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Motion of dissipative optical fronts under the action of an oscillating pump
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The dynamics of domain walls in optical bistable systems with pump and loss is considered. It is shown that an
oscillating component of the pump affects the average drift velocity of the domain walls. The cases of harmonic
and biharmonic pumps are considered. It is demonstrated that in the case of biharmonic pulse the velocity of the
domain wall can be controlled by the mutual phase of the harmonics. The analogy between this phenomenon
and the ratchet effect is drawn. Synchronization of the moving domain walls by the oscillating pump in discrete
systems is studied and discussed.
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I. INTRODUCTION

Stationary localized structures in nonlinear optical cavities
have been actively studied in recent time because of their
importance for various applications, for example, in optical
information processing, and because of the fundamental inter-
est motivated by rich dynamics of the considered systems [1].

A rich variety of nonlinear solitary structures are found
in the systems of such a kind. Domain walls connecting
two spatially uniform states are an important example of
nonlinear solitary waves. They are found in the systems of
different physical origin, in particular in optical systems; see
Ref. [2]. The area of domain walls has been attracting much of
the attention for a long time and is an actively developing
area of research now; see Ref. [3] and references therein.
The investigation of the domain walls is of interest because
the dynamics of many optical systems is governed by the
formation and evolution of the domain walls. For example,
vector domain walls were experimentally discovered in lasers
[4]. It was also found that active optical systems allow us to
obtain the formation of dual-frequency domain walls (dark
solitons) in fiber ring lasers [5]. This effect is of big academic
interest and can possibly be used for the design of laser
systems. Another interesting example of dissipative optical
fronts is polarization domain walls [6]. The solitons of such
a kind were investigated experimentally and theoretically in
fiber lasers. It was shown that the dark-dark solitons form
only if the dispersion of the fiber is normal, whereas bright-
dark solitons were found for both normal and anomalous
dispersions.

The motion of the domain walls can be seen as a mechanism
of the switching between two spatially uniform states in
bistable systems. The domain walls move extending the area
of existence of an energetically favorable state. In its turn it
depends on the pump which state is energetically favorable,
and thus the direction of the domain wall motion can be
controlled by the intensity of the pump. At the pump value
called Maxwell point, the domain wall is at rest and so it is
possible to say that at this pump the states connected by the
domain wall are in a certain sense equivalent. The domain
walls interact to each other and near Maxwell point they can
form a rich plethora of bound states that are often referred to
as bright or gray cavity solitons [7–16].

The formation and the dynamics of the solitary waves can
be very different in discrete and periodic systems and this
problem has been actively studied [17–25]. The difference can
be dramatic if the size of the nonlinear structure is comparable
with the intersite distance but even in the case when long-wave
approximation is applicable the dynamics of the solitary waves
can be different in the continuous and discrete systems.

For example, the translational invariance is broken in
periodical systems and solitons can be pinned on the effective
potential. Because of this, in discrete or periodic systems the
domain walls can be at rest in a certain range of pumps around
the Maxwell point. This results in the appearance of complex
snaking patterns on the bifurcations diagrams of the solitons;
see, for example, Ref. [23].

The goal of this paper is to study the dynamics of the
domain walls under the action of the pump consisting of
the temporally independent component and the component
periodically oscillating in time. We restrict our consideration
to the cases of harmonic and biharmonic oscillating component
of the pump. A possible experimental setup where the domain
walls can be studied experimentally is a one-dimensional
nonlinear optical cavity (for example, a gas-filled cavity or
a cavity made of a semiconductor) pumped from the top
through a semitransparent mirror by a powerful laser beam; see
Fig. 1. The oscillations of the pump have the frequency much
lower compared to the optical frequency of the holding beam.
Such low-frequency oscillations of the pump intensity can be
created by an electro-optical or even by an optomechanical
modulator. For instance, it is possible to use electro-optical
or magneto-optical effects to control the transparency of a
dielectric layer or the reflectivity of a mirror. This makes it
possible to obtain an optical pump with the intensity varying
in time. Let us mention here that for the observation of the
effects discussed in the paper it is sufficient to provide a small
modulation of the pump intensity (of order of 10−3).

