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We report results of an analysis of the spontaneous symmetry breaking (SSB) in a basic (actually, simplest)
model that is capable of producing the SSB phenomenology in a one-dimensional setting. It is based on the
Gross-Pitaevskii–nonlinear Schrödinger equation with the cubic self-attractive term and a double-well potential
built as an infinitely deep potential box split by a narrow (δ functional) barrier. The barrier’s strength ε is the single
free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and
nonlinear optics. The SSB bifurcation of the symmetric ground state (g.s.) is predicted analytically in two limit
cases, viz., for deep or weak splitting of the potential box by the barrier (ε � 1 or ε � 1, respectively). For the
generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with
systematic numerical results. The stability of stationary states is studied through the calculation of eigenvalues
for small perturbations and by means of direct simulations. The g.s. always undergoes the SSB bifurcation
of the supercritical type, as predicted by the VA at moderate values of ε, although the VA fails at small ε,
due to inapplicability of the underlying ansatz in that case. However, the latter case is correctly treated by the
approximation based on a soliton ansatz. On top of the g.s., the first and second excited states are studied too.
The antisymmetric mode (the first excited state) is destabilized at a critical value of its norm. The second excited
state undergoes SSB bifurcation, like the g.s., but, unlike it, the bifurcation produces an unstable asymmetric
mode. All unstable modes tend to spontaneously reshape into the asymmetric g.s.
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I. INTRODUCTION AND MODEL

The dynamics of confined collective excitations in non-
linear physical systems, modeled by one or several fields,
is determined by the interplay of the field-trapping potential
and the character of interactions of the field(s). In particular,
the system’s spatial symmetry is determined by the shape
of the potential. A generic type of the latter is represented
by double-well potentials (DWPs), which feature symmetry
between two wells separated by a barrier.

In quantum mechanics [1] and linear field theories math-
ematically similar to it, such as paraxial light propagation
in linear optical waveguides [2], the ground state (g.s.)
of a confined system normally follows the symmetry of
the trapping potential (the Jahn-Teller effect in molecules
exemplifies another possibility, when the g.s. of the electron
wave function in the complex system is spatially asymmetric,
thus breaking the symmetry of the full Hamiltonian [3]). Other
representations of the same symmetry may be realized by the
system’s excited states. Thus, the g.s. wave function trapped
in the one-dimensional DWP is symmetric (even) with respect
to the double-well structure, while the first excited state is
antisymmetric (odd).

Unlike the linear quantum-mechanical Schrödinger equa-
tion for a single particle, atomic Bose-Einstein condensates
(BECs) are modeled by the Gross-Pitaevskii equation (GPE)
for the single-atom wave function ψ(x,t), with a trapping
potential U (x) and a cubic term that accounts for collisions
between atoms, in the framework of the mean-field approxi-
mation [4]:

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− g|ψ |2ψ + U (x)ψ. (1)

This equation is written in the scaled form, which can
be derived from the three-dimensional GPE for the cigar-
shaped configuration, with strong confinement applied in the
transverse plane [5]. The repulsive or attractive interactions
between atoms correspond, respectively, to the self-defocusing
(g < 0) or self-focusing (g > 0) sign of the cubic term in
Eq. (1). Similarly, the nonlinear Schrödinger equation (NLSE)
with the cubic term governs the paraxial propagation of
electromagnetic waves in optical media with Kerr nonlinearity
[6]. In the latter case, Eq. (1) applies to the light transmission in
the spatial domain, with t replaced by the propagation distance
z and −U (x) representing a transverse modulation profile of
the local refractive index, which imposes a guiding structure
in the (x,z) plane.

Many models of nonlinear optics and BEC are based on
the GPE-NLSE in the form of Eq. (1) with the potential U (x)
representing symmetric DWPs. A fundamental difference from
the linear systems is that the g.s. in the self-focusing models
follows the symmetry of the underlying potential structure
only if the nonlinearity remains relatively weak. A generic
effect, which occurs with an increase of the strength of the
nonlinearity as a result of its interplay with the DWP, is
spontaneous symmetry breaking (SSB), which destabilizes the
symmetric g.s. and replaces it with an asymmetric one [7]. The
switch from the symmetric g.s. to its asymmetric counterpart
occurs via the corresponding bifurcation (phase transition) at
a critical value of the nonlinearity strength [8,9].

Originally, the SSB was predicted in simple models based
on systems of linearly coupled equations with intrinsic
nonlinearity [10]. In particular, Eq. (1) with the potential
U (x) in the form of two symmetric deep wells can be
reduced to a system of two coupled ordinary differential
equations for amplitudes u1(t) and u2(t) in the framework of
the tight-binding approximation [11], which replaces ψ(x,t)
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with a superposition of two stationary wave functions φ,
corresponding to the states trapped separately in the two deep
potential wells, centered at x = ±a:

ψ(x,t) = u1(t)φ(x − a) + u2(t)φ(x + a). (2)

In terms of the BEC, the SSB gives rise to the g.s. with the
atomic density in one well of the trapping DWP larger than in
the other. The SSB also breaks another principle of quantum
mechanics, according to which the g.s. cannot be degenerate,
as there emerges a degenerate pair of mirror-image asymmetric
g.s. wave functions, with the larger density self-trapped in
either of the two potential wells. In optics, the SSB means that
higher light power spontaneously self-traps in either core of
the nonlinear dual-core waveguide.

