit, which
encloses the origin (trivial state not shown), is colliding with two
smaller-amplitude unstable steady states (open triangles). Projections
onto (a) (A, A;), (b) (By, Bi), (¢) (A, B;), and (d) (A;, B,).

for v = 2 as well. The stable portion of this isola exists between
saddle-node bifurcations at f = 1.011 and f = 1.475, which
mirror those bounding the stable branch described above. The
unstable portion of the isola undergoes additional saddle-node
bifurcations at f = 1.071 and f = 1.735. Finally, two more
saddle-node bifurcations at f = 1.104 and f = 1.22 create
the steady branches that persist for large f.

Phase portraits are shown in Fig. 20 for the case cor-
responding to Fig. 19(c) at f = 1.374, which is where the
Z,-symmetric periodic orbit created in the primary Hopf bi-
furcation terminates in a saddle-node heteroclinic bifurcation.
At this forcing value there are two stable steady state branches
[each representing two solutions related by the reflection R
of Eq. (20)] and three unstable steady state branches. The
smallest (pair) of these solutions is colliding with the periodic
orbit. Note that the projections onto (A,,A;) and (B,,B;),
which focus on the dynamics of one oscillator, are qualitatively
similar to those of Fig. 11 (modulo a rotation of B due to
the forcing phase). The projections onto (A,, B;) and (A;, B,),
however, which reflect the effects of coupling and symmetry,
are quite different. The C4 symmetry of Figs. 11(c) and 11(d)
is absent in Figs. 20(c) and 20(d).

V. COMPARISON WITH EXPERIMENT

Subharmonic surface waves in horizontally vibrated con-
tainers (see, e.g., [9,33,42-44]) are an important example of a
real experimental system that can be modeled as a pair of
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FIG. 21. Modulated (quasiperiodic) solution found experimen-
tally in a 20-cm square container with 5 cSt oil driven at 13.95 Hz.
The crosswise mode number is N = 11 and the modulation period is
about 45.6 s. The snapshots (a)—(d) are separated by approximately
1/8 of this period, or 5.7 s. Reproduced from [20].

coupled parametrically forced oscillators with ¢ = w. The
case considered in detail in Sec. IV C2 will be relevant if the
subharmonic waves are dominant (i.e., the harmonic wave field
can be neglected) and when the container is long enough (or
forcing frequency high enough) that the subharmonic waves
can be thought of as two weakly interacting (cross-wave)
patterns generated by opposing endwalls. This is the case in
several recent experiments [19,20].

The results of Sec. IV C 2 agree with recent theoretical work
on cross waves [20,35,36,45] in predicting a primary Hopf
bifurcation to modulated (quasiperiodic) solutions. The results
of that section go further in, among other things, predicting
the destruction of these modulated solutions in a saddle-node
heteroclinic bifurcation (less often, in a standard heteroclinic
bifurcation). Both the region of existence of these modulated
solutions and their frequency of modulation decrease as the
strength of the coupling decreases.

Although modulated solutions have been observed before
in cross-wave experiments [44,46—48], these were likely due
to either nonlinear effects or mode interactions, while the
modulated solutions investigated here arise in a primary Hopf
bifurcation and are due to interaction between the out-of-phase
(by m/2) wave fields generated at opposite sides of the
container. These solutions, shown in Fig. 21, are associated
with a slow cycling between balanced and one-sided excitation
and were observed in the recent experiments of [20]. Possible
reasons why they have not been more widely observed include
the complicating effects of mode interactions mentioned above
and the difficulty of controlling boundary conditions [19,20],
but a more basic issue is simply selecting the right range
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of forcing frequencies for a given container. If the forcing
frequency is too low, then cross waves will rapidly invade
the entire surface and the interaction will be too strong
(i.e., a weakly coupled oscillator model will not apply) and,
among other difficulties, the distinction between one-sided and
two-sided excitation is lost. If the forcing frequency is too high,
then, although a weakly coupled oscillator approximation
is valid, the modulation frequency will be too low to be
measured accurately. Furthermore, the range of existence of
these quasiperiodic solutions may be so narrow that it is
washed out by various experimental errors.

Modulated solutions that cycle between one-sided and bal-
anced excitation were located in the experiments of [20] using
a20-cm square experimental container and a forcing frequency
of 13—14 Hz. These solutions, located at onset, are an important
confirmation of the modulated solutions predicted by theory.
Additional details of Figs. 9 and 12, unfortunately, are
impossible to verify due to the limitations of the measurement;
there are substantial sources of experimental error, particularly
in maintaining constant boundary conditions.

A. Dependence on detuning

A significant issue in comparing experiment with theory
is the sensitivity to the coupling coefficient p. In the above
analysis, this was treated as constant while forcing and
detuning were varied, but in a real experiment it will not be so.
Coupling strength depends on the overlapping wave fields and,
thus, on all experimental parameters (container size, damping,
boundary conditions, etc.). In particular, it varies strongly
with detuning. Negative detuning leads to evanescent wave
fields that decay quickly away from the endwall [20] (weak
coupling), while positive detuning leads to more oscillatory
wave fields that extend further into the interior (stronger
coupling). Furthermore, the phase of the subharmonic waves
in the overlap (coupling) region is important; some phases
will lead to constructive interaction and others to destructive
interaction [see Eq. (18)].

We thus expect that, for cross waves excited in horizontally
vibrated containers, the coupling coefficient © should grow
with v and oscillate as well, at least for v > 0 when the wave
fields are oscillatory in the interior. The oscillation with v is
clearly seen in the experimental measurements of the Hopf
frequency, as well as theoretical models [20,35]; see Fig. 22.

As a first step to a more realistic dependence of the coupling
coefficient ©(v), we use the following model,

M(V) — Moeavei[90+H(v)vi]’ (48)
where the exponent o captures the growth rate of the coupling
due to increased wave penetration and €2, captures the
oscillation due to varying overlap (phase). This oscillation
is applied only for positive v via a Heaviside step function
H®).

The primary Hopf bifurcation and the corresponding Hopf
frequency, obtained using Eq. (48), are shown in Fig. 23, which
should be compared with Fig. 22 (reproduced from [20]). The
particular parameters in Fig. 23 were chosen to qualitatively
reproduce the experimental data (and theoretical curves) for
the observed modulation frequency; Fig. 23 can be directly
compared with Fig. 22 despite the different axes because of
the rescaling (4) with y that is done here and not in [20] (for
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FIG. 22. Modulation (Hopf) frequency (in Hz) of the solution
shown in Fig. 21 over an interval of forcing frequencies w/m (in Hz)
around the resonance frequency of 13.52 Hz. The experimentally
measured Hopf frequency 2 is compared with that predicted by the
model obtained in [20] with the derived boundary conditions (solid
curve) and with Dirichlet boundary conditions (dashed curve); re-
maining parameters for these calculations are viscosity, 5 cSt; surface
tension, 19.7 dyne/cm; density, 0.913 g/cm3; container depth, 5 cm;
and width, 9 cm. Reproduced from [20].

that experiment y ~ 0.008). This choice of coupling function
captures the oscillations of the modulation frequency €2 for
positive v seen in the experiment. Note also that, since the
coupling p(v) is small except for large detuning, the location
of the Hopf bifurcation is only shifted with respect to the
(pitchfork) instability of an uncoupled oscillator [dashed curve
in Fig. 23(a)] by a small amount, most visible when v is large
and positive.
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FIG. 23. Primary Hopf bifurcation for ¢ = 7 and u(v) given
by Eq. (48) with puo =0.06, 0 =0.4, 6, = 77/18, Q, =0.767.
(a) Critical forcing f(v) (solid curve) compared to the pitchfork
bifurcation of a single oscillator (dashed curve). (b) Hopf frequency
Q(v); this should be compared with Fig. 22.
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FIG. 24. Selected bifurcation sets for ¢ = 7 and p(v) given by
Eq. (48) with ug = 0.06, 0 = 0.4, 6, = 77 /18, Q, = 0.76r: Hopf
(H, dashed curve), saddle-node heteroclinic (SN Het), saddle-node
of periodic orbits (SN Per, solid curves for v 2 2.15). Dotted
vertical lines mark v values where the Hopf frequency vanishes.
Additional bifurcation sets near these double-zero points, which may
include saddle-node, pitchfork, asymmetric Hopf, homoclinic, and
heteroclinic bifurcations [38], are not shown in detail.

Additional bifurcation sets can also be calculated using the
ansatz of Eq. (48) and compared with the experimental results.
In particular, the experiments [20] show that stable modulated
solutions exist well into the positive detuning regime. It is
easy to show that this is not consistent with a conservative
nonlinearity a = 0 because the transition from supercritical
to subcritical Hopf bifurcation occurs near v = 0, and while
stable periodic orbits can be found for larger v they are
soon destroyed by heteroclinic or saddle-node heteroclinic
bifurcations; in Figs. 9 and 12 this occurs for v ~ 1-1.5, while
experiments suggest stable modulated solutions are easily
located for v ~ 4.

Figure 24 shows selected bifurcation sets calculated with
a = 2 and remaining parameters as in Fig. 23. Since a = 2,
the Hopf bifurcation is guaranteed to be supercritical for
v < 2 (see Fig. 14), while for larger v it can switch between
supercritical and subcritical depending on the value of u,(v).
The first two of these transitions with the parameters of Fig. 24
occur for v 2~ 2.15 (supercritical to subcritical) and v >~ 4.48
(subcritical to supercritical); only the first of these is shown
in the figure. Regardless of these transitions for v > 2, there
are substantial regions of stable modulated solutions, bounded
above by a saddle-node heteroclinic bifurcation, for nearly all
values of detuning, consistent with experiment.

VI. COMPARISON WITH SIMULATIONS

Given the difficulties inherent in the experiments [20], it
is not possible to accurately verify additional details of the
dynamics beyond the initial Hopf bifurcation and the existence
of a stable modulated solution, although some progress may
be possible in future experiments. Here we take an alternative
approach and compare with the results of direct numerical
simulations [49] of the Navier-Stokes equations. These are
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done in a two-dimensional domain to make the calculations
more feasible and, thus, cannot replicate the patterns observed
in experiments, whose orientation is nearly crosswise. The
simulations only permit one (downstream) orientation for the
wave vector. These types of parallel subharmonic waves are
known to exist [34-36], even if the instability is typically
masked by the earlier onset of (nearly) crosswise oriented
waves in the full three-dimensional problem.

In any case, the orientation of the subharmonic waves
is incidental to the main idea examined here: that weakly
coupled subharmonic patterns (more generally, parametrically
forced oscillatory systems) driven by antisymmetric forcing,
but otherwise identical, will reflect much of the dynamics
contained in Egs. (32). Although the values of the parameters
in these equations are not known, we expect behavior similar
to that shown in Fig. 10(a) or 10(b) for most frequencies,
since this is the typical scenario for small detuning when the
nonlinearity is dissipative, a > 0.

The simulations described in this section were performed
using fluid parameters similar to common silicone oils:
viscosity of 5 c¢St, surface tension of 20 dyn/cm, and (for
simplicity) density of 1 g/cm?. The fluid domain was taken to
be 7 cm long and 2.5 cm deep, and forcing frequencies (in the
neighborhood) of 30, 40, 50, and 60 Hz were used. A contact
angle of 0° was imposed on the lateral walls.

A. Modulated solutions

Figure 25 shows the filtered amplitude of the harmonic
and subharmonic components taken from the times series
of the height A(¢) of the left edge of the surface. Initial
transient behavior is removed and the results are plotted versus
forcing amplitude; the forcing was increased at a rate of
0.004 g/s over the relevant part of the range (a faster rate was
used over the initial portion safely below the subharmonic
instability). Observe that for applied forcing at 30, 40, and
50 Hz the subharmonic instability appears to be subcritical,
while the case of 60-Hz forcing is less clear. Hysteresis is
also seen using a slower rate of change, with both increasing
and decreasing forcing (see Fig. 27). However, much of this
observed hysteresis may be due to the delay effect of the
(linear) drift in forcing [50,51], making it hard to distinguish
the subcritical from the supercritical case.

With applied forcing at 30, 40, and 50 Hz, the subharmonic
instability is oscillatory, and modulated solutions are found
immediately after it. In each of these cases the period of mod-
ulation increases with forcing until the modulations abruptly
disappear, evidence of a global bifurcation. For 30- and 40-Hz
forcing, there are additional transitions over the range of
the simulation. With 30-Hz forcing there is a second, more
irregular, modulated state appearing at about 0.95g, while
with 40-Hz forcing there is an apparent transition to a second
unmodulated branch of higher amplitude at about 1.49 g.

The lack of an unambiguous region of modulated solutions
with 60-Hz forcing suggests this case may be close to a double-
zero point where the Hopf frequency vanishes; see Fig. 24. This
is discussed further below.

An instantaneous surface profile is shown in Fig. 26 for
the case of 50-Hz forcing and an amplitude of 0.9088 g,
which is above the onset of subharmonic waves. Note that
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FIG. 25. Harmonic (black curve) and subharmonic (gray curve)

components as forcing (in units of the gravitational acceleration g) is

increased for frequencies of (a) 30 Hz, (b) 40 Hz, (c) 50 Hz, and (d)

60 Hz. A transient has been removed from each simulation. Note the
modulation of the subharmonic waves in all but (d) the 60-Hz case.

the subharmonic waves dominate over the harmonic waves (in
this snapshot, harmonic waves can be seen clearly only near the
left endwall) and that the waves extend into the interior of the
domain. A relatively short domain of 7 cm was intentionally
chosen so that the modulated solutions would have a relatively
large frequency and region of existence. A similar requirement
was needed for the experimental observations [20]. It is
perhaps surprising that a relatively strong interaction such as
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FIG. 26. Snapshot of the change in fluid surface height (in cm)
for the 50-Hz simulation at 0.9088 g. Above onset the subharmonic
waves are dominant throughout the domain.

that in Fig. 26 can still be described by a model of weakly
coupled parametrically forced oscillators.

B. Character of the bifurcations

We now examine the 50-Hz case in more detail. Simulation
results shown in Fig. 27(a) are obtained with a slower rate
of change of applied acceleration (0.0008 g/s) and in both
increasing and decreasing directions. The Hopf transition still
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FIG. 27. (a) Close-up of the Hopf bifurcation to modulated
subharmonic waves in the case of 50 Hz in Fig. 25(c). Peak
modulation amplitude (maximum over one modulation period) of
the filtered subharmonic signal is shown for increasing forcing (open
circles, up arrow) and decreasing forcing (open squares, down arrow).
(b) Linear fit of the growth rate (in s~!) of perturbations at fixed values
of the forcing predicts an onset of f = 0.804 g.
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appears to be hysteretic, although a measurement of the growth
rate of perturbations at fixed forcing values suggests that the
real location of the Hopf bifurcation is near f = 0.804 g and,
thus, that much of this hysteresis is due to the linear drift in
forcing [50,51].

As forcing amplitude is increased beyond the Hopf bifurca-
tion, the modulated (quasiperiodic) solutions show an increase
in modulation period and irregular (nonsinusoidal) temporal
behavior indicative of global bifurcation. This progression can
be seen in Fig. 28.

The increase in modulation period (7,,) is shown quanti-
tatively in Fig. 29 and compared with the inverse square root
scaling expected of a saddle-node heteroclinic bifurcation. The
excellent agreement argues that this is the bifurcation predicted
in Egs. (32) and not, for example, a standard heteroclinic
bifurcation, which would show logarithmic divergence of 7,
(a much poorer fit to the data).

It should be acknowledged that the fit shown in Fig. 29,
while convincing, is not a completely rigorous confirmation
of the saddle-node heteroclinic bifurcation. In particular, if
the system is “close” to a double-zero point (vanishing Hopf
frequency), there may be additional complications, even in
the reduced model (32), including small regions of (standard)
heteroclinic bifurcations (or pitchfork bifurcations) that re-
place the saddle-node heteroclinic bifurcation [38]. These
issues are further blurred by the delay associated with the
slow drift in forcing. Regarding these concerns, we note that
all simulations with fixed parameters are consistent with the
picture suggested above. Steady (unmodulated) subharmonic
solutions were only found above the global (saddle-node
heteroclinic) bifurcation, while the modulated subharmonic
solution appears to be the only (nontrivial) attractor below it. In
other words, the stable unmodulated branch seems to disappear
below the assumed saddle-node heteroclinic bifurcation, as
expected. Furthermore, the delay associated with the drift in
forcing is relatively minor in this case: Reducing the rate of
change of the forcing from 0.004 g/s to 0.0005 g/s and con-
sidering both forward and backward sweeps only lowers the
estimate for the bifurcation point by 1%-2%. For these reasons
(as well as technical numerical issues [49]) we did not attempt
in the present paper a more rigorous bifurcation analysis using
the Navier-Stokes simulations, following, e.g., the noninvasive
control approach of [52]. This is left for future work.

C. Dependence on frequency

Significant dependence on frequency (detuning) is antici-
pated in these simulations for the reasons given in connection
with Eq. (48). As the forcing frequency increases, the wave
number selected by the dispersion relation increases too. Due
to boundary constraints and the spatial dependence of the
forcing [20,34,36], this wave number (gradient of the phase) is
not uniform in space and cannot simply follow the dispersion
relation as it would in the unbounded (vertical) Faraday wave
problem. Nonetheless, we expect it to increase with frequency,
at least locally near the endwalls, and thus for the phase of
the interaction in the interior region [i.e., the phase of the
coefficient u in Egs. (32)] to vary with detuning.
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FIG. 28. Time series showing (signed) modulation amplitude for
points equidistant from the left (solid curves) and right (dashed
curves) boundaries for the case of 50 Hz forcing. The transition from
sinusoidal modulation near the Hopf bifurcation to slower irregular
modulation near the global bifurcation can be seen with increasing
forcing values (in units of g): (a) 1, (b) 1.2, (c) 1.25, (d) 1.27. A 30-s
transient has been removed from each simulation.

We can estimate the period of this variation using the
gravity-capillary wave dispersion relation

2 I 3
0 =gk + —k°, (49)
P

where 2w is the forcing frequency (in rad/s), g is the
gravitational acceleration, I' is the surface tension, and p
is the density. The wave number k selected in the limit of
small damping and forcing should satisfy k,, >~ nm /L, where
L is the length of the container. These resonant modes are
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0.9 1.0 1.1 1.2 f(g)

FIG. 29. The increase in modulation period (7,,) as the global
bifurcation is approached. The data from the simulation (open circles)
fit well with the scaling expected for a saddle-node heteroclinic
bifurcation: The solid line shows the fitting function, 0.059 +
0.835(1.296 — f)~1/2.

separated by several Hz for the parameters of the simulations
(approximately 2.5 Hz near 40-Hz forcing and 3 Hz near 60-Hz
forcing, e.g.). Thus, we expect the behavior of the fluid in the
simulations to vary with frequency over a range of several Hz.

First consider the case of 60 Hz, where no clear region of
modulated solutions is seen in Fig. 25. Figure 30 shows that
this case is atypical; it just happens to be close to a double-zero
point, where the region of existence of modulated solutions is
very small (the dotted vertical lines in Fig. 24). With a forcing
frequency of 60.4 Hz, for instance, we observe modulated
solutions terminating in a saddle-node heteroclinic bifurcation,
as with 30-, 40-, and 50-Hz forcing.

The simulation has been repeated, using the same linear
increase in forcing amplitude of 0.004 g/s, over a range of
frequencies between 49 and 63.4 Hz. The onset of subharmonic
waves was estimated from the data, along with the initial
modulation frequency €2, and the location of the saddle-node
heteroclinic bifurcation where the modulations cease. It must
be noted again that, due to the linear change (drift) in
forcing amplitude and the finite time of the simulation, the
threshold values will be somewhat overestimated. The results,
which are shown in Fig. 31, verify the oscillations predicted
above (with a period of about 3 Hz) and are consistent

modulation 60.4 Hz

0.03 | amplitude
subharmonic
0.02 1
0.01F harmonic ]
harmonic
O L L L
0 0.4 0.8 1.2 f(g)

FIG. 30. Harmonic (black curve) and subharmonic (gray curve)
components as forcing (in units of g) is increased with 60.4-Hz
vibration.
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FIG. 31. (a) Estimated location of onset (triangles) and saddle-
node heteroclinic bifurcation (circles); the parameters shown are
applied forcing f (in units of g) and applied frequency o/ (in Hz).
(b) Estimated modulation frequency €2 (in Hz) near onset.

with the picture provided in Fig. 24, where a sequence of
double-zero points marks the boundaries of bubblelike regions
where modulated solutions are found. Complex dynamics are
expected in a neighborhood of these double-zero points [38].
The simulation results are further complicated by the mode
transitions mentioned above. This adds a type of discontinuous
behavior not captured by the weakly coupled parametric
oscillator model analyzed in Sec. IV. Figure 31 suggests that
these mode transitions occur just above the double-zero point
(about 0.5 Hz higher in forcing frequency). The proximity
of these two critical points and their associated complexity
explains the irregular nature of the curves near the double-zero
points.

VII. CONCLUSIONS

In this paper we considered the dynamics of weakly coupled
parametrically forced oscillators in a neighborhood of the
dominant subharmonic instability. It was seen how different
choices of coupling topology and individual forcing phases
lead to distinct symmetry groups characterizing the equivariant
bifurcation problem describing the primary instability. The
residual permutation symmetry that survives in the coupled
problem is critical in determining invariant subspaces and
associated solution classes. It plays a key role as well in
determining whether the primary bifurcation itself is steady
or oscillatory.

Detailed results were obtained in the case of two coupled
oscillators because of the relevance to recent experiments on
horizontally vibrated fluids [19,20]. In horizontally forced
fluid experiments there is a direct harmonic (synchronous)
response including surfaces waves and localized evanes-
cent modes. These evanescent modes (also, oscillatory bulk
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flow [34]) drive a variable pressure gradient that acts as a
localized parametric forcing mechanism. The localized nature
of the forcing and the resulting subharmonic modes means that,
if the container is large compared to the spatial decay length
of the waves, the subharmonic patterns generated at opposing
endwalls can be treated as weakly interacting subharmonic
oscillators.

The bifurcation sets and related bifurcation diagrams
provided in Sec. IV C demonstrate the importance of the
forcing phase in determining both primary and secondary
instabilities. If the phase of the parametric forcing is identical
for both oscillators, then the residual symmetry is Z, x Z, and
there are two nontrivial fixed point subspaces containing syn-
chronous (even) and antisynchronous (odd) oscillations. This
structure, in particular, rules out a primary Hopf bifurcation.

If the parametric forcing is antisymmetric, then the residual
symmetry is C4 and there are no nontrivial fixed point
subspaces. The primary bifurcation is oscillatory and generates
a C4-symmetric modulated (quasiperiodic) solution where
the excitation cycles slowly between one oscillator and the
other. These modulated solutions are destroyed via global
bifurcation, which typically takes the form of a saddle-
node heteroclinic connection, when the forcing exceeds the
critical value by an O(|p|) amount. A particularly complex
interaction of saddle-node, Hopf, heteroclinic, and homoclinic
bifurcations is found for positive detuning and associated with
a pair of Bogdanov-Takens points.

If the phase difference between the parametric forcing
at each oscillator is not 0 or m, then there is no residual
permutation (exchange) symmetry, only the basic subharmonic
symmetry Z,. This case leads to intermediate behavior
organized by (generally two) Z,-symmetric Bogdanov-Takens
points separating regions of primary Hopf and pitchfork bifur-
cations. As with antisymmetric forcing, a complex scenario
is found for positive detuning and associated with additional
(asymmetric) Bogdanov-Takens points.

The case of antisymmetric forcing was compared with the
experimental results of [20] in Sec. V and found to qualitatively
capture the observed oscillations in the modulation frequency
if a physically motivated dependence of coupling on detuning
is assumed. Regions of stable modulated solutions exist for
a wide range of detuning if the nonlinearity is dissipative
(a > 0). Further comparison with direct numerical simulations
was presented in Sec. VI. For most parameters, the predicted
modulated (quasiperiodic) solutions were found, and these
were seen to terminate in a global bifurcation with increasing
forcing. Furthermore, this was shown to be a saddle-node
heteroclinic bifurcation, as expected from the coupled oscilla-
tor results of Sec. IV C2. Oscillations with forcing frequency
were expected in these two-dimensional simulations, due
to both mode transitions and the phase of the coupling
(interaction). The results were consistent with the scenario
discussed in Sec. V A, where bubbles of stable modulated
solutions are separated by double-zero points.

In summary, we have shown that coupled parametrically
forced oscillators can have very interesting dynamics in the
weakly nonlinear regime and that this dynamics is especially
influenced by the residual permutation symmetry, if any, that
remains. The fact that the underlying oscillators are parametric,
with (at least) two preferred phases, also plays a key role in
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determining the relevant symmetries. Although simple models
like the one considered here have obvious limitations, they
allow a much more complete analysis and can shed light on
complex behavior that would otherwise resist explanation.
In this case, the relevance to cross-wave experiments was
demonstrated by the symmetry-based explanation for the
primary Hopf bifurcation, the presence of stable quasiperiodic
solutions, the dependence of the modulation frequency on
detuning, and the observation of the predicted saddle-node
heteroclinic bifurcation in direct numerical simulations of the

PHYSICAL REVIEW E 94, 022216 (2016)

Navier-Stokes equations. It is hoped that future experiments
will allow more of the predictions of Sec. IV C2 to be tested.
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