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We introduce concepts from optimal estimation to the stabilization of precision frequency standards limited
by noisy local oscillators. We develop a theoretical framework casting various measures for frequency standard
variance in terms of frequency-domain transfer functions, capturing the effects of feedback stabilization via
a time series of Ramsey measurements. Using this framework, we introduce an optimized hybrid predictive
feedforward measurement protocol that employs results from multiple past measurements and transfer-function-
based calculations of measurement covariance to improve the accuracy of corrections within the feedback loop.
In the presence of common non-Markovian noise processes these measurements will be correlated in a calculable
manner, providing a means to capture the stochastic evolution of the local oscillator frequency during the
measurement cycle. We present analytic calculations and numerical simulations of oscillator performance under
competing feedback schemes and demonstrate benefits in both correction accuracy and long-term oscillator
stability using hybrid feedforward. Simulations verify that in the presence of uncompensated dead time and
noise with significant spectral weight near the inverse cycle time predictive feedforward outperforms traditional
feedback, providing a path towards developing a class of stabilization software routines for frequency standards

limited by noisy local oscillators.
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I. INTRODUCTION

High-performance passive frequency standards play a
major role in technological applications such as network
synchronization and GPS [1] as well as many fields of physical
inquiry, including radioastronomy (very-long-baseline inter-
ferometry) [2], tests of general relativity [3], and particle
physics [4]. Atomic clocks exploiting the stability of Cs [5—8]
or other atomic references [9-13] to stabilize an oscillator
are known as the most precise timekeeping devices available,
but constant performance gains are sought for technical and
scientific applications.

In many settings, such as miniaturized deployable fre-
quency standards or in GPS-denied environments, a major
performance limitation arises from the quality of the local
oscillator (LO) that probes and is locked to the atomic
transition. The LO frequency may evolve randomly in time due
to intrinsic noise processes in the underlying hardware [10,11],
leading to time-varying deviations of the LO frequency from
that of the stable atomic reference. These instabilities are
partially compensated through use of a feedback protocol
designed to transfer the stability of the reference to the LO,
but their effects cannot be mitigated completely.

Early work characterizing the so-called Dick effect [14]
demonstrated that no matter how good the reference becomes,
LO noise will still produce residual instabilities in the locked
LO (LLO) through the feedback protocol itself. The dominant
mechanism for this is evolution of the LO’s frequency on
time scales rapid compared with the shortest measurement
and feedback cycle. Major contributors to this phenomenology
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relate to the presence of uncompensated LO evolution during
initialization and readout stages of the measurement cycle
(dead time), as well as aliasing of LO noise at harmonics of the
feedback-loop period: the Dick effect [14—16]. Accordingly,
significant research focus in the frequency standards commu-
nity has been placed on improving LO performance, using,
e.g., ultralow-phase-noise cryogenic sapphire oscillators or
similar [17,18], with concomitant increases in hardware
infrastructure requirements and complexity. Other approaches
to mitigating the impact of LO instabilities involve significant
modification of the relevant reference hardware, for instance,
employing multiple atomic references [10,19].

In this paper we devise and analyze a method by which both
the accuracy of the LLO relative to the atomic reference and
the stability of the composite passive frequency standard can
be improved without the need for hardware modification. We
develop analytic tools casting time-domain statistical measures
of frequency-standard performance in terms of analytically
calculable transfer functions [20], exploiting recent related
work in quantum information [21-24]. This approach allows
improvement in feedback stabilization by bringing optimal
estimation inside the feedback loop of the LO in order to
exploit non-Markovianity in the dynamics of LO frequency
fluctuations.

Our method expresses the properties of the LLO in terms
of the statistics of the unlocked LO at different times as well
as correlations between those measurements. We present the
relevant transfer functions for time-series measurements of
arbitrary-duration Ramsey measurements and introduce the
pair-covariance transfer function explicitly capturing correla-
tions between measurement outcomes at different times. Thus,
given statistical knowledge of the LO noise characteristics, we
craft a form of hybrid feedforward stabilization incorporating
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the results of an arbitrary number of past measurements
with variable duration to calculate an improved predictive
correction to the LO. This approach shares concepts with
techniques of optimal estimation [25] commonly used in
engineering to predict the evolution of a dynamical system,
here the noisy LO.