In this paper we focus on the effect of small oscillation of
the holding beam intensity on the dynamics of the dissipative
domain walls connecting two different spatially uniform states.
It will be shown below that the oscillating pump can help to
achieve precise control on the motion of the domain wall. This
can be interesting from the point of view of the controllable
formation of cavity solitons and for other applications.
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FIG. 1. The schematic view of a nonlinear cavity pumped by a
laser beam is shown in the upper part of the figure. The bottom part of
the figure shows an array of interacting nonlinear resonators pumped
by coherent light.

An interesting effect discussed in the paper is the de-
pendence of the domain wall velocity on the mutual phase
of the temporal harmonics in the case of biharmonic pump.
We develop an analogy between this effect and the effect of
soliton ratchet that has been actively studied for topological
[26–33] and nontopological [34–42] solitons in different
physical systems ranging from Josephson junctions to optics
and Bose-Einstein condensates. Soliton ratchet is also known
in discrete systems where the phenomenon has some important
peculiarities discussed in a number of papers [43–45].

The novelty of our research is that in the system considered
in the present paper even a resting domain wall connects two
different states and thus the symmetry typical for the systems
demonstrating ratchet effect does not take place. However, it
is possible to consider the dynamics of the domain wall in
quasiparticle approximation and within the framework of this
approach the symmetry is restored. So one can expect to see
an effect similar but not completely analogous to the effect of
soliton ratchet.

We also consider the effect of synchronization of domain
walls by the oscillating component of the pump. The effect
of the synchronization of the drift velocity was reported for
the ratchet of particles [46] and for soliton ratchet [47]. In the
present paper we study the phenomenon of synchronization for
the domain walls connecting nonequivalent spatially uniform
states. This effect can be useful for the precise control of the
domain walls because the synchronization with the oscillating
component of the pump makes it possible to count the number
of hops of the domain wall over the sites and thus to know its
exact position.

The paper is organized as follows. In Sec. II we consider
a mathematical model and the spatially uniform states that
can exist in the systems. The dynamics of the domain walls
in the continuous systems under the action of the harmonic
pump is considered in Sec. III. Section IV is devoted to the

motion of the domain walls in the systems with biharmonic
pump. Section V addresses the dynamics of the domain walls
in the discrete systems. The main result of the paper is briefly
summarized in Sec. VI.

II. MATHEMATICAL MODEL AND SPATIALLY
UNIFORM STATES

Let us consider a system of coupled optical resonators
pumped by an external laser beam described in the slow-
varying amplitude approach by the model,

i∂tψn + δψn + αψn

1 + |ψn|2 + c(ψn+1 + ψn−1 − 2ψn) = Pn,

(1)

where each of the oscillators is descried by a complex slow-
varying amplitude ψn, the real part of δ is linear detuning of
the resonance frequency of the oscillators from the frequency
of the pump, the imaginary part of δ is linear losses in the
system, α is a nonlinear coefficient accounting for nonlinear
change of the resonance frequencies, c is the coupling strength
between the oscillators, and Pn is the amplitude of the external
pump. Further, we assume that the pump is homogeneous in
space Pn = P .

In the case of strong coupling the discreteness of the model
is not important and one can describe the dynamics of the
system by a continuous function ψ[X] ψn = ψ[ n√

c
]. Here

and through the whole paper we use square brackets to denote
arguments of functions. The equation for ψ can then be written
as

i∂tψ + δψ + αψ

1 + |ψ |2 + ∂2
Xψ = P. (2)

Aiming to investigate the ratchet effect we consider the
pumps periodic in time and for the sake of briefness and clarity
we restrict our consideration to the cases of two-harmonic
pumps P = P0 + a1 sin[ωt] + a2 sin[2ωt + θ ], where P0 is a
permanent pump, a1,2 are the amplitudes of the fist and the
second harmonics of the periodic component of the pump, and
θ is the phase between the harmonics. In this paper we consider
the case when P0, a1, and a2 are real constants.

Bistability of the homogeneous states described by the
Eq. (1) or (2) was studied in Ref. [22], where it was shown
that in the case of saturable nonlinearity there is a region
of parameters where both the upper and the lower states are
stable. To investigate the dynamics of the fronts connecting
nonequivalent states we choose the parameters belonging to
this region δ = −0.3 + i, α = −10.

The bifurcation diagram showing the dependence of the
absolute value of the spatially uniform field |ψ | on the
amplitude of the pump P0 is shown in Fig. 2. Note that here
the pump does now contain time-dependent component p1 =
p2 = 0. Both the upper and the lower states are dynamically
stable, the intermediate state is unstable, more details on the
stability of the states can be found in Ref. [22]. In this work
we carefully checked the stability of the domain walls by
solving numerically the eigenvalue problem governing the
spectral stability of the nonlinear structures. We also performed
long-time numerical simulations to be sure that for the chosen
set of parameters the solitons are stable.
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FIG. 2. (a) The thick black line shows the bifurcation diagram for
the homogeneous states (left vertical axis). The red line (right vertical
axis) is the dependency of the velocity of the front-connecting stable
homogeneous state on the pump. Field distributions corresponding
the points marked by the circles are shown in panel (b). Thin
blue dotted line shows the dependence of the drift velocity on the
permanent component of the pump 〈v〉[P0] for the case when the
total pump has a component oscillating in time with frequency
ω = 0.25, the amplitude of the oscillating component is a1 = 0.12.
The dependency 〈v〉[P0] and the domain wall field distributions are
shown for the continuous model. Vertical thin dashed lines mark the
area of bistability and a solid thin line marks the so-called Maxwell
point. (b) The field distributions of the fronts connecting stable
homogeneous states and moving with the velocities v = −0.6 (red
line, P = 4.913), v = 0 (black line, P = Pm = 5.122), and v = 0.6
(blue line, P = 5.337). The other parameters are δ = −0.3 + i,
α = −10.

It is known that in the systems described by Eq. (2) the
dynamical solutions in the form of switching waves between
the lower and the upper states can exist. The formation of the
domain walls is provided by the balance of the dispersion,
nonlinear Kerr effect, the driving force (the holding beam
pumping the systems), and the losses. The advantage of these
solitary waves is that they are attractors and this facilitates
their experimental observation. Let us mention an important
difference of the considered domain walls from the solitary
structures in the systems with gain. It is known that in the
lasing systems there are domain walls connecting physically
equivalent spatially uniform states and thus the phase of the
field changes by π at these dissipative fronts; see Ref. [48].
In this paper we consider the systems pumped directly by the
holding beam of coherent light [accounted by the right-hand
side of Eqs. (1) and (2)]. The pump of such a kind breaks
the phase symmetry fixing the phases of the spatially uniform
solutions on the right and on the left from the domain walls.

At a given pump one of the states prevails and this state
spreads filling the whole system. However, there may be a
special value of pump, so-called Maxwell point Pm when
the front connecting the lower and the upper states is at rest.
If the pump becomes lower than the Maxwell point P < Pm

then the lower state prevails and the front sets to motion
expanding the area of the existence of the lower state. If
the pump gets higher than the Maxwell point P > Pm then
the upper state wins and propagation of the switching wave
increases the domain of the existence of the upper state.

Numerically calculated dependence of the velocity of the
switching wave on the pump is shown in Fig. 2(a), the Maxwell
point is indicated as Pm. The profiles of the stationary kinks are
shown in Fig. 2(b) for moving kinks and for the resting one.

III. MOTION OF THE FRONTS UNDER THE ACTION OF A
HARMONIC PUMP

Let us now consider how weak temporal oscillations of the
pump affect the dynamics of the domain walls. We focus our
attention on the case when the permanent component of the
pump is in the vicinity of the Maxwell point.

In the case of the ratchet of the particles and for the fronts
connecting equivalent states the dependency of the velocity v

on a control parameter η has the symmetry v[η] = −v[−η].
From this it follows that if the control parameter has only one
temporal harmonics η ∼ sin[ωt] then the average velocity is
equal to zero.