Thus, the SSB effect is common to diverse systems that
combine the wave transmission, self-focusing, and trapping
potentials of the DWP type. In photonics, the SSB was reported
in several experimental works. In particular, the symmetry
breaking for a pair of laser beams coupled into a transverse
DWP created in a self-focusing photorefractive medium was
demonstrated in Ref. [12]. Another experimental result is a
spontaneously established asymmetric regime of the operation
of a symmetric pair of coupled lasers [13]. More recently, SSB
was demonstrated in a pair of nanolaser cavities embedded in a
photonic crystal [14]. Observation of spontaneous breaking of
the chiral symmetry in metamaterials was reported in Ref. [15].

The analysis of the SSB in the model based on Eq. (1) was
initiated in Refs. [16,17]. Most often, the BEC nonlinearity
(in contrast to the self-focusing Kerr effect in optics) is
self-repulsive, which corresponds to g < 0 in Eq. (1). In this
case, the symmetric (even) g.s. is not subject to destabilization,
but the first antisymmetric (odd) excited state, with ψ(−x) =
−ψ(x), suffers destabilization and spontaneous breakup of its
antisymmetry when the strength of the repulsive nonlinearity
attains a critical level [7]. This manifestation of the SSB phe-
nomenology was demonstrated experimentally in Ref. [18],
using the condensate of 87Rb atoms with repulsive interactions
between them, loaded into a DWP trapping configuration.

The above discussion addressed static symmetric and
asymmetric modes in the nonlinear systems including the
DWP structure. Dynamical regimes, in the form of oscillations
of the wave function between two wells of the DWP, i.e.,
roughly speaking, between the two mirror-image asymmetric
states existing above the SSB point, were studied too. Follow-
ing the analogy to Josephson oscillations in tunnel-coupled
superconductors [19,20], the possibility of the matter-wave
oscillations in bosonic Josephson junctions was predicted [21]
and experimentally realized in the trapped BEC [18].

Additional dynamical regimes were studied in Ref. [22],
in the framework of a model that combines the DWP and
nonlinearity management, i.e., time-periodic modulation of
coefficient g in Eq. (1). It was demonstrated that the symmetry-
breaking dynamics may be strongly altered by the application
of the management: The SSB can be suppressed in cases when
it occurs and induced in cases when it does not take place in
the absence of the management.

The objective of the present work is to explore, by means of
analytical and numerical methods, the SSB in a fundamental
version of the systems represented by Eq. (1) with the
self-attractive nonlinearity (g > 0), namely, an infinitely deep

0 1/2−1/2

U(x)

x

FIG. 1. Setting under consideration. An infinitely deep potential
box of width 1 is split in the middle by a narrow tall barrier,
approximated by U (x) = εδ(x) [see Eq. (3)]. Wave functions of
symmetric (even), antisymmetric (odd), and asymmetric stationary
states are schematically shown by red, blue, and green curves,
respectively.

potential box (whose width is scaled to be 1), split in two
wells by a narrow barrier, as schematically shown in Fig. 1.
In this case, Eq. (1) with the barrier represented by the ideal
δ function takes the form of the following equation subject to
zero boundary conditions:

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− g|ψ |2ψ + εδ(x)ψ, (3)

ψ
(
x = ± 1

2

) = 0, (4)

where ε > 0 is the strength of the splitter and g = 1 may be
fixed, unless g = 0 is set in the linear version of Eq. (3). The
Hamiltonian (energy) corresponding to Eqs. (3) and (4) is

H = 1

2

∫ +1/2

−1/2

(∣∣∣∣∂ψ

∂x

∣∣∣∣
2

− |ψ |4
)

dx + ε|ψ(x = 0)|2. (5)

In a sense, this model is opposite to the one introduced in
recent work [23], in which the SSB was studied in a DWP
with an elevated floor (rather than the infinitely deep one), i.e.,
a DWP structure embedded into a broad potential barrier.

It is relevant to mention that, although the one-dimensional
NLSE is integrable in the free space, the internal potential
and boundary conditions in Eqs. (3) and (4) destroy the
integrability, therefore the evolution of unstable states in this
model is not expected to be periodic or quasiperiodic in time
[see Figs. 12 and 15(c) below as examples]. The model gives
rise to nearly integrable dynamics only in the case when the
solution may be approximated by a set of narrow solitons
(this case is considered in Sec. II C). It may be expected that
the dynamics reduced to the variational approximation (VA),
based on the ansatz (29) with three degrees of freedom, may
be close to quasiperiodic, as the presence of two dynamical
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invariants, viz., the norm, given by Eq. (30), and the respec-
tive Hamiltonian, makes the approximate dynamical system
nearly integrable, with quasiperiodic trajectories carried by
Kolmogorov-Arnold-Moser tori [24]. Actually, our VA-based
analysis is focused below on its stationary version, which is
most essential in terms of the present work. On the other hand,
it should be stressed that the nonintegrable dynamics remains
reversible [24], as the model does not include any dissipation.