In cases where dead time is significant and there is
substantial uncompensated LO evolution, we use numerical
simulations to show that this approach allows corrections of
improved accuracy to be applied to the LO. Simulations also
demonstrate that long-term stability of the LLO is improved
through a feedforward correction scheme, where corrections
are made based on weighting values determined analytically in
the same hybrid feedforward approach. The method described
here is a technology-independent software-oriented approach
to improving the performance of frequency standards derived
from locked local oscillators. It may be freely used in
conjunction with hardware modifications targeted at reducing
the same limitations identified, such as interleaving the cycles
of two clocks to reduce dead time [10,19].

The remainder of this paper is organized as follows. In
Sec. II we provide an analytic description of the deleterious
effects of LO noise on frequency standards, introducing the
relevant metrics for the performance of interest. This includes
presentation of analytic expressions explicitly capturing the
effects of feedback stabilization on the aggregate system
performance through a recursive formulation. Section III
demonstrates how to convert these time-domain statistical
measures of frequency-standard performance to the Fourier
domain, introducing both transfer functions for individual
measurements and the pair-covariance transfer function cap-
turing the correlations between arbitrary-duration Ramsey
measurements conducted at arbitrary times. We then exploit
these tools in Sec. IV in order to devise a hybrid-feedforward
correction scheme similar in spirit to concepts from optimal
estimation in order to maximize the accuracy of corrections
applied to the LO. We demonstrate improvements in correction
accuracy and LLO stability via this approach using numerical
simulations with realistic LO noise power spectra. Finally, we
conclude with a summary and discussion in Sec. V.

II. EFFECT OF LOCAL OSCILLATOR NOISE
ON FREQUENCY STANDARD STABILITY

Our primary objective is to suppress the impact of LO
frequency noise on the ultimate performance of the locked
LO, which is stabilized to a reference (e.g., an atomic
transition). Accordingly, throughout this analysis we do not
consider systematic shifts or uncertainties in the reference
and explicitly assume that the reference is perfect. This limit
provides a reasonable approximation to the performance of
many deployable frequency standards where LO stability is
far worse than that of the associated atomic reference.

A. Time-domain description of Ramsey measurements
and feedback stabilization

We represent the fractional frequency offset of the LO
relative to an ontologically perfect reference at time 7, y(t) =
[v(¢) — vol/vo, where vy is the reference frequency and v(¢)
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FIG. 1. Effect of LO noise on the performance of a locked
oscillator. Simulated evolution for a noisy LO, unlocked (black) and
locked with traditional feedback (red). The dotted horizontal bars
indicate the measurement outcomes (samples) over each cycle j,
which are applied as correction at the end of the cycle, indicated by
the bent arrow in the first cycle. The measurement period of duration
Tr (white background) is followed by dead time with duration Tp
(gray background). The total cycle time T, = Tp + Tx and here
we represent a 50% duty factor d. Undetected evolution of the
LO during the dead time leads corrections to incompletely cancel
frequency offsets at the time of correction. The arrows on the far
right schematically indicate how locking reduces the variance of y(z),
though it does not eliminate it.

is the LO frequency. In such a setting, Ramsey spectroscopy
provides a means to determine the average value of y(¢) over a
period Tk. Pointlike realizations of the stochastic process y(t)
cannot be obtained experimentally; instead, the LO frequency
error produces integrated samples, denoted by j; and indexed
in time by k:

1[4
W= W/ y(t)g(t — tp)dt, (D
TR I

where Tl(ek) =1t — 1, [t,#] is the time interval over which
the kth sample is taken (s and e indicating start and end,
respectively), and g(¢) is a sensitivity function capturing the
extent to which LO fluctuations at some instant ¢ contribute to
the measured outcome for that sample [26]. The range of g(¢)
is [0,1] and its domain over the k interval is ¢ € [#},#{]. The
ideal case is the rectangular window case, where

1 fort e [t],1]

g(t) = { 2

0 otherwise,
in which case y; reduces to the time average of y(#) over the
interval [#],{].