Working with the dissipative fronts we can consider the
varying part of the pump as a control parameter. However, in
this case the homogeneous states connected by the front are
not equivalent and the aforementioned symmetry is absent.
However, let us show that this symmetry appears for weak and
adiabatically slow variations of the pump around Maxwell
point.

Indeed, it is possible to calculate numerically the depen-
dence of the front velocity on the pump; see the previous
section. At Maxwell point the velocity is equal to zero and thus
the leading term in the Taylor expansion of the dependency of
the velocity on the pump is v ≈ ∂v

∂P
[P − Pm]. This formula

is valid for the constant pump P ; however, it should also
work for slow-varying pumps P = P0 + p1 sin[ωt]. Taking
the permanent component of the pump to be equal to Maxwell
point P0 = Pm, we obtain that the velocity of the front is
v = ∂v

∂P
p1 sin[ωt] and the average velocity is equal to zero

〈v〉 = 0.
Generalizing these results let us derive the formula for the

average velocity of the motion of the front under the action of
the periodically varying pump P = P0 + p[t]:

〈v〉 = 1

T

∫ T

0
v[P0 + p[t]]dt

= 1

T

∫ T

0
v[P0] + ∂v

∂P
p[t] + 1

2

∂2v

∂P 2
p[t]2 + ...dt

= v[P0] + ∂v

∂P
〈p〉 + 1

2

∂2v

∂P 2
〈p2〉 + ... (3)

Here the derivatives ∂v
∂P

are calculated for P = P0, and the
sign 〈. . .〉 denotes averaging over time.

For the harmonic pump P = P0 + a1 sin[ωt] formula,
Eq. (3) gives in leading approximation the following expres-
sion for 〈v〉:

〈v〉 = v[P0] + 1

4

∂2v

∂P 2
a2

1 . (4)

This expression tells that the oscillating pump results in the
nonzero drift velocity of the domain wall. For low amplitudes
of the oscillating component of the pump the direction of
the motions depends on the sign of the derivative ∂2v

∂P 2 and is
proportional to the square of the amplitude of the oscillating
pump.

To check the dependence Eq. (3) and to investigate nona-
diabatic dynamics we performed direct numerical simulations

022205-3



A. V. YULIN, A. ALADYSHKINA, AND A. S. SHALIN PHYSICAL REVIEW E 94, 022205 (2016)

0 0.1 0.2
-10

-5

0

5x 10(a) (b)

x

t

=0.05

0

=0.1

<v>

a1
(c) (d)

5 5.05 5.1 5.15 5.2

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1
0

0.005

0.01

<v>

P

v
a =0.11

a =0.151

=1.25

=0.25

=0.05

0

FIG. 3. (a) The intensity distribution |ψ(x)|2 as a function of t

for the pump P = P0 + a1 sin[ωt], a1 = 0.1, ω = 0.05, P0 = Pm =
5.122. Dashed yellow line is the guide for the eye showing the drift
of the averaged position of the front. (b) The dependence of the
drift velocity 〈v〉 on the amplitude of the oscillating component
of the pump a1. Black solid line corresponds to Eq. (3) valid for
the adiabatic motion when the frequency ω → 0, the blue dashed
line is obtained from direct numerical simulations for the pump
oscillation frequency ω = 0.05, the red dashed line represents results
of numerical simulations for ω = 0.1. (c) The curves representing
the instant velocity v(t) of the front against the instant value
of the pump P = P0 + a1 sin[ωt]. The thick dashed black line shows
the adiabatic dependence for ω → 0, thin blue, red, and green lines
show the dependencies obtained from direct numerical simulations
for ω = 0.05, ω = 0.25, and ω = 1.25. (d) The dependence of the
drift velocity 〈v〉 on the frequency of the oscillations of the pump ω

for the amplitudes of the oscillating part of the pump a1 = 0.1 and
a1 = 0.15. The black and red dots show the drift velocities obtained
from Eq. (3) for the adiabatic cases. The other parameters are the
same as described in the caption for Fig. 2.

of the dynamics of the front. We took the permanent part
of the pump to be very close to Maxwell point and added a
small sinusoidal signal. The dynamics of the front is shown in
Fig. 3(a). It is seen that the boundary between the lower and
the upper state oscillates and there is a slow drift toward the
lower state.

We measured the velocity of the drift as a function of the
amplitude of the oscillating component of the pump. The
results are presented in Fig. 3(b). It is seen that for low
frequencies the numerically calculated dependency follows
closely to the dependency calculated by Eq. (3). However, for
higher frequencies the discrepancy increases.

It is worth noting here that the average velocity goes to
zero quadratically ∼ p2

1 for low pumps as it follows from
the Taylor expansion in Eq. (3). For higher amplitudes of
the pump more terms in the Taylor expansion must be kept,
for very high pumps the formula has to used in the form
〈v〉 = 1

T

∫ T

0 v[P0 + p[t]]dt .
From numerical simulations we can obtain the dependence

of the instantaneous velocity of front n time v(t). The

dependencies v[t] and P [t] defines a closed curve in v−P

plane. In Fig. 3(c) these curves are plotted in the same graph
as the dependency of the stationary velocity of the front on the
amplitude of the permanent pump. One can see that, indeed, for
low frequencies of the pump the instantaneous velocity of the
front is close to the value of the stationary velocity of the front
calculated for the permanent pump. For higher frequencies
the curves deviate significantly from the dependency of the
stationary velocity on the pump. This means that for higher
frequencies the instantaneous velocity cannot be approximated
by the stationary velocity for the same pump.

We also measured the dependencies of the average velocity
of the frequency of the pump; see Fig. 3(d). The numerical
simulations show that the average velocity grows with the
increase of the frequency of the pump.

IV. MOTION OF THE FRONTS UNDER THE ACTION OF
THE BIHARMONIC SIGNAL

In this section we consider the influence of the biharmonic
signal P = P0 + a1 sin[ωt] + a2 sin[2ωt + θ ] on the dynam-
ics of the domain walls and as before we start with the adiabatic
case. In leading approximation, Eq. (3) gives for the drift
velocity the dependence

〈v〉 = v[P0] + 1

4

∂2v

∂P 2

(
a2

1 + a2
2

) + 1

12

∂3v

∂P 3
a2a

2
1 cos[θ ].

(5)

It is important that in this case the drift velocity depends
also on the mutual phase θ of the harmonics. It resembles
so-called ratchet effect when a particle is set into a directed
motion under the action of biharmonic force. The ratchet
effect is associated with the break of the asymmetry of the
force acting on the particle. In the case of the biharmonic
force the asymmetry depends on the mutual phase of the
harmonic and thus the particle motion can be controlled by the
phase.

This effect is also well known for solitons and kinks.
However, to our best knowledge this effect was described only
for the case when the kinks connect two equivalent states and
so the kinks are at rest in the absence of the oscillating pump.
The case considered here is different: the domain walls connect
two nonequivalent states. Nevertheless, the domain walls are
sensitive to the asymmetry of the pump. This make it possible
to mimic the ratchet effect acting by the asymmetric pump on
the dissipative domain walls connecting nonequivalent states.

The effect is especially clear at the Maxwell point when
the upper and the low states become equivalent in the sense
that they can be in equilibrium and the domain wall between
these states is at rest. However, as it is seen from Eq. (5), the
symmetry 〈v〉[θ ] = −〈v〉[θ + π (2n + 1)] taking place for the
conventional ratchet effect is broken in the case of domain
walls.

This can be understood taking into account that the
oscillating pump modifies the spatially uniform states and it
can be said that the oscillating pump shifts the Maxwell point.
It is seen from Eq. (5) that the phase-independent contribution
from the oscillating components can be compensated by the
change of the time-independent component of the pump. The
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FIG. 4. (a) The dependencies of the drift velocity on the mutual
phase of the harmonics of the pump. The solid black line corresponds
to the fundamental frequency of the pump ω = 0.05, the amplitude
of the second harmonic of the pump is a2 = 0.1. The solid blue curve
corresponds to the frequency ω = 0.05 but smaller amplitude of the
second harmonic of the pump a2 = 0.03. The nonadiabatic case is
illustrated by the dashed curve calculated for ω = 0.15 and a2 = 0.1.
The amplitude of the first harmonic of the pump is a1 = 0.1 for all
dependencies. The maximum and the minimum velocities for the
case ω = 0.05, a2 = 0.1 are marked as vU and vL, correspondingly.
(b) Red dashed line shows the analytical dependency of vU − vL

on the amplitude of the second harmonic of pump a2. The red
circles show the differences vU − vL obtained from direct numerical
simulations. The green line and green circles are the analytical
and numerical dependencies of 0.5(vU − vL) − 〈ṽ〉 on the amplitude
second harmonic of the pump.

shift of the Maxwell point is another mechanism leading to the
change of the drift velocity.

We performed direct numerical simulations of Eq. (1) and
measured the dependencies of the domain wall drift velocity
on the mutual phase of the harmonics of the pump. These
dependencies are shown in Fig. 4(a) for different values of
the amplitudes and the fundamental frequency of the pump.
These dependencies are very much similar to the dependencies
typical for conventional ratchet effect.

For low frequencies the measured velocities are in good
agreement with the approximation given by Eq. (5). To
demonstrate that the adiabatic motion of the domain wall is
well described by the developed theory we did the following
measurements. From numerical modeling we can measure the
maximum vu and the minimum vL drift velocities. From Eq. (5)
it follows that the difference of the velocities is vU − vl =
1
6

∂3v
∂P 3 a2a

2
1 , so it is proportional to a2 and to square of a1.

Figure 4(b) shows the dependency calculated by the formula
by the red dashed line. The red circles on this panel show the
velocities difference obtained from numerical simulations. It
is seen the agreement is very good for low values of a1. The
dependencies are plotted in double logarithmic scales to make
all power dependencies to be straight lines.

We also checked that the phase-independent contribution
of the second harmonic of the pump to the drift velocity is
proportional to a2

2 . Denoting the drift velocity in the absence
of the second harmonic of the pump as 〈ṽ〉 we can derive
that 0.5(vu + vL) − 〈ṽ〉 = 1

4
∂2v
∂P 2 a

2
2 . This dependency is shown

in Fig. 4(b) by green dashed line. The corresponding values
obtained from the direct numerical simulations are shown by
the green circles. It is seen that the agreement between the
analytical and numerical results is good.

V. MOTION OF THE KINKS IN THE DISCRETE SYSTEMS

In this section we consider how discreteness affects the
propagation of the fronts under the action of the oscillation of
the pump. The discreteness breaks the translational symmetry,
and the domain wall connecting the upper and the lower
spatially uniform states can be at rest in a range of the pumps.
This can be considered as pinning of the domain walls in the
discrete lattice.

We performed numerical simulations of Eq. (1) for the
pump consisting of a temporally independent and an oscillating
part. The dependency of the drift velocity on the amplitude of
temporally independent part P0 of the pump is shown in Fig. 5.
The velocity is defined as the number of sites that the domain
wall passes in a unit of time. An important feature seen in the
figure is the steps on the dependency 〈v〉[P0].

The steps can be explained as synchronizations of the os-
cillations appearing when a domain wall is moving in discrete
system with the oscillations of the pump. The oscillation of the
field ψ that occur because of the motion of the domain wall in
discrete systems we will refer below as eigen oscillations of
the domain wall. The time interval between the moments when
the center of the domain wall coincide with one of the sites
is equal to T = 1

〈v〉 . This means that the eigen oscillations

have the fundamental frequency 
0 = 2π
T

= 2π〈v〉 and the
harmonics 
n = 2π〈v〉n, n is integer.

The dependency of the domain wall velocity on the pump
is nonlinear and thus the pump oscillating with frequency ω

produces the harmonics ωm = mω, m is integer. The eigen
oscillations can be synchronized with the oscillating pump
when the frequency of the harmonic of the pump coincide
with the frequency of a harmonic of the eigen oscillations.
From this it can be derived that in the synchronization regime
the velocity of the domain wall is defined by the frequency of
the pump. Thus, the positions of the synchronization steps on
dependency 〈v〉(P0) the are given by the ratio

〈v〉nm = ωm

2πn
, (6)

where 〈v〉nm is the positions of the step corresponding to the
synchronization of the mth harmonic of the pump with nth
harmonic of the eigenoscillations of the domain wall.
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FIG. 5. The dependency of the domain drift velocity on the time-
independent pump in the discrete system is shown in panel (a). The
pump contains an oscillating component with the amplitude a1 = 0.1
and the frequency ω0 = 0.005. The synchronization steps are marked
by the index of the eigenoscillation harmonics synchronized with the
oscillations of the external pump. Panel (b) shows a zoom of the panel
(a). The coupling coefficient is c = 0.3.
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velocity of the synchronized domain wall, the parameters are the same
as for (a) but the amplitude of the oscillating pump is a1 = 0.005.
The coupling coefficient c = 0.3.

The width of the steps depends on the efficiency of the
locking between the pump and the eigen oscillations of the
domain wall. It is worth mentioning that the oscillations of
the pump can suppress the pinning of the domain wall on the
lattice.

Synchronization between high harmonics is weak and the
corresponding steps are very small and not visible in the plotted
dependency 〈v〉[P0]. The step with m = 0 can be interpreted
as the pining of the domain wall on the lattice and it is seen in
Fig. 5 that this step can be very small.

The synchronization can be diagnosed by the temporal
spectrum of the velocity of the domain wall. The spectrum
is calculated as follows. By numerical simulations we find the
temporal dependency of the instantaneous velocity for very
long time and then we calculate the Fourier transform of this
dependency.

A typical spectrum for the pump outside the synchroniza-
tion steps is shown in Fig. 6(a). The spectral line corresponding
to the frequency of the pump is clearly seen, it is marked in
the figure as ω0, the second harmonic of the pump is marked
by the red triangle. The most intense spectral line associated
with the eigenoscillations of the domain wall is marked as
green star. This line is broadened, its maximum is marked by
a vertical dashed blue line.

Let us note that there are also spectral lines generated by the
mixing of the harmonics of the pump with the eigenocillations
of the domain wall field. The frequencies of the pump and the
frequency of the eigenoscillations of the domain wall are not
commensurable and the motion is quasiperiodic.

The spectral picture changes in the case of the stronger
oscillating pump when synchronization occurs; see Fig. 6(b).
It is seen that the spectral lines of the eigenoscillations merge
with the spectral lines generated by the pump. So the spectrum
becomes equidistant and this means that in the synchronous
regime the variations of the domain wall velocity is periodic.

In the case of the biharmonic pump the velocity of the
domain wall depends on the mutual phase of the harmonics;
see Fig. 7, showing the dependencies of the drift velocity on
the permanent component of the pump P0. It is seen that the
width of the same synchronization steps depends on the phase
θ . For example, for θ = 0 the step marked by 2 is suppressed,
whereas the same step is pronounced for θ = π ; see Fig. 7(b).

(a) (b)
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FIG. 7. (a) The dependencies of the domain drift velocity on
the time-independent pump in the discrete system are shown for
the case of biharmonic pump P = P0 + a1 sin[ωt] + a2 sin[2ωt + θ ].
The blue line corresponds to θ = 0, the red line corresponds to θ = π .
(b) Zoom of the dependencies shown in panel (a). The parameters are
c = 0.5, a1 = 0.1, a2 = 0.05, and ω = 0.005.

The dependency of the velocity on the mutual phase opens
a way to control the motion of the domain walls by the
phase of the oscillating components of the pump. Probably the
most important case is when in the absence of the oscillating
pump the domain wall is pinned. The discreteness produces
an effective periodic potential for the domain wall and the
oscillating pump makes the domain wall hopping from one
minimum of the potential to another. This allows us to move the
domain wall very slowly and since the hopping is synchronized
with the oscillations of the pump it is possible to count the
number of hops. This gives a precise control over the domain
wall.

Let us now consider the ratchet effect that can take place in
the discussed discrete systems. We take a permanent pump
close to the Maxwell point so that in the absence of the
biharmonic pump the domain wall is at rest. Then we switch
on the oscillating pump and measure how the velocity of the
domain wall depends on the mutual phase between the first
and the second harmonic of the pump.

The dependencies of the drift velocities on the mutual
phase is shown in Fig. 8 for different values of the permanent
component of the pump P0. It is seen that the dependencies
are not symmetric, which does not look very surprising
considering that the homogeneous states connected by the
domain wall are not equivalent. Let us, however, notice that for
the fixed amplitude of the oscillating component of the pump
the dependency can be made more symmetric by precise tuning
of the permanent component of the pump.

(a) (b)

P0=5.1212

<v> <v>

0 2 4 6

−0.0005

0

0.0005

0.001

0 2 4 6
−0.003

−0.002

−0.001

0

P0=5.122

FIG. 8. The dependencies of the drift velocity on the mutual phase
θ of the harmonics of the oscillating part of the pump. Panel (a) is for
the permanent pump P0 = 5.1212, panel (b) is for the permanent
pump P0 = 5.122. The other parameters are c = 0.5, a1 = 0.1,
a2 = 0.05, and ω = 0.05.
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Despite the fact that the ratchet effect is partially disguised
by co-effects it is seen that the drift velocity of the domain wall
can be controlled by the phase and not only the value but the
sign of the domain wall velocity can be changed. In general,
the observed dependencies can be treated as superposition of
the ratchet effect, the effect of the modification of the spatially
uniform states by the oscillating pump and the effect of the
pinning of the domain wall on the effective potential created
by the discreteness of the system.

VI. CONCLUSION

Now let us briefly summarize the main results of the paper.
The motion of the domain walls connecting two different stable
spatially uniform states is studied in the dissipative system. The
dependency of the velocity on the pump is found numerically.

The influence of the harmonic oscillation of the pump on
the motion of the domain wall is studied. It is shown in the
adiabatic limit that the change of the drift velocity can be found
perturbatively and that the leading term in the expansion is
proportional to the square of the amplitude of the oscillations
of the pump. The dynamics of the walls under the action of the
pump with higher frequencies is also investigated.

It is shown that in the more complex case of the biharmonic
oscillating part of the pump the dynamics of the domain
wall depends not only on the amplitudes of the harmonics
but on their mutual phase. It is checked that the developed
perturbative approach describes the velocity of the domain
wall well if the frequency of the pump is low and the
adiabatic approximation is applicable. The analogy between
the observed effect and the effect of the soliton ratchet is
discussed.

The dynamics becomes richer in the case of a discrete model
because the motion of the domain wall excites oscillations of
the field. It is demonstrated that these oscillations can be locked
by the oscillating pump and thus the velocity of the domain
wall becomes defined by the frequency of the pump.

The motion of the domain walls in discrete systems in the
presence of the biharmonic oscillating part of the pump is
also studied. It is shown that in this case the motion of the
domain walls depends on the mutual phase of the harmonics

and an effect similar to soliton ratchet can be observed. It is
shown that the velocity of the domain wall can be controlled
by the phase and the sign of the velocity can be changed by
the appropriate choice of the phase. However, in the discrete
case the dependency of the velocity on the phase is usually
asymmetric and very fine tuning of the time-independent
part of the pump is needed to obtain relatively symmetric
dependence of the domain wall velocity on the phase of the
harmonics of the pump.

We would like to note that the collision of the domain walls,
in particular the collisions controlled by the ratchet effect, is
an open and interesting topic of research. For example, the
dissipative solitons is often treated as the bound states of the
domain walls and thus the problem of the controllable motion
of the domain walls is directly related to the formation of
dissipative solitons. It is anticipated that the presence of the
oscillating pump should affect the formation of the dissipative
solitons significantly. However, this problem is out of the scope
of the present paper and will be considered elsewhere.

Apart from their fundamental interest, the effects discussed
in the paper can possibly find practical applications. In
particular, the controllable motion of the optical domain walls
opens a way to create bound states of the domain walls
(dissipative solitons). This can be used for example for the
design of optical logic. Another possible application of the
effect is, for instance, optical manipulation. It is known that
dielectric particles are attracted to the area of more intense
optical field. Moving the domain wall it is possible to change
the distribution of the optical field and by this to control the
positions of the dielectric particles on the surface of the cavity.
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