In spite of the fact that Eqs. (3)–(5) present, as a matter
of fact, the simplest version of model (1), it was introduced
only recently in Refs. [25,26] (where some analytical ap-
proximations were introduced, but systematic analysis was
not performed). The model can be implemented in BECs,
using strong repelling optical sheets to emulate both the outer
potential walls and the inner barrier, the widths of the latter
and of the whole potential box being, respectively, ∼1 μm
and ∼100 μm in physical units. In optics, the box structure
may be realized as a step-index one made in silica [2,27].
Assuming the width of the waveguide ∼20 μm (to have it
narrow enough for potential applications), characteristic values
of interest, ε ∼ 10 (see below), correspond to the splitting layer
of thickness ∼2 μm.

The rest of the paper is organized as follows. An analytical
approach to the model is recapitulated in Sec. II, following its
(incomplete) introduction in Ref. [26], which is necessary for
comparison with numerical results. The analysis includes the
VA for stationary symmetric and asymmetric modes, as well as
approximations for weakly and strongly split potential boxes,
i.e., small and large ε, in terms of Eq. (3). Results of systematic
numerical studies and a comparison with analytical predictions
are reported in Sec. III, which demonstrates that the VA is quite
accurate for the model with a relatively tall splitting barrier
(ε not too small), while the VA yields a wrong bifurcation
diagram for small ε, due to inadequacy of the underlying ansatz
(when, however, the other analytical approximation, based on
the soliton ansatz, applies correctly). The numerical results
are reported for symmetric, asymmetric, and antisymmetric
bound states (the latter representing the first excited state in the
system), including simulations of dynamical regimes initiated
by the SSB instability of symmetric and antisymmetric ones.
The paper is summarized in Sec. IV.

II. ANALYTICAL APPROACH

A. Stationary modes

Stationary states produced by Eqs. (3) and (4) with real
energy eigenvalue μ (in terms of optics, −μ is the propagation
constant) are sought as

ψ(x,t) = e−iμtφ(x), (6)

with the real wave function φ(x) obeying a stationary equation
with the respective boundary condition (BC):

μφ = −1

2

d2φ

dx2
− gφ3 + εδ(x)φ,φ

(
x = ±1

2

)
= 0. (7)

The presence of the δ-functional barrier at x = 0 implies that
φ(x) is continuous at this point, while its derivative obeys a

jump condition

dφ

dx

∣∣∣∣
x=+0

− dφ

dx

∣∣∣∣
x=−0

= 2εφ(x = 0). (8)

As mentioned above, g ≡ 1 is fixed throughout the paper,
unless g = 0 is set in the linear case; hence the strength of the
nonlinearity is determined by the norm of the wave function

N =
(∫ 0

−1/2
+

∫ +1/2

0

)
φ2(x)dx ≡ N− + N+. (9)

The asymmetry of states above the SSB point is characterized
by the relative difference of the norms in the right and left
sections of the split potential box

� ≡ (N+ − N−)/(N+ + N−). (10)

Before proceeding to the consideration of the nonlinear
model, it is relevant to dwell on its linear counterpart, with
g = 0 in Eq. (7). Spatially symmetric (even) solutions of the
linear equation are sought as

φ(lin)
even(x) = A sin

[√
2μ

(
1
2 − |x|)], (11)

where A is an arbitrary amplitude and eigenvalue μ is
determined by a relation following from Eq. (8):

tan(
√

μ/2) = −
√

2μ/ε. (12)

It is easy to see that, with the increase of ε from 0 to ∞,
the lowest eigenvalue μ0, which corresponds to the g.s. of the
linear model, monotonically grows from μ0(ε = 0) = π2/2 to

μ0(ε = ∞) = 2π2. (13)

Similarly, the eigenvalue of the first excited symmetric
state μ2(ε) monotonically grows from μ2(ε = 0) = 9π2/2 to
μ2(ε = ∞) = 8π2. The eigenvalue μ1 = 2π2, which corre-
sponds to the lowest excited state, i.e., the first antisymmetric
(odd) eigenfunction,

φ
(lin)
odd (x) = A sin(

√
2μ1x) (14)

[μ1 does not depend on ε, as the wave function (14) vanishes at
x = 0], is located between μ0 and μ2. Naturally, μ1 coincides
with the limit value (13) of μ0, as the g.s. eigenfunction also
vanishes at x = 0, in the limit of ε = ∞.

B. Deeply split double-well potential (large ε)

The first objective of the analysis of the nonlinear model
based on Eq. (7) is to predict the critical norm at the SSB point.
In the case of weakly coupled (deeply split) potential wells,
which corresponds to large ε (a very tall splitting barrier),
weak nonlinearity, which corresponds to a small norm and
amplitude of the wave function, is sufficient to induce the
SSB in the competition with the weak linear coupling. The
small amplitude implies that relevant solutions to Eq. (7) are
close to the eigenmodes (11) of the linear equation, hence an
approximate solution may be sought as

φ(x) = A± sin
[
k±

(
1
2 − |x|)], (15)

where the signs ± pertain to x < 0 and x > 0, respectively. The
substitution of this ansatz into the condition of the continuity
of the wave function at x = 0 and the relation (8) for its
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first derivative leads to the following relations between the
amplitudes A± and the wave numbers:

A+ sin
(

1
2k+

) = A− sin
(

1
2k−

)
, (16)

A−k− cos
(

1
2k−

) − A+k+ cos
(

1
2k+

) = 4εA± sin
(

1
2k±

)
.

(17)

In the same small-amplitude approximation, the third har-
monic contained in the cubic term in Eq. (7) may be neglected,
hence this term is approximated as{

A± sin
[
k±

(
1
2 − |x|)]}3 ≈ 3

4A3
± sin

[
k±

(
1
2 − |x|)]. (18)

Further, Eq. (18) implies that the cubic term amounts to an
effective shift of the energy eigenvalue in Eq. (7), which
determines the wave numbers in Eq. (15):

k± =
√

2
(
μ + 3

4gA2±
)
. (19)

In the limit of ε → ∞, the wave functions (15) must vanish
at x = 0, hence the respective g.s. corresponds to k± = 2π . At
large but finite ε, the energy corresponding to the g.s. should
be close to the limit value given by Eq. (13),

μ = 2π2 − δμ, δμ � 2π2. (20)

The substitution of the expression (20) into Eq. (19), expanding
it for small δμ and A2

±, inserting the result into Eqs. (16) and
(17), and taking the limit of A+ − A− → 0, which corresponds
to the SSB bifurcation point, leads to the following analytical
prediction for the bifurcation-point parameters:

Nbif = 8
3π2ε−1, (A2

±)bif = 2Ncr, δμ = 12π2ε−1. (21)

Thus, as expected, the value of the norm at the SSB point
decays (∼ε−1) with an increase of ε. This approximate
analytical result is compared with its numerical counterpart
in Fig. 2(a) (the numerical results are presented in the next
section).

C. Weakly split double-well potential (small ε)

Small ε implies strong coupling of the two potential
wells with a shallow split between them, therefore strong
nonlinearity, i.e., large N , is required to cause the SSB under
the competition with the strong coupling. In turn, large N

implies that the wave field tends to self-trap into a narrow
NLSE soliton [6],

φsol(x − ξ ) = 1
2Nsech

[
1
2N (x − ξ )

]
, (22)

where ξ is the coordinate of the soliton’s center, the respective
energy eigenvalue being

μsol = −N2/8. (23)

This approximation is valid provided the soliton’s width is
much smaller than the size of the potential box, which means
N � 1.

According to the BC in Eq. (7), the soliton interacts with
two ghost solitons, i.e., its mirror images (with opposite signs),
with respect to the edges of the box:

φghost(x) = −N

2

[
sech

(
1

2
N (x − 1 + ξ )

)

+ sech

(
1

2
N (x + 1 + ξ )

)]
. (24)

The sum of the well-known potentials [28,29] of the interaction
of the given soliton with the two ghosts gives rise to an effective
potential of repulsion of the real soliton from edges of the
confining box:

Ubox(ξ ) = N3 exp(−N/2) cosh(Nξ ). (25)

On the other hand, the same soliton is repelled by the
splitting barrier, with the corresponding potential [29]

Ubarrier(ξ ) = εφ2
sol(ξ = 0) = ε

4
N2sech2

(
1

2
Nξ

)
, (26)
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FIG. 2. Norm at the symmetry-breaking bifurcation point versus the strength of the splitting barrier ε. Along with the numerically found
and VA-predicted dependences, shown are the analytical approximations based on (a) Eq. (21) and (b) Eq. (27), which are relevant, respectively,
for large and small ε [note that in (a) the range starts from ε ≈ 2.7].
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FIG. 3. Eigenvalue for the energy of the g.s. in the linear version
of Eq. (7) (g = 0) versus the strength of the splitting barrier ε as
obtained from the numerical solution of Eq. (12) and as predicted
by the VA in the form of Eq. (39). The horizontal line shows the
constraint imposed by Eq. (13).

if the deformation of the soliton’s shape by the weak barrier
is neglected. A straightforward analysis of the total effective
potential U (ξ ) = Ubox(ξ ) + Ubarrier(ξ ) demonstrates that the
position of the soliton placed at ξ = 0, which represents the
symmetric mode in the present case, is stable, i.e., it corre-
sponds to a minimum of the net potential, at 8N exp(−N/2) >

ε or, in other words, at

N < Nbif ≈ 2 ln(16/ε). (27)

The SSB bifurcation takes place, with an increase of N , at
N = Nbif , when the local potential minimum at ξ = 0 switches
into a maximum. At 0 < (N − Nbif)/Nbif � 1, the center of

the soliton spontaneously shifts to either of two asymmetric
positions, which correspond to a pair of new potential minima
emerging at ξ = ±√

(N − Nbif)/Ncr.
A comparison of the approximate analytical result given by

Eq. (27) with its numerically obtained counterpart is displayed
in Fig. 2(b). At moderate values of ε the discrepancy is
relatively large because the validity condition for the present
approximation is that ε must be so small that ln(16/ε) may be
treated as a large parameter.

D. Variational approximation

In the generic case, when the strength of the splitting barrier
ε is not assumed to be specifically large or small, an analytical
consideration may be based on the VA [30], which is suggested
by the fact that the stationary equation (7) may be derived from
the minimization of the corresponding Lagrangian,

L =
∫ +1/2

−1/2

[
1

2

(
dφ

dx

)2

− μφ2 − g

2
φ4

]
dx + εφ2(x = 0)

≡ H − μN, (28)

where H and N are the Hamiltonian (5) and norm (9)
defined above. The following ansatz for the g.s. wave function,
satisfying the BC in Eq. (7), is the simplest one that is capable
of capturing the SSB:

φ(x) = a cos(πx) + b sin(2πx) + c cos(3πx) (29)

[cf. Eq. (2)], where the real amplitudes a, c, and b must be
predicted by the VA. The SSB is accounted for by the odd
term ∼b in the ansatz, which breaks the symmetry of the even
expression. Accordingly, the onset of the SSB is signaled by
the emergence of a solution with infinitesimal b, branching off
from from the symmetric one with b = 0.

The integral norm (9) of the ansatz (29) is

N = (1/2)(a2 + c2 + b2), (30)
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stable numerical symmetric
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VA asymmetric approximation
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unstable numerical symmetric
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(b)

FIG. 4. (a) Asymmetry of the stationary solutions, defined as per Eqs. (9) and (10), as a function of the total norm, at ε = 3. For the VA
solution, the asymmetry is calculated through Eq. (31). (b) Dependence between the total norm and energy eigenvalue for the same solutions.
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FIG. 5. Typical examples of (a) unstable symmetric and (b) stable asymmetric modes, produced by both the VA and numerical solution
of Eq. (7) for ε = 3 and N = 10. The respective energy eigenvalues are (a) μVA = −3.53 and μnum = −4.39 and (b) μVA = −10.04 and
μnum = −12.90.

while its asymmetry at b 
= 0 is quantified by the parameter
(10),

� = 16

15π

b(5a − 3c)

a2 + c2 + b2
. (31)

A straightforward consideration confirms that the expression
(31) is always subject to the constraint |�| < 1, as it must
be. The Sturm theorem, according to which the spatially
symmetric g.s. cannot have nodes [1], i.e., φ(x) 
= 0 at |x| <

1/2 (it remains valid in the nonlinear system), if applied to the
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20

25

30

35

40

45

N

λ i

FIG. 6. Instability growth rate λi ≡ Im(λ) of small perturbations
added to the unstable symmetric mode at ε = 3 and N > Nbif [see
Eq. (41)]. The growth rate was found as a numerical solution of
Eq. (42). The instability sets in at exactly the same bifurcation point
at which the SSB starts in Fig. 4(a).

ansatz (29) with b = 0, amounts to the following constraint:

−1 < c/a < 1/3. (32)

The substitution of the ansatz (29) into the Lagrangian (28)
yields

LVA = (
1
4π2 − 1

2μ + ε
)
a2 + (

π2 − 1
2μ

)
b2

+ (
9
4π2 − 1

2μ + ε
)
c2 + 2εac − 1

4

(
3
4a4 + a3c + 3a2b2

+ 3a2c2 − 3ab2c + 3
4b4 + 3b2c2 + 3

4c4
)
, (33)

FIG. 7. Typical example of the spontaneous conversion of a
perturbed unstable symmetric mode into a stable asymmetric one,
at ε = 3, μ = 3, and N = 10.39.
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FIG. 8. (a) Bifurcation diagram shown by means of the �(N ) dependence, as predicted by the VA at ε = 1. Red circles denote two
asymmetric solutions for N = 12, shown in Fig. 9. (b) Counterpart of the bifurcation diagram from (a), as produced by the numerical solution
of Eq. (7). (c) Numerically generated N (μ) dependences corresponding to (b).

which gives rise to the variational equations for the real
amplitudes b and a,c:

∂L/∂(b2) = 0, (34)

∂L/∂a = ∂L/∂c = 0. (35)

To identify the bifurcation point at which the SSB sets in,
one may set b = 0 in Eqs. (34) and (35) [after performing the
differentiation with respect to b2 in Eq. (34)]. This procedure
leads to a system of equations for the values of a, c, and μ at
the bifurcation point:

2π2 − μ = 3
2 (a2 − ac + c2), (36)

(
1
2π2 − μ + 2ε

)
a + 2εc − 1

4 (3a3 + 3a2c + 6ac2) = 0,

(37)(
9
2π2 − μ + 2ε

)
c + 2εa − 1

4 (a3 + 6a2c + 3c3) = 0. (38)

It is easy to check that Eqs. (36)–(38) have no relevant solutions
at ε = 0, in agreement with the obvious fact that the SSB does
not occur when the central barrier is absent, i.e., the potential
box is not split into two wells.

The VA-produced prediction for the bifurcation point,
in the form of Nbif(ε), obtained from a numerical solution
of Eqs. (36)–(38), is compared to its numerically found
counterpart in Figs. 2(a) and 2(b). It can be seen that the
VA provides reasonable accuracy at moderate values of ε. At
large ε, the discrepancy is explained by the fact that the ansatz
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FIG. 9. Dashed and dash-dotted profiles represent the VA-
predicted asymmetric solutions corresponding, respectively, to the top
and bottom red circles in Fig. 8(a), obtained at ε = 1 and N = 12.
The solid profile depicts the solution obtained from the numerical
solution of Eq. (7) with the same parameters. The values of the energy
eigenvalue pertaining to the dashed, dash-dotted, and solid profiles
are μ = −24.7, −20.7, and −32.0, respectively.

(29) does not take into account the derivative’s jump given by
Eq. (8). On the other hand, at very small ε, the relevant ansatz
is also different, as it amounts to the soliton (22).

Equations (37) and (38), in which the cubic terms are
dropped [and Eq. (36) is dropped too], correspond to the
linearized version of Eq. (7), with g = 0. This simplest version
of the VA predicts the above-mentioned eigenvalue μ0(ε),
which corresponds to the g.s. of the linear system, as a value
at which the determinant of the linearized version of Eqs. (37)
and (38) for a and c vanishes:

(μ0)VA = 5
2π2 + 2ε − 2

√
π4 + ε2 (39)

[recall that Eq. (12) for μ(ε) cannot be solved exactly, except
for concluding that μ0 is a monotonically growing function of
ε confined to the interval π2/2 � μ0 < 2π2; see Eqs. (13) and
(20)]. In particular, the approximate g.s. energy, produced by
Eq. (39), satisfies the constraint μ0 < 2π2 at ε < (15/8)π2 ≈
18.5. This approximate result is compared to its numerical
counterpart in Fig. 3. As mentioned above, the discrepancy
at large ε is explained by the fact that the ansatz (29) does
not take into account the jump of the derivative at x = 0. The
predictions of the VA are further compared with numerical
findings in the next section.

III. NUMERICAL RESULTS

Numerical solutions of Eqs. (3) and (7) were obtained by
replacing the ideal δ function with its regularized version

δ̃(x) = 1√
πξ

exp

(
−x2

ξ 2

)
, (40)

with width ξ � 1 (the results are presented below for ξ =
0.05; at still smaller values of the regularization width,

such as ξ = 0.01, the findings are essentially the same).
Solutions of the stationary equation (7) were produced by
means of the Newton’s method, with mesh size �x = 1/1025.
Direct simulations of the evolution governed by Eq. (3) were
performed by the standard split-step algorithm, with time step
�t = 0.001.

The stability of the stationary modes was explored through
a numerical solution of the GPE linearized for small per-
turbations around the stationary mode. For this purpose, the
perturbed version of stationary solutions (6) is taken in the
usual form

ψ(x,t) = e−iμt {φ(x) + η[e−iλtu(x) + eiλ∗t v∗(x)]}, (41)

where η is an infinitesimal amplitude of the perturbations, u(x)
and v(x) represent an eigenmode, and λ is the corresponding
(generally, complex) perturbation eigenfrequency, the stability
condition being Im{λ} = 0 for all λ. The substitution of
the expression (41) in Eqs. (3) and (4) and the subsequent
linearization gives rise to the eigenvalue problem for λ, based
on the following equations:

(μ + λ)u + 1
2u′′ + gφ2(x)(2u + v) = εδ(x)u,

(μ − λ)v + 1
2v′′ + gφ2(x)(2v + u) = εδ(x)v,

u
(
x = ± 1

2

) = v
(
x = ± 1

2

) = 0,

(42)

with the prime standing for d/dx. Equations (42) were solved
numerically [with g = 1 and δ(x) replaced by δ̃(x), as per
Eq. (40)] by means of the finite-difference method. Predictions
for the instability or stability of stationary modes, produced
by the linearized GPE, were verified by means of direct
simulations of their perturbed evolution in the framework of
the full equation (3).

A. Symmetric and asymmetric modes and SSB
at moderate values of ε

For ε that is not too small, both the numerical solution of the
VA equations (34) and (35) and the numerical solution of the
stationary GPE (7) give rise to a characteristic picture of the
supercritical bifurcation [8], which is displayed in Fig. 4(a),
showing the asymmetry, defined as per Eqs. (9) and (10), versus
the total norm. In a broad range of values of ε [provided that
it is not too small (see below)], this diagram, as predicted by
the VA through Eq. (31), is virtually identical to its numerical
counterpart.

The solution of the VA equations (34) and (35) also
predicts N (μ) dependences for the symmetric and asymmetric
solutions, which are displayed and compared to their GPE-
produced counterparts in Fig. 4(b). It can be seen that the
discrepancy is larger than in the bifurcation diagram in
Fig. 4(a), but, still, the VA provides reasonable accuracy.

As concerns particular profiles of the symmetric and asym-
metric modes, produced by the VA and numerical solution of
Eq. (7), typical examples, displayed in Fig. 5, demonstrate
reasonable agreement between both. The remaining discrep-
ancies between the variational and numerical profiles can be
further reduced if more spatial harmonics are added to the
ansatz (29), at the cost of making the VA equations (34) and
(35) more cumbersome.
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FIG. 10. (a) Numerically generated N (μ) dependence for the family of odd (antisymmetric) modes at ε = 3. Stable and unstable subfamilies
are represented by the continuous and dotted segments, respectively. (b) Instability growth rate [see Eq. (41)] for the unstable portion of the
family versus N .

Another conclusion following from Fig. 4(b) is that the
branches of the N (μ) dependence satisfy the Vakhitov-
Kolokolov criterion dN/dμ < 0, which is a necessary (but
not sufficient) condition for stability of localized modes
supported by any self-attractive nonlinearity [9,31,32]. As
concerns the full stability, it was checked, as mentioned above,
by means of the numerical solution of the eigenvalue problem
based on Eq. (42) and by direct simulations of Eq. (3) as well,
the conclusion being typical for the supercritical bifurcation
[7,8]: The symmetric mode at N < Nbif and the asymmetric
ones at N > Nbif are stable, while the symmetric branch is
unstable at N > Nbif , when it coexists with the asymmetric
counterparts.

−0.5 0 0.5

−6

−4

−2

0

2

4

6

φ

x

FIG. 11. Examples of stable and unstable (shown by the solid
and dotted lines, respectively) odd modes, for ε = 3. The respective
values of the norm and energy eigenvalue are N = 9.63 and μ = +5,
and N = 15.63 and μ = −5.

The instability of the symmetric branch at N > Nbif is
characterized, in Fig. 6, by the dependence of the respective
growth rate Im(λ) [see Eq. (41)] on N . A typical example
of the evolution of unstable symmetric modes is displayed
in Fig. 7, which clearly shows a trend to conversion of this
unstable mode into its stable asymmetric counterpart, with the
same norm.

B. SSB at small ε

The situation is different at smaller values of strength ε

of the splitting barrier. Namely, the direct numerical solution
demonstrates that the SSB bifurcation keeps its supercritical

FIG. 12. Example of the spontaneous evolution of an unstable
odd mode, shown by the dotted line in Fig. 11 (for ε = 3, N = 15.63,
and μ = −5), towards a stable asymmetric state.
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FIG. 13. Antisymmetric (odd) modes, which are the lowest
excited states, are stable in the region below the boundary shown
here in the plane of (ε,N ).

character, while the VA predicts a drastic change of the
bifurcation diagram: detachment of the asymmetric branch
from the symmetric one, at ε < ε(VA)

cr ≈ 1.50, as shown in
Fig. 8 for ε = 1. In fact, a comparison of Figs. 8(a) and 8(b)
demonstrates that the top branch of the θ (N ) dependence is
correctly predicted by the VA, while the bottom branch, which
formally demonstrates the detachment of the asymmetric
modes from the symmetric ones, is an artifact.

The partly wrong shape of the bifurcation diagram predicted
by the VA in the case of ε < ε(VA)

cr is explained by the
inadequacy of the ansatz (29) in this case. Indeed, a comparison
of typical shapes of the asymmetric solutions produced by
the VA with their numerically generated counterpart, shown

in Fig. 9, demonstrates that the variational ansatz predicts
the solutions belonging to the top branch of the bifurcation
diagram [see Fig. 8(a)] in a qualitatively correct form, while the
solutions belonging to the bottom branch have no numerically
found counterparts, being an artifact of the VA. On the
other hand, it is relevant to stress that the other analytical
approximation, based on the soliton ansatz (22) and (24),
correctly demonstrates that the supercritical SSB bifurcation
occurs at small ε too.

C. Excited modes

As mentioned above, the shape of the first (spatially
antisymmetric, or odd) excited mode in the model based on
Eq. (1), with the ideal δ-functional splitting barrier, is not
affected by the barrier. However, stability of the antisymmetric
mode against antisymmetry-breaking perturbations may be
altered in the presence of the barrier. We have addressed this
issue by means of the numerical analysis, replacing the ideal
δ function with its regularized counterpart (40).

As shown in Fig. 10, it was found that the odd modes are
stable if their norm is small enough and become unstable when
N exceeds a certain critical value; however, the instability is
oscillatory, not being related to any antisymmetry-breaking
bifurcation. Examples of stable and unstable odd modes are
displayed in Fig. 11, with a typical scenario of the evolution of
an unstable one presented in Fig. 12. It is observed that unstable
odd modes tend to spontaneously transform themselves into
stable asymmetric modes existing at the same value of N .

Results of the systematic analysis of the odd modes are
collected in Fig. 13, which shows their instability threshold
(in terms of the norm) versus ε. It can be seen that the stability
interval of the odd modes is smallest (N < Ncr ≈ 5.12) in the
absence of the splitting barrier, i.e., at ε = 0. The increase
of ε leads to expansion of the stability range, which may be
explained by the following argument. In the case when both
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FIG. 14. (a) Juxtaposed N (μ) dependences for the symmetric (even), antisymmetric (odd), and asymmetric modes at ε = 3. (b) Hamiltonian
versus the norm for the same modes, calculated as per Eqs. (5) and (43). In both panels, solid and dotted segments represent stable and unstable
solutions, respectively.