In traditional feedback stabilization, the samples ¥ are
used to determine corrections to be applied to the LO in order
to reduce frequency differences from the reference (Fig. 1).
Consider the trajectory of the same frequency noise realization
y(t) in the cases of no correction, denoted by y©(¢), and
correction, yLLO(t). The relation between these two cases of

y(t) is

YO0 =y m + ) . 3)
k=1
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where C; refers to the value of the kth frequency correction
applied to the LO, n of which have occurred before time 7.
Under traditional feedback stabilization, each correction
is directly proportional to the immediately preceding mea-
surement outcome: Cj = wk)'),ELO, where wy is correction
gain. Since 31© is calculated by convolving y“O(¢) with a
sensitivity function pertaining to the measurement parameters,
(3) is a recursive equation in general. It is possible to
cancel all but one of the recursive terms by setting the

correction gain equal to the inverse of the average sensitivity
(k)
g = fOTR g/ T,(?k)dt of the preceding measurement, i.e.,

Wy = —§&; ! where the minus sign indicates negative feedback.
With this constraint we can write

- - 8k
e @)
8k—1

and for a Ramsey interrogation and measurement with negli-
gibly short pulses, g, = 1. By applying feedback corrections
sequentially after each measurement one is able to effectively
reduce the fractional frequency offset of the locked oscil-
lator y"©(¢) over many cycles, thus improving long-term
stability.

We may now consider the limitations of this general
approach. In the limit of a static frequency offset in time, a
single (perfect) correction will set the frequency offset error of
the LLO to zero; however, such perfect correction is in general
not achieved. The primary reason for this in the limit of perfect
measurements and corrections is dynamic evolution of the LO
on time scales rapid compared to the measurements that cannot
be fully compensated by the feedback loop possessing cycle
time T,.

InFig. 1 we demonstrate how evolution of the LO frequency
during Ty leads the feedback protocol to incompletely correct
the offset y(¢). From the formalism presented above we see that
incomplete feedback arises because the corrections are based
only on the average value of the frequency offset as measured
over the kth period y; (horizontal solid lines in Fig. 1), rather
than the instantaneous value of the LO frequency offset at the
time of correction, which cannot be known. The difference
between these two values leads to incomplete compensation
of time-varying frequency offsets and hence residual fractional
instability in the quantity yO)(¢). In fact, LO evolution due
to noise components evolving rapidly on the time scale of T,
contribute to effective aliasing of the noise in the measurement-
feedback routine and ultimately giving rise to the Dick effect.
The impact of these effects on the ultimate stability of the LLO
is exacerbated in circumstances where there is nonzero dead
time Tp during which the LO may evolve, but this evolution is
not captured by a measurement. Dead time arises due to, e.g.,
the need to reinitialize the reference between measurements
or perform classical processing of the measurement outcome
before a correction can be applied.

The net impact of this uncompensated evolution is a reduc-
tion in the long-term stability of the locked local oscillator.
We now move on to describe the relevant quantitative metrics
for LLO variance in both free-running and feedback-locked
settings.
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B. Measures of frequency standard stability for unlocked
and locked LOs

The performance of the frequency standard is statistically
characterized by various time-domain measures capturing the
evolution of LO frequency as a function of time. The variance
of ¥, denoted by oyz(k) and often called true variance [26], is

ol (k) = ((57) — (7)) — E[57] )

. 2
1 [k
=E (W/ y(l)g(t—t;f)dt> ) (6)
R i

where in the first line we assume that the true variance is simply
equal to the expected value E of )7,?, since y(¢) is assumed to
be a zero-mean process. The true variance captures the spread
of measurement outcomes due to different noise realizations
in an infinite ensemble, over a single time step. However, in a
measurement context one does not have immediate access to an
infinite ensemble of noise realizations, but rather a single time
series of measurement outcomes accumulated sequentially
over a single noise realization. As a result we rely on a measure
more conducive to this setting, the sample variance for N
sequential finite-duration measurements {3y} [26],

1 1Y
o) [N]= — (91« - yz) . (7
=gy 2
In this work we will rely on such measures of frequency
stability, rather than the more commonly employed Allan
variance, in line with recent experiments [27]. Our decision to
avoid the Allan variance is deliberate, as its form, effectively
a moving average, specifically masks the effect of LO noise
components with long correlation times. In fact, the Allan
variance is employed by the community in part because it
does not diverge at long integration times t due to LO
drifts, as would the sample or true variance [26,28-30]. In
the limit where the stability of a frequency reference is
dominated by LO noise (and the reference can be treated as
perfect) this approach gives physically meaningful results. For
completeness we introduce the formal definition of the Allan
variance, calculated by finding the variance of the difference
between consecutive pairs of measurement outcomes:

Aol (y) = ${Grer — 3, ®)

where j; is the kth measurