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Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the
nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons
defines the properties of the turbulent state. In the two extreme cases we can call such states “breather turbulence”
or “soliton turbulence.” The number of rogue waves, the probability density functions of the chaotic wave fields,
and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also
helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing

intermediate characteristics.

DOI: 10.1103/PhysRevE.94.022212

I. INTRODUCTION

Turbulence is a common dynamical behavior of various
systems in physics [1-4]. The wave turbulence theory [5,6]
based on multiplicity of interacting waves provides a partially
nonlinear description of fully developed turbulence. This is
one of the challenging problems of modern theoretical physics.
The wave turbulence theory has been applied to a diverse range
of subjects including nonlinear optics, oceanography, plasma
physics, and condensed matter physics. With some exceptions
[6], this theory has not been applied to describe integrable
systems. In particular, strongly nonlinear localized excitations
such as breathers or solitons cannot be described by means of
the weakly interacting wave turbulence theory. In this respect,
the problem of integrable turbulence constitutes an important
open issue of general interest. It cannot replace the theory of
strong turbulence but may serve as an intermediate step for
better understanding the concept of turbulence.

Integrable turbulence has attracted much attention in recent
years [7-11]. The integrability of the governing equation
provides us with the possibility to write down certain exact
solutions for these systems. These solutions serve as ele-
mentary nonlinear modes of the system. Specifically, solitons
and breathers can be mentioned as the modes that have a
significant amplitude. This allows us to classify them as
nonlinear modes. Radiation waves are also modes of the
system comprising the chaotic background field but their
role is less important because they have low amplitudes. The
knowledge of the modes of integrable systems is the main
advantage of dealing with them. Nonintegrable systems may
reveal more complicated dynamics like “incoherent soliton
states” [12]. However, these structures cannot be predicted
directly from the initial conditions, thus making the analysis
more involved even with periodic initial conditions.

Despite knowing these modes in explicit form, the com-
plicated chaotic motion that involves a multiplicity of them
interacting in a generally irregular way still remains an un-
solved problem. Integrable turbulence can be analyzed mainly
using numerical simulations [7,8], although the knowledge
of involvement of nonlinear modes in this process can be
useful [9]. The simplest chaotic pattern is formed when a
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multiplicity of solitons of different amplitudes move in all
possible directions. Their collisions with well defined rules
produce the points of high amplitude in the chaotic field. Such
pattern can be called “soliton turbulence” [11,13,14].

An interesting situation arises when the chaotic motion
starts with a continuous wave (cw) perturbed by a random
component [7-9]. In our recent work [9], we have found that
the resulting chaotic dynamics is caused not only by solitons.
Breathers and their interactions are also involved into the
dynamics. In the general case, the chaotic dynamics is defined
by the relative number of solitons and breathers that are excited
at the beginning of the process.

Clearly, the presence of the cw component in the initial
conditions leads to the excitation of breathers through mod-
ulation instability. The competing process is the excitation
of solitons which happens when the initial noise level is
increased. A greater number of solitons in comparison to
breathers results in a greater probability of generating rogue
waves. This leads to the elevated tails of the probability density
function (PDF) of the chaotic wave field [9]. A question arises:
can we detect the presence of breathers and solitons measuring
the physical spectra of these chaotic fields? The spectrum is
one of the most common measurements that can be easily
done experimentally both in optics and for oceanic waves. Our
present work provides a detailed answer to this question and
gives an elaborate description of the processes of excitation of
solitons and breathers within the integrable turbulence.

II. MODEL

A classical example of integrable turbulence is based on
the nonlinear Schrodinger equation (NLSE) [7-9] which is
an ubiquitous equation used to describe nonlinear dynamical
systems, such as nonlinear waves in optics [15-17], ocean
gravity waves [18,19], Bose-Einstein condensates [20,21],
waves in plasmas [22,23], and many others. Such universality
makes the results obtained in one discipline applicable, with
some adjustments, to other fields [24].

Despite being one of the simplest among the nonlinear
partial differential evolution equations, the NLSE has provided
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us with a deep understanding of how the nonlinear dynamical
world operates. Importantly, it is a unique equation that
combines particle and wave properties in the same description.
Namely, particles in the form of solitons and waves in the form
of carrier oscillations are contained in the same solutions.

Another significant property of the NLSE is its integrability
[25]. This is a unique property of a selected class of nonlinear
evolution equations. Integrability allows us to find solutions
of this equation. More generally, it provides us with an
opportunity to make a deeper analysis of what happens in wave
evolution, not only in simple cases like one-soliton solution,
but even in such a complicated situation as the turbulent
motion. The inverse scattering technique (IST) is the main
tool that can be used for at least a qualitative analysis of the
phenomenon that we call “integrable turbulence.” With this
aim in mind, we start with writing the nonlinear Schrodinger
equation in a dimensionless form:

iVe + Ve + 1Y 1PY =0, (1)

where & is the evolution variable, 7 is the transverse variable,
and ¢ is the envelope of the function describing the physical
field of interest.

As with any other evolution equations, the dynamics
described by Eq. (1) is completely determined by the initial
conditions. Thus, here, we are operating with the so-called
deterministic chaos. However, in contrast to chaos in systems
with a finite number of degrees of freedom such as the logistic
map [26], the Lorenz model [27,28], or the Hénon-Heiles
system [29], chaos in systems with an infinite number of
degrees of freedom, including Eq. (1), is governed by different
principles. Some concepts developed for simpler systems such
as strange attractor, period doubling, etc. may be further
broadened and applied to special solutions of systems with
an infinite number of degrees of freedom [30]. However, we
stress that these concepts can only be applied to specific
cases, for example, when dealing with localized solutions
[30]. Such solutions can be characterized by one or two
evolving parameters, say, soliton amplitude and width. This
trickery effectively reduces the number of degrees of freedom
in the system that we are operating with. On the other hand,
the chaotic motion in systems with an infinite number of
degrees of freedom comprises a whole new world which
acquires completely new features. One of these features is
the presence of rogue waves which are either doubly localized
solutions of nonlinear partial differential equations [31] or
high amplitude peaks created by the collision of breathers
or solitons and mutual collisions between them [32]. The
rogue waves obviously do not have analogs in the case of
low dimensional systems such as the logistic map.

Dealing with deterministic chaos in such systems re-
quires a special approach to the initial conditions. Two
initial conditions even having the same set of parameters
of a chaotic function lead to different dynamics along the
evolution variable. They could be exponentially diverging in
the corresponding infinite-dimensional phase space. However,
it is not the distance between these diverging trajectories
that is the main point of interest as in the Lorenz model.
Consequently, we do not introduce the Liapunov exponent
here. A better approach is to use a variety of initial conditions
to generate many realizations of chaotic dynamics. Averaging
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their characteristic parameters provides us with the most likely
pattern of chaos that can be observed in experiments.

III. INITIAL CONDITIONS

Following our previous work [9], we use the initial
conditions in the form of a constant background perturbed
by a random function:

1

7,0) = —[1 ], 2
¥ (z,0) @[ + uf ()] 2
where f(7) is a complex function, with its real and imaginary
parts being two independent Gaussian distributed and Gaus-
sian correlated random functions. They are characterized by
the same variance 02 = 1, same zero mean values ( f) = (0,0),
and same correlation length L.. Once w and f(t) are given,

the factor Q

1 T
0= / 11+ pf(v)Pdr, A3)
0

is used to normalize the mean value of the field intensity to
unity. Here T is the period of our numerical grid.

We have solved Eq. (1) with initial conditions (2) using
a standard split step Fourier method. Our numerical method
restricts us to use periodic boundary conditions in t. Thus the
initial conditions are chaotic only within this period. The larger
the period, the closer are the results to the case of a chaotic
field without boundaries. For this reason, we always deal with
long periods. We used different step sizes and various periods,
T, to make sure that our results are free of numerical artifacts.

The variation of the coefficient p allows us to select the
desired standard deviation for the function i and therefore
for the initial field intensity | (7,0)|2, to which we shall refer
from now on as 0 = ¢(0), the initial standard deviation of the
field intensity distribution. Namely,

0 (0) = V({1(0)?) — (1(0))?, “

where

n 1 al T 2n
(1(€) >=ﬁ§ /O i (z,6)"d,

while N is the number of realizations, typically one thousand.
Roughly speaking, o (0) and the initial L, = L.(0) give us the
estimates of the mean height and the mean width of the waves
in the initial wave field, respectively.

As it was clearly demonstrated in Ref. [9], integrable
turbulence is characterized by the nonlinear modes of the
system that we are dealing with. These are solitons, breathers,
and small amplitude radiation waves. Their numbers, once the
elementary modes are created, i.e., once the initial conditions
are chosen, do not change during evolution. This is one of the
fundamental results of the inverse scattering technique (IST)
[25]. And it is a mere manifestation of the fact that the chaotic
dynamics in an integrable system is completely deterministic
and entirely defined by the initial conditions. Each individual
initial condition contains a fixed number of modes. These
numbers vary when choosing one random function f(t) or
another. However, the average number of excitations is fixed
by the initial parameters p (that fixes o) and L..
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There are three major mechanisms that contribute to the
formation of the chaotic wave field. One is modulation
instability (MI) that is responsible for the generation of
breathers, the second one is the motion of solitons in all
possible directions, and the third one is the interference pattern
of the large number of small amplitude radiation waves. All
three mechanisms contribute to the turbulent wave field of
mixed type. As it was found in [9], initial conditions with small
o generate mainly Akhmediev breathers (ABs). At larger o,
both ABs and solitons are generated. At the largest o, mainly
solitons with various velocities result from the chaotic initial
conditions. These nonlinear modes with high amplitudes are
always located in the sea of small amplitude radiation waves.

IV. EIGENVALUES OF THE IST

Breathers that appear as a result of modulation instability
are mostly excited when p is small or, equivalently, when the
parameter o is small. In order to show this, we have calculated
the IST eigenvalues for several initial conditions the same way
as it was done in [9]. Figure 1 shows the IST eigenvalues, A,
calculated for 10 realizations of the function f(7) in Eq. (2).
In particular, Fig. 1(a) shows the results for o = 0.05, while
Fig. 1(b) shows the results for o = 0.1. When ¢/(§¢ = 0,7) =
const, i.e., for u = 0, all eigenvalues must be purely imaginary,
i.e., located along the vertical axis, and its imaginary part must
be less than 1. They correspond to ABs. Small deviations of o
from zero leave them practically on the imaginary axis. This
is clearly seen in Fig. 1(a). Small chaotic deviations from the
imaginary axis can be observed in Fig. 1(b) for the higher value
of o = 0.1. We can also notice that, for 0 = 0.1, the imaginary
part of some eigenvalues exceed slightly +i. This part of the
IST spectrum may correspond to the Kuznetsov-Ma solitons
(solitons on a finite background) [33]. At the same time, a
multiplicity of eigenvalues appear close to the real axis. These
correspond to small amplitude radiation waves. For the values
of o smaller than 0.05, the eigenvalue distribution is practically
the same as in Fig. 1(a). Moreover, for these small values of
o, the influence of the correlation length L. is negligible.

The upper limiting point A =i in the IST spectrum
corresponds to the Peregrine breather [34,35]. It has a peak
amplitude of 3 which is the maximum possible value for
breathers. The eigenvalues located below the point A =i on
the imaginary axis correspond to ABs, which have lower
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FIG. 1. Set of complex eigenvalues of the IST, A, calculated for
ten realizations of the initial conditions given by Eq. (2) with (a)
o =0.05 and (b) 0 = 0.1. As the eigenvalues appear in complex
conjugate pairs, only the upper half of the complex plane is shown in
each panel. For these values of o, the value of L. hardly makes any
difference.
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amplitudes. They continuously occupy the whole interval of
unstable frequencies inside the modulation instability gain
curve. Discreteness in Fig. 1 is due to the use of periodic
boundary conditions in our numerical scheme. Ten realizations
with different numerical periods are used in each case to get a
denser distribution of eigenvalues along the vertical axis. The
same effect could be obtained by increasing the number of
mesh points and 7. In the eigenvalue problems, we are limited
numerically to use no more than 16384 mesh points. In most
cases we used 8192 points and verified that the results were
virtually identical with the case of 16384 points.

Modulation instability generates breathers with all possible
frequency components within the instability band, i.e., for w
in the interval [—2,2]. In other words, all eigenvalues below
the point i are excited with equal probability. Similar to
solitons, individual breathers, once excited, propagate along
the & axis indefinitely. Moreover, their interaction is similar to
the interaction of solitons. Breathers collide but do not change
their parameters except for a phase shift along the propagation
direction. This can be seen from the exact solutions for the
collision of breathers [36]. A general scheme for analyzing the
collision of N breathers has been given in Refs. [37,38]. For
a finite number of breathers, all results could be presented in
analytical form. When dealing with chaotic wave fields, we
assume the presence of an infinite number of breathers with
slight variations of initial conditions for each of them. In this
case, a similar analysis of their interaction based on general
rules [38] may provide a qualitative description of the wave
patterns.

The ideal breather grows exponentially from a constant
background, reaches its maximum amplitude, and decays, also
exponentially at £ — +o0o. The exponential growth-decay
cycle of each breather with the growth rate of the MI given by
8 = wy/1 — w?/4 depends on its transverse frequency . Thus
the location of the maximum amplitude along the £ axis varies
significantly from one breather to another. For smaller 8, this
point may be shifted far away from the initial point £ = 0. On
the other hand, for a finite initial perturbation, each AB starts
with a small but finite amplitude. It also depends on the initial
chaotic field variations, i.e., on o. Moreover, initial amplitudes
are also chaotic due to the uncertainty of a particular frequency
component in the chaotic function f (7).

In terms of nonlinear dynamics theory, the ideal AB
starts from a saddle point and ends at another saddle point
as explained in [39]. Due to the exponential tails, this
trajectory requires an infinite amount of time for the whole
cycle of evolution. On the contrary, the breather created
from the chaotic initial conditions starts from one of the
nearby hyperbolic orbits. These orbits are periodic rather than
heteroclinic as shown in Fig. 1 of [39]. Periods of these orbits
are finite. They are highly sensitive to the deviations from
the heteroclinic orbits. Consequently, the points in & where
each individual breather reaches its maximum move closer to
the initial point £ = 0. Moreover, the points of maxima are
repeated periodically. Their location depends on the growth
rate 6 as well as on the initial deviation from the heteroclinic
orbit. The evolution of these periodic breathers amended by
collisions continues indefinitely. Collisions add a phase shift
to each AB [36,37] otherwise leaving them intact.
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All breathers excited from the initial condition (2) comprise
a composite N-breather solution [38], with N being the total
number of breathers. As explained above, the period of the
evolution along the & variable varies significantly from one AB
to another. Moreover, these periods are incommensurate. Thus
their nonlinear superposition leads to a continuous chaotic
dynamics. Only the initial stage that starts from a cw has
a distinctive exponential growth dominated by the maximal
growth rate of the modulation instability. Once all breathers
are excited, the rest of the evolution reaches a “steady”
chaotic state with certain deviations around its mean value.
The starting point & = 0 is unique in the sense that all breather
modes start here from small perturbations simultaneously. This
state never repeats due to the multiplicity of modes and because
their periods along & are incommensurate.

This process is confirmed by our numerical simulations. We
calculated the changes of the standard deviation o (§) along the
axis & for several initial values of o. Each curve in Fig. 2 shows
the & dependence of the standard deviation of the field intensity
calculated for one thousand realizations with the same initial
statistical parameters. The period, T, of each realization was
taken to be 800, and sampled with 131072 points. Nine initial
values of o are used while L. is kept constant (=1.2). The
horizontal scales used in the left and in the right halves of the
figure are different to show more clearly the initial variations
and the convergence of each o (£) curve to a stationary value.

The lowest (short dashed magenta) curve in Fig. 2 shows the
result for the value of o = 0.075. For this smallest o, nearly
all IST eigenvalues correspond to ABs as can be seen from
Fig. 1. Thus this case illustrates the “breather turbulence.” The
initial growth of o is exponential as expected from the above
description with the maximal growth rate of MI. After reaching
its first maximum amplitude the AB with the maximum growth
rate returns to its initial stage. Correspondingly, this curve
shows a few oscillations related to the periodic evolution of
this component. The ABs with other frequencies also grow
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FIG. 2. Evolution of the standard deviation of the field intensity
for nine initial values of ¢ (namely, from the lowest curve to the
highest: o = 0.075, 0.22, 0.36, 0.48, 0.62, 0.70, 0.79, 0.88, and 0.98)
and correlation length L. = 1.2. Each curve converges to a different
steady value that corresponds to a different chaotic state that lasts
indefinitely. The value of ¢ at £ — oo depends on the initial value
0(0). Note that the horizontal scales to the left and to the right of the
point & = 20 are different.
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FIG. 3. (a) IST eigenvalues found in the interval: —0.5 <
Re(A) < 0.5, Im(A) > 0.5 for a fixed function f(7) and variable u. A
small portion of the function f(t) is shown in (b). Each color in (a)
represents a certain value of o (or ). The minimal value of ¢ used
here is 0.2. Smaller o leaves the eigenvalues on the imaginary axis or
very close to it. The correlation length used for these calculations is
L. =0.76.

although with a slower rate. When most of the ABs are excited,
the curve shows the signs of the “steady” chaotic state.

The increase of o pushes the IST eigenvalues off the
imaginary axis. One example of the eigenvalue relocations
as the initial o increases is shown in Fig. 3(a). A portion
of the function f(7) used for these calculations is shown in
Fig. 3(b). It is fixed but u increases continuously together with
the initial 0. Consequently, the IST eigenvalue relocation is
also continuous and specific for this case. The eigenvalues
move along certain trajectories in the complex plane which
are determined by the function f(t). Importantly, they all
move away from the imaginary axis. Different functions
f(7) result in similar shifts of the eigenvalues but along
different trajectories. As a result, for many realizations of the
random function f(7) the IST eigenvalues would be dispersed
randomly on the complex plane. The region that they occupy in
the complex plane becomes wider when the initial o increases.

To summarize, for small o (the smallest one considered
here is 0.2), the IST eigenvalues shown by magenta stars
are located on the imaginary axis or very close to it. Most
of them are located below the point i, indicating that the
nonlinear modes are mainly ABs. The growth of ¢ disperses
the eigenvalues away from the imaginary axis and above the
value i. The latter correspond to solitons with a range of
amplitudes and velocities. The net result of increasing o is
the split of breathers into solitons with each having individual
amplitude and velocity. For better resolution, Fig. 3(a) shows
only the eigenvalues contained within the interval of real parts
[—0.5,0.5] and with imaginary parts above 0.5.
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V. CONVERSION OF BREATHER TURBULENCE INTO
SOLITON TURBULENCE

Larger values of o result in practically no eigenvalues left
exactly on the imaginary axis. The set of eigenvalues obtained
for 30 realizations of the random function f(t) with fixed L.
and u (o) is shown in Fig. 4. In order to see more clearly
the randomness of the eigenvalues, two specific realizations
are singled out and represented by red triangles and blue
circles, respectively. Increasing the number of realizations
results in denser filling of the complex plane around the real
and imaginary axes.

Practically all eigenvalues in Fig. 4 correspond to solitons
rather than breathers. Their amplitudes are twice the imaginary
part of the eigenvalue. Solitons gain velocity which is defined
by the real part of the complex eigenvalue. Moreover, these
solitons are located on a background that consists of a sea of
radiation waves. Thus, when the perturbation is comparable
to the amplitude of the initial cw, the continuous spectrum
of breathers is replaced by the spectrum of solitons. Figure 4
shows clearly such a transformation, when compared with
Fig. 1.

Therefore, as o increases, the number of breathers de-
creases, whereas the number of solitons increases. Moreover,
the amplitudes and velocities of solitons also grow. The chaotic
dynamics is then caused by the collisions between breathers,
between solitons, and between breathers and solitons. At the
highest values of o, all breathers are completely destroyed and
the chaotic behavior is fully originated by the solitons and their
collisions. Thus the increase of o causes the transition from
“breather turbulence” to “soliton turbulence.”

Within the soliton turbulence, most of the nonlinear modes
that lead to high amplitude peaks are solitons and their
collisions. As we can see from Fig. 4, the imaginary part of the
eigenvalues can be higher than 1 and reach a value of almost
2. Thus the soliton amplitudes may reach a value close to 4.
This is higher than the maximal amplitudes that breathers can
reach. In contrast to breathers, solitons do not experience an
exponential growth. They are generated practically from the
very beginning of the evolution at & = 0. Therefore, the larger
the initial o, the sooner the stationary value of o is reached.
This can be seen from Fig. 2. Still existing transition to the
soliton turbulence regime at higher o is related to the process of

Im(A)

Re(M)

FIG. 4. IST eigenvalues, marked by small circles, obtained for 30
realizations with 0 = 0.9 and L, = 0.76. Two particular realizations
among them are singled out by red triangles and blue circles.
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FIG. 5. Evolution of the mean highest amplitude obtained by
averaging the peak amplitude over the same thousand of realizations
as in Fig. 2. The mean maximum in all cases is above the value 3
which is the amplitude of the Peregrine solution [35].

separation of solitons and the radiation waves. The background
consisting of small amplitude radiation waves does exist at all
values of 0.

The convergence to the limiting state of turbulence can be
further seen from Fig. 5, where we show the evolution of the
average peak amplitude. Each curve is obtained by averaging
the peak amplitudes for one thousand realizations at each point
&. The color codes and the line styles used here are the same
as in Fig. 2. The curves correspond to the same initial values
of 0(0). It is noticeable that, for all initial o (0), the stationary
value of the mean peak amplitude is above 3. The latter is the
peak amplitude that corresponds to the Peregrine soliton [35].
The plots in Fig. 5 confirm once again that the limiting chaotic
state reached at £ = 20 stays roughly the same at £ = 100 and
continues indefinitely along the & axis. There is no return back
to the initial state at any £. Any parameter of the chaotic state
calculated at £ = 100 can be considered as the limiting value
roughly valid at any £ > 100.

VI. PROBABILITY DENSITY FUNCTIONS

Just as any other measurable parameter of the chaotic
state, the probability of having certain maximal intensities
also saturates and reaches a limiting value at & = 100.
Then the corresponding probability density function can also
be considered to remain unchanged during the following
evolution beyond £ = 100 up to very high values of &. These
limiting curves calculated for the same set of initial o values as
in Figs. 2 and 5 are presented in Fig. 6. The larger the initial o,
the higher is the tail of its corresponding PDF. This is expected
as the increase of o leads to the generation of solitons with
increased amplitudes and velocities. Thus the intensity at their
collision points and the number of collisions are also higher.

VII. INFLUENCE OF THE CORRELATION LENGTH

The parameter o is not the only one that controls the
chaotic function in the initial conditions. The second important
parameter is the correlation length L.. While o provides an
estimate of the mean height of the chaotic wave field, the
correlation length L. gives us an estimate of the mean width
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FIG. 6. Comparison of the PDF curves obtained at & = 100
averaged over a thousand of realizations for the same values of the
initial o (0.075, 0.22, 0.36, 0.48, 0.62, 0.70, 0.79, 0.88, and 0.98) and
correlation length L. = 1.2 as in Fig. 2. The probability of extreme
events at any given / steadily increases with the value of the initial
o adding up to at least two orders of magnitude elevation within the
given range of 0.

of the chaotic field variations. In other words, it shows how
smooth or sharp are the initial field variations.

Numerical simulations show that at small o the correlation
length does not influence the results. This happens because
the ABs are not influenced by this parameter. The whole
dynamics is determined by modulational instability. The IST
eigenvalues in Fig. 1 are located on the imaginary axis no
matter what is the value of L.. Thus the whole AB dynamics
remains the same as explained above. On the other hand, the
excitations of solitons depends on the details of the initial
perturbation function. In order to evaluate its influence, we
have calculated the IST eigenvalues for one realization of the
chaotic function with fixed high 0 = 0.84 and a correlation
length that increases continuously from 0.5 to 1.0. The results
are shown in Fig. 7(a). As before, for the sake of clarity, we

T T T T N T T T T
0. Sommmm o |
B a 4
1.5+ @ —
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E L A AN ]
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0.5 k':x 1 % 3 f{“}“x 1 1 1 ]
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Re(A)

T T T T T T
“\\-1.5\\ ;
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I 1 f L Il

0 0.5
Re()L)

FIG. 7. (a) Relocation of the IST eigenvalues on the complex
plane for a single realization of the perturbation function with constant
o = 0.84 and L. changing from 0.5 to 1.0. (b) Relocation of the
eigenvalues for the case when the initial cw component is absent
(thus o = 1.0). The value of L. here varies from 0.5 to 1.5.
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FIG. 8. Probability density functions calculated at&€ = 100 for (a)
o = 0.48, (b) o = 0.78, and for three different values of L.. Namely,
the solid red curves in each panel correspond to L. = 0.46, the dotted
green curves to L. = 0.76, and the dashed blue curves to L, = 1.07.

show only those eigenvalues whose imaginary part is greater
than 0.5 and its real part is in the interval [—5,5]. We can see
that the IST eigenvalues are continuously relocating on the
complex plane when L. is changing, with a clear tendency to
increase its imaginary part and decrease the absolute value of
its real part, as L. increases. Similar results are obtained if the
cw is removed from the initial conditions. This case is shown
in Fig. 7(b). Here, 0 = 1 and we deal with an even greater
variation of L., namely from 0.5 to 1.5. The general tendency
is the same in both cases: the soliton amplitudes increase while
their velocities decrease.

For most of the eigenvalues, but not for all of them, the
absolute value of its real part decreases when increasing L..
This means that the soliton velocities change and in average
they decrease. However, the most dramatic effect that the
change of L, makes is the systematic increase of the imaginary
part of the eigenvalues. This means that the soliton amplitudes
become higher for higher L.. This must lead to the increase
of the rogue wave amplitudes. This conclusion is confirmed
by the numerical simulations. On the other hand, the decrease
of the soliton velocities reduces the number of their collisions.
This second effect tends to partially compensate the growth of
the amplitudes. Thus the effect of changing L. is weaker than
that of changing o.

Figure 8 shows the probability density functions calculated
for various L.. For small o = 0.1, all three PDF curves are
practically the same. This case is not shown here. However,
for higher values of o, namely 0.48 and 0.78, the tails of the
curves are more elevated for higher L.. This can be seen from
Figs. 8(a) and 8(b). Our detailed calculations show that the
difference in the rogue wave amplitudes can reach two orders
of magnitude when increasing L. up to 1.8.

Thus the integrable turbulence provides us with two
parameters in the initial conditions that allow us to control the
number of extreme events in the chaotic wave field. Choosing
higher values for each of them allows us to increase the
amplitudes of rogue waves by orders of magnitude. Thus the
control can be very efficient.

VIII. PHYSICAL SPECTRA

One of the main characteristics of a chaotic wave field
measured in experiments is its physical spectrum. Spectra
are commonly measured in optics and they are also useful in
water wave studies [40]. When other parameters of the chaotic
wave field are stabilized, the spectrum also gets a roughly
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FIG. 9. (a) Average initial spectrum (red), the average spectrum
at& = 10 (orange), and at £ = 100 (blue) for o = 0.1. For this initial
level of noise, the spectrum hardly changes starting from & = 10, and
the dependence on L. is scarce. Modulation instability leads to the
amplification of the central part of the spectrum within the MI gain
band, i.e., for w in the interval [—2,2].

fixed shape. One example is shown in Fig. 9. Spectra in this
figure are averaged as in the previous cases over one thousand
realizations. Here, the red dashed curve corresponds to the
average initial spectrum, while the blue curve is the average
spectrum at & = 100. It is almost the same spectrum as at
& = 10 shown by the orange solid curve confirming that the
steady spectrum is quickly reached. This specific shape of the
spectrum is observed when o is small. Namely, 0 = 0.1 in
this particular case. This value of o corresponds to “breather
turbulence” as explained above. Consequently, this shape of
the spectrum is also characteristic for the breather turbulence.
This spectrum is hardly influenced by the value of L..

The spectrum of the initial conditions shown in red in Fig. 9
consists of a central peak due to the cw component and a
parabolic background due to the Gaussian correlated noise
component. The central peak decreases in evolution spreading
its energy into the multiplicity of sidebands within the MI
instability band. All frequency components are amplified due
to the MI. The growth rate for each frequency w is given
by 8§ = wy/1 — @?/4. This growth rate is real within the
interval of frequencies [—2,2]. These frequencies are the
only ones amplified at the beginning of the propagation.
Correspondingly, the spectrum in Fig. 9 has an elevated part
exactly in this interval resulting in the characteristic “onion
dome” shape. This is an additional confirmation that most of
the modes in the chaotic wave field are ABs. The tails of the
spectrum also grow from a parabolic shape to the universal
triangular shape [41] taking energy from the central peak
through cascades of four wave mixing processes. Despite the
significant growth, the total energy in the tails remains much
smaller than in the central region within the MI interval. The
central part of the spectrum has a power-law shape due to
the homogeneous presence of all components of the breather
spectrum within this region.

Increasing o causes a gradual transformation from the
breather turbulence to the soliton turbulence. The physical
spectra change their shape accordingly. A sequence of such
transformations is shown in Fig. 10. The onion dome shape is
still in place for the lower values of o up to 0.2 but gradually
diminishes at higher o showing the replacement of breathers
by solitons. This specific shape completely disappears at the
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FIG. 10. Averaged spectrum at & = 100 for the same values of
the initial o and correlation length L. = 1.2 as in Fig. 2. The color
code and the styles of the curves here correspond to the same values
of o as in Figs. 2, 5, and 6.

values of o close to 0.9 indicating that most, if not all, high
amplitude modes are now solitons. The red dashed curve in
Fig. 10 is the ultimate example of the transformed spectrum.
This shape corresponds to solitons moving with nonzero
velocities in all possible directions. This leads to the tails of
this spectrum being elevated in comparison to the spectral tails
in the breather case.

Very roughly, the spectrum of the field in the case of
soliton turbulence can be estimated in the assumption that it is
produced as a superposition of the spectra of the individual
solitons. In doing this, we ignore soliton collisions. We
consider the density of solitons to be low so that the number
of collisions are much smaller than the number of solitons.
Collisions transform the spectrum of individual solitons and
may distort the overall spectrum. To be specific, soliton
profiles are given by the expression 2b sech(2bt) exp(i2at),
where a and b are the real and imaginary parts of the IST
eigenvalues. The corresponding Fourier spectrum of these
solitons is given by the expression m sech[w(w — 2a)/2b].
In the accepted approximation, the square of the sum of the
individual soliton Fourier transform is the overall spectrum of
the soliton turbulence.

In order to obtain the experimentally observable spectrum,
these spectra must be averaged over the number of realizations.
In these simulations, we used 26 realizations. Each realization
consisting of 8192 points sampling the temporal interval
[0,100]. The results are shown in Fig. 11. Each curve in
this figure is for a specific correlation length: dotted green
(L. = 1), dashed blue (L. = 2), and solid red (L. = 0.5). The
spectra reveal some oscillations in the tails for the smallest L.
This is due to the eigenvalues with imaginary parts being close
to zero and due to the insufficient number of data. Otherwise,
the qualitative features of the central parts of the curves are
the same as for the red and orange curves in Fig. 10. A
more precise comparison shows deviations due to the fact that
soliton collisions and small amplitude radiation waves have
been ignored in the estimates.

In contrast to the case of the breather turbulence, the spectra
of the soliton turbulence strongly depend on the correlation
length L. This happens because the amplitude and velocity
distribution of solitons in the chaotic field strongly depends
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< Spectrum> (dB)

FIG. 11. Estimated spectra of the soliton turbulence for o = 0.9
and correlation length L, = 1 (dotted green curve), L. = 2 (dashed
blue curve), and L, = 0.5 (solid red curve).

on the correlation length. As a result, the spectra also depend
on L. This can be seen in Fig. 11. In order to demonstrate
this dependence more clearly, we made simulations removing
completely the breather part of the chaotic field. Namely, in
these simulations, we omit the cw in the initial conditions
leaving only the chaotic function f(7). @ is then irrelevant
due to the normalization factor Q, and the variance is therefore
imposed to be unity. The results are shown in Fig. 12.

Wave fields with initial small correlation length, such
as L. =0.19, show a wide spectrum with low amplitude
components that do not change on propagation [see Fig. 12(a)].
The spectrum at & > 100 is almost an exact copy of the
initial spectrum. This indicates that the spectral components
correspond to small amplitude radiation waves, and their
propagation is linear. Initial parabolic spectrum stays nearly
intact during the whole evolution process. The chaotic field
in this case does not contain solitons. The latter are the only
nonlinear modes that have a potential to change the spectrum.

Increasing the correlation length to L. = (.78 in the initial
conditions makes the initial spectrum narrower but raises the
spectral components in the middle. The central part of the
spectrum now reaches the zero level which is sufficient for
turning on the nonlinearity and for generation of solitons. The
resulting chaotic field is now a mixture of solitons and small
amplitude radiation waves. Moreover, solitons may acquire
velocity which is given by the real part of the IST eigenvalues
shown in Fig. 4. The value of the velocity is directly
proportional to the corresponding frequency component. This
way, the energy is transported from the center of the spectrum
to its tails. This process elevates the tails of the spectrum and
depletes its middle part. This case is shown in Fig. 12(b).
Similar elevation of the tails of the initially Gaussian spectrum
has been observed numerically and experimentally in Ref. [6].
However, the authors of [6] mostly concentrated on the case of
fiber with normal dispersion when breathers and bright solitons
do not exist. Clearly, the physical reasons for the spectrum
widening in that case are different.

Further increase of the correlation length to L. = 1.8
elevates the central part of the spectrum above the zero line
at the expense of the tails. This, in turn, increases the number
of solitons, their amplitudes, and modifies the distribution of
their velocities, thus elevating the tails of the spectrum even
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FIG. 12. Averaged initial spectra (blue dashed curve) and the
averaged spectra at £ = 100 (red solid curve), when the initial
condition does not contain cw. The value of o = 1 is the same for all
panels. The correlation length L. = (a) 0.19 (b) 0.78, and (c) 1.8.

higher. This case is shown in Fig. 12(c). The spectrum widens
further due to the increased energy transport by solitons from
the central area of the spectrum to its tails.

IX. CONCLUSIONS

In this work, we have found two regimes of chaotic
wave generation that we call breather turbulence and soliton
turbulence. Which one is generated depends very much on the
initial conditions. There are also intermediate cases when both
breathers and solitons contribute to the chaotic pattern on an
equal basis. For an integrable system, the initial conditions
determine the set of IST eigenvalues. Their location on the
complex plane is crucial for further evolution of the wave
field. Numerical simulations provide the distribution of IST
eigenvalues on the complex plane that allows us to analyze the
follow up dynamics.
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We have found that two parameters of the initial chaotic
functions are essential to fix the number of rogue waves in the
resulting chaotic wave field: o and the correlation length L..
The parameter o influences the relative number of breathers
and solitons in the resulting chaotic wave field while the
parameter L. mainly influences the amplitudes of the solitons.
Both mechanisms increase the amplitudes of rogue waves.
Namely, the increase of o leads to the increase of the number
of solitons, while the increase of L. leads to the increase of
soliton amplitudes but does not influence the breathers. These
values, in turn, influence the measurable parameters of the
chaotic wave state, such as the probability density functions
and its physical spectra. The relation between the parameters
of the initial conditions and the external measurable ones is
essential for experimental studies of the chaotic wave states.

An additional insight on the breather versus soliton turbu-
lence can be provided with the analysis of the Hamiltonian,
H, for the chaotic solutions. This approach has been initiated

PHYSICAL REVIEW E 94, 022212 (2016)

by Connaughton ef al. in [42]. As the authors of [42] noticed,
the Hamiltonian plays the role of an effective “temperature”
for the microcanonical statistical ensemble. Being a conserved
quantity, the Hamiltonian characterizes the state of the system
during its whole evolution in &. Although we have made the
calculations of H for all cases above, these data require a
deeper analysis than we presently are able to provide and we
leave these studies for a separate publication.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Volkswagen
Stiftung. The work of JMSC was also supported by MINECO
under Contract No. TEC2015-71127-C2-1-R, and by C.A.M.
under Contract No. S2013/MIT-2790. N.D. and N.A. acknowl-
edge support of the Australian Research Council (Discovery
Project No. DP140100265).

[1] S. Wabnitz, Optical turbulence in fiber lasers, Opt. Lett. 39, 1362
(2014).

[2] K. Hammani, B. Kibler, C. Finot, and A. Picozzi, Emergence of
rogue waves from optical turbulence, Phys. Lett. A 374, 3585
(2010).

[3] M. Conforti, A. Mussot, J. Fatome, A. Picozzi, S. Pitois, C. Finot,
M. Haelterman, B. Kibler, C. Michel, and G. Millot, Turbulent
dynamics of an incoherently pumped passive optical fiber cavity:
Quasisolitons, dispersive waves, and extreme events, Phys. Rev.
A 91, 023823 (2015).

[4] J. C. Wyngaard, Turbulence in the Atmosphere (Academic Press,
New York, 2010).

[5] A. C. Newell, S. Nazarenko, and L. Biven, Wave turbulence and
intermittency, Physica D 152-153, 520 (2001).

[6] P. Suret, A. Picozzi, and S. Randoux, Wave turbulence in
integrable systems: nonlinear propagation of incoherent optical
waves in single-mode fibers, Opt. Express 19, 17852 (2011).

[7] D. S. Agafontsev and V. E. Zakharov, Integrable turbulence and
formation of rogue waves, Nonlinearity 28, 2791 (2015).

[8] P. Walczak, S. Randoux, and P. Suret, Optical Rogue Waves in
Integrable Turbulence, Phys. Rev. Lett. 114, 143903 (2015).

[9] J. M. Soto-Crespo, N. Devine, and N. Akhmediev, Integrable
Turbulence and Rogue Waves: Breathers or Solitons?, Phys.
Rev. Lett. 116, 103901 (2016).

[10] P. Suret, R. El Koussaifi, A. Tikan, C. Evain, S. Randoux,
Ch. Szwaj, and S. Bielawski, Direct observation of
rogue waves in optical turbulence using time microscopy,
arXiv:1603.01477v1 [physics.optics].

[11] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux,
G. Millot, and D. N. Christodoulides, Optical wave turbulence:
Towards a unified nonequilibrium thermodynamic formulation
of statistical nonlinear optics, Phys. Rep. 542, 1 (2014).

[12] A. Picozzi and J. Garnier, Incoherent Soliton Turbulence in
Nonlocal Nonlinear Media, Phys. Rev. Lett. 107,233901 (2011).

[13] A.I. D’yachenko, V. E. Zakharov, A. N. Pushkarev, V. F. Shvets,
and V. V. Yan’kov, Zh. Eksp. Teor. Fiz. 96, 2026 (1989) [Soliton
turbulence in nonintegrable wave systems, Sov. Phys. JETP 69,
1144 (1989)].

[14] A. Costa, A. R. Osborne, D. T. Resio, S. Alessio, E. Chrivi,
E. Saggese, K. Bellomo, and C. E. Long, Soliton Turbulence
in Shallow Water Ocean Surface Waves, Phys. Rev. Lett. 113,
108501 (2014).

[15] A. Hasegawa and F. Tappert, Transmission of stationary nonlin-
ear optical pulses in dispersive dielectric fibers, I. Anomalous
dispersion, Appl. Phys. Lett. 23, 142 (1973).

[16] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Instabilities,
breathers and rogue waves in optics, Nat. Photon. 8, 755 (2014).

[17] S. Coulibaly, E. Louvergneaux, M. Taki, and L. Brevdo,
Spatiotemporal wave-train instabilities in nonlinear Schrodinger
equation: revisited, Eur. Phys. J. D 69, 186 (2015).

[18] A. R. Osborne, Nonlinear Ocean Waves (Academic Press, New
York, 2009).

[19] V. E. Zakharov, Stability of periodic waves of finite amplitude
on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 190
(1968).

[20] E. P. Gross, Structure of a quantized vortex in boson systems, 1I
Nuovo Cimento 20, 454 (1961).

[21] M. Abida, C. Huepeb, S. Metensc, C. Nored, C. T. Phame,
L. S. Tuckermand, and M. E. Brachete, Gross-Pitaevskii dy-
namics of Bose-Einstein condensates and superfluid turbulence,
Fluid Dyn. Res. 33, 509 (2003).

[22] B. P. Pandey, S. V. Vladimirov, and A. Samarian, Nonlinear
waves in collisional dusty plasma, Phys. Plasmas 15, 053705
(2008).

[23] S. M. Ahmed, M. S. Metwally, S. A. El-Hafeez, and W. M.
Moslem, On the generation of rogue waves in dusty plasmas
due to modulation instability of nonlinear Schrodinger equation,
Appl. Math. Inf. Sci. 10, 317 (2016).

[24] B. Kibler, A. Chabchoub, A. Gelash, N. Akhmediev, and
V. E. Zakharov, Superregular Breathers in Optics and Hydro-
dynamics: Omnipresent Modulation Instability Beyond Simple
Periodicity, Phys. Rev. X' §, 041026 (2015).

[25] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118
(1971) [Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media, J.
Exp. Theor. Phys. 34, 62 (1972)].

022212-9


http://dx.doi.org/10.1364/OL.39.001362
http://dx.doi.org/10.1364/OL.39.001362
http://dx.doi.org/10.1364/OL.39.001362
http://dx.doi.org/10.1364/OL.39.001362
http://dx.doi.org/10.1016/j.physleta.2010.06.035
http://dx.doi.org/10.1016/j.physleta.2010.06.035
http://dx.doi.org/10.1016/j.physleta.2010.06.035
http://dx.doi.org/10.1016/j.physleta.2010.06.035
http://dx.doi.org/10.1103/PhysRevA.91.023823
http://dx.doi.org/10.1103/PhysRevA.91.023823
http://dx.doi.org/10.1103/PhysRevA.91.023823
http://dx.doi.org/10.1103/PhysRevA.91.023823
http://dx.doi.org/10.1016/S0167-2789(01)00192-0
http://dx.doi.org/10.1016/S0167-2789(01)00192-0
http://dx.doi.org/10.1016/S0167-2789(01)00192-0
http://dx.doi.org/10.1016/S0167-2789(01)00192-0
http://dx.doi.org/10.1364/OE.19.017852
http://dx.doi.org/10.1364/OE.19.017852
http://dx.doi.org/10.1364/OE.19.017852
http://dx.doi.org/10.1364/OE.19.017852
http://dx.doi.org/10.1088/0951-7715/28/8/2791
http://dx.doi.org/10.1088/0951-7715/28/8/2791
http://dx.doi.org/10.1088/0951-7715/28/8/2791
http://dx.doi.org/10.1088/0951-7715/28/8/2791
http://dx.doi.org/10.1103/PhysRevLett.114.143903
http://dx.doi.org/10.1103/PhysRevLett.114.143903
http://dx.doi.org/10.1103/PhysRevLett.114.143903
http://dx.doi.org/10.1103/PhysRevLett.114.143903
http://dx.doi.org/10.1103/PhysRevLett.116.103901
http://dx.doi.org/10.1103/PhysRevLett.116.103901
http://dx.doi.org/10.1103/PhysRevLett.116.103901
http://dx.doi.org/10.1103/PhysRevLett.116.103901
http://arxiv.org/abs/arXiv:1603.01477v1
http://dx.doi.org/10.1016/j.physrep.2014.03.002
http://dx.doi.org/10.1016/j.physrep.2014.03.002
http://dx.doi.org/10.1016/j.physrep.2014.03.002
http://dx.doi.org/10.1016/j.physrep.2014.03.002
http://dx.doi.org/10.1103/PhysRevLett.107.233901
http://dx.doi.org/10.1103/PhysRevLett.107.233901
http://dx.doi.org/10.1103/PhysRevLett.107.233901
http://dx.doi.org/10.1103/PhysRevLett.107.233901
http://dx.doi.org/10.1103/PhysRevLett.113.108501
http://dx.doi.org/10.1103/PhysRevLett.113.108501
http://dx.doi.org/10.1103/PhysRevLett.113.108501
http://dx.doi.org/10.1103/PhysRevLett.113.108501
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1063/1.1654836
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1140/epjd/e2015-60212-7
http://dx.doi.org/10.1140/epjd/e2015-60212-7
http://dx.doi.org/10.1140/epjd/e2015-60212-7
http://dx.doi.org/10.1140/epjd/e2015-60212-7
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1007/BF00913182
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://dx.doi.org/10.1016/j.fluiddyn.2003.09.001
http://dx.doi.org/10.1063/1.2918341
http://dx.doi.org/10.1063/1.2918341
http://dx.doi.org/10.1063/1.2918341
http://dx.doi.org/10.1063/1.2918341
http://dx.doi.org/10.18576/amis/100133
http://dx.doi.org/10.18576/amis/100133
http://dx.doi.org/10.18576/amis/100133
http://dx.doi.org/10.18576/amis/100133
http://dx.doi.org/10.1103/PhysRevX.5.041026
http://dx.doi.org/10.1103/PhysRevX.5.041026
http://dx.doi.org/10.1103/PhysRevX.5.041026
http://dx.doi.org/10.1103/PhysRevX.5.041026

N. AKHMEDIEYV, J. M. SOTO-CRESPO, AND N. DEVINE

[26] R. M. May, Simple mathematical models with very complicated
dynamics, Nature (London) 261, 459 (1976).

[27] E. Lorenz, The problem of deducing the climate from the
governing equations, Tellus 16, 1 (1964).

[28] P. Bergé, Y. Pomeau, and Ch. Vidal, Order within Chaos:
Towards a Deterministic Approach to Turbulence (John Wiley
and Sons, New York, 1984).

[29] M. Hénon and C. Heiles, The applicability of the third integral of
motion: Some numerical experiments, Astron. J. 69, 73 (1964).

[30] J. M. Soto-Crespo and N. Akhmediev, Soliton as Strange
Attractor: Nonlinear Synchronization and Chaos, Phys. Rev.
Lett. 95, 024101 (2005).

[31] N. Akhmediev, A. Ankiewicz, and M. Taki, Waves that appear
from nowhere and disappear without a trace, Phys. Lett. A 373,
675 (2009).

[32] S. Toenger, T. Godin, C. Billet, F. Dias, M. Erkintalo, G. Genty,
and J. M. Dudley, Emergent rogue wave structures and statistics
in spontaneous modulation instability, Sci. Rep. 5, 10380
(2015).

[33] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel,
N. Akhmediev, F. Dias, and J. M. Dudley, Observation of
Kuznetsov-Ma soliton dynamics in optical fibre, Sci. Rep. 2,
463 (2012).

[34] V.I. Shriraand V. V. Geogjaev, What makes the Peregrine soliton
so special as a prototype of freak waves?, J. Eng. Math. 67, 11
(2010).

PHYSICAL REVIEW E 94, 022212 (2016)

[35] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty,
N. Akhmediev, and J. M. Dudley, The Peregrine soliton in
nonlinear fibre optics, Nat. Phys. 6, 790 (2010).

[36] N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, Zh.
Eksp. Teor. Fiz. 89, 1542 (1985) [Generation of periodic trains
of picosecond pulses in an optical fiber: Exact solutions, Sov.
Phys. JETP 62, 894 (1985)].

[37] N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses
and Beams (Chapman and Hall, London, 1997).

[38] N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, Zh. Eksp.
Teor. Fiz. 94, 159 (1988) [N-modulation signals in a single-mode
optical waveguide under nonlinear conditions, Sov. Phys. JETP
67, 89 (1988)].

[39] N. N. Akhmediev and V. 1. Korneev, Teor. Mat. Fiz. 69,
189 (1986) [Modulation instability and periodic solutions of
nonlinear Schrodinger equation, Theor. Math. Phys. 69, 1089
(1986)].

[40] A. Chabchoub, S. Neumann, N. P. Hoffmann, and N. Akhme-
diev, Spectral properties of the Peregrine soliton observed in a
water wave tank, J. Geophys. Res. 117, C00J03 (2012).

[41] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, and J. M.
Dudley, Universal triangular spectra in parametrically-driven
systems, Phys. Lett. A 375, 775 (2011).

[42] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and
S. Rica, Condensation of Classical Nonlinear Waves, Phys. Rev.
Lett. 95, 263901 (2005).

022212-10


http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1111/j.2153-3490.1964.tb00136.x
http://dx.doi.org/10.1111/j.2153-3490.1964.tb00136.x
http://dx.doi.org/10.1111/j.2153-3490.1964.tb00136.x
http://dx.doi.org/10.1111/j.2153-3490.1964.tb00136.x
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1086/109234
http://dx.doi.org/10.1103/PhysRevLett.95.024101
http://dx.doi.org/10.1103/PhysRevLett.95.024101
http://dx.doi.org/10.1103/PhysRevLett.95.024101
http://dx.doi.org/10.1103/PhysRevLett.95.024101
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1016/j.physleta.2008.12.036
http://dx.doi.org/10.1038/srep10380
http://dx.doi.org/10.1038/srep10380
http://dx.doi.org/10.1038/srep10380
http://dx.doi.org/10.1038/srep10380
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1038/srep00463
http://dx.doi.org/10.1007/s10665-009-9347-2
http://dx.doi.org/10.1007/s10665-009-9347-2
http://dx.doi.org/10.1007/s10665-009-9347-2
http://dx.doi.org/10.1007/s10665-009-9347-2
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1038/nphys1740
http://dx.doi.org/10.1007/BF01037866
http://dx.doi.org/10.1007/BF01037866
http://dx.doi.org/10.1007/BF01037866
http://dx.doi.org/10.1007/BF01037866
http://dx.doi.org/10.1029/2011JC007671
http://dx.doi.org/10.1029/2011JC007671
http://dx.doi.org/10.1029/2011JC007671
http://dx.doi.org/10.1029/2011JC007671
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1016/j.physleta.2010.11.044
http://dx.doi.org/10.1103/PhysRevLett.95.263901
http://dx.doi.org/10.1103/PhysRevLett.95.263901
http://dx.doi.org/10.1103/PhysRevLett.95.263901
http://dx.doi.org/10.1103/PhysRevLett.95.263901