022211-10



SPONTANEOUS SYMMETRY BREAKING IN A SPLIT . . . PHYSICAL REVIEW E 94, 022211 (2016)

−0.5 0 0.5
−10

−5

0

5

10

φ

x

(a)

−0.5 0 0.5
−10

−5

0

5

10

φ

x

(b)

(c)

FIG. 15. Numerically found second excited states, as solutions of Eq. (7), for ε = 3 and μ = −10: (a) a symmetric one, with norm
N = 38.13 and (b) an asymmetric mode, with N = 37.39. (c) Numerically simulated evolution of the unstable asymmetric mode from (b).

ε and N are large, the odd mode may be considered as a
superposition of two narrow half solitons (22), with norms
N → N/2, opposite signs, and centers located at opposite
points ±ξ . Because the energy of the free soliton, determined
by Eq. (5), is −(1/3)(N/2)3, the instability of the odd state
against the merger of the two half solitons into a single one
with norm N , placed in either half box (i.e., the instability
against the breaking of the antisymmetry), is driven by the
respective energy difference �E = N3/4. On the other hand,
Eq. (26) suggests that, to pass the separating hurdle on the
way to the merger, a half soliton must overcome an energy
barrier of height Ubarrier ∼ εN2. Thus, the value of the norm at
the instability threshold may be estimated, from the condition
�E ∼ Ubarrier, as Ncr ∼ ε. Eventually, in the limit of ε →
∞, the infinitely tall barrier splits the potential box into two

isolated ones, each lobe of the odd mode carrying over into a
stable g.s. of the half box, which implies that Ncr(ε) → ∞ at
ε → ∞.

Because the odd modes are stable at sufficiently small
values of N , it makes sense to compare their stability region
with that of their symmetric and asymmetric counterparts.
Figure 14(a) presents the comparison for ε = 3. Further, to
identify the system’s g.s., Fig. 14(b) displays the comparison
of their Hamiltonian values as functions of the norm. The
Hamiltonian is calculated according to Eq. (5), in which the
last term is replaced as per Eq. (40):

ε|ψ(x = 0)|2 → ε

∫ +1/2

−1/2
δ̃(x)|ψ(x)|2dx. (43)
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It can be clearly seen that the odd mode is always an excited
state, whose Hamiltonian exceeds that of the coexisting (for
the same N ) stable symmetric or asymmetric mode. Thus, the
symmetric state, when it is stable, and the asymmetric one,
when it exists, represent the g.s.

Finally, we have also carried out a brief analysis for the
second excited state, i.e., the first even state existing above the
g.s. In addition to the g.s., this mode undergoes the SSB, which
gives rise, above the respective bifurcation point, to coexisting
symmetric and asymmetric versions of the second excited state
[see a typical example in Figs. 14(a) and 14(b)]. However, a
drastic difference from the g.s. is that not only the formally
existing symmetric mode, but also the coexisting asymmetric
one, produced by the SSB, is unstable, as shown in Fig. 15(c).
As a result of its evolution, the unstable asymmetric second-
order state spontaneously evolves towards a stable asymmetric
g.s., which exists at the same norm.

IV. CONCLUSION

The objective of this work was to carry out a systematic
analysis of a basic one-dimensional model that is capable of
grasping the SSB phenomenology. The model, which may
be realized in BECs and nonlinear optics alike, was built
as an infinitely deep potential box, split into two wells by
a narrow (δ-functional) barrier set at the center. The barrier’s
strength ε is the single free parameter in the scaled version
of the model. The SSB was predicted in it by means of
two analytical approximations, which are valid in two limit
cases, viz., for strong or weak splitting of the potential box
by the central barrier. Another semianalytical approach, based

on the VA, was developed in the generic case. Predictions
of the analytical approximations were verified by means of
comparison with systematically generated numerical results.
It was inferred that the system always gives rise to supercritical
SSB bifurcation of the g.s. The VA accurately predicted this
finding at moderate values of ε, but failed to do it at small ε, due
to the limited applicability of the underlying ansatz. However,
the other analytical approximation for small ε, which is based
on the soliton ansatz, correctly described that case. In addition
to the g.s., the stability of the first and second excited states
was investigated too. The former (a spatially odd mode) is
destabilized at a critical value of the norm. The second-order
excited state, as well as the g.s., features the SSB bifurcation,
but, unlike the g.s., the asymmetric mode produced by this
bifurcation is unstable. In direct simulations, all unstable
modes tend to rearrange themselves into the symmetry-broken
g.s. with the same norm.

As an extension of the work it may be interesting to consider
its two-dimensional version for a square-shaped infinitely deep
potential box, split by appropriate inner barriers, a new factor
appearing in two dimensions being a possibility of the collapse
of the trapped modes. The analysis of a two-component version
of the system may be relevant too.
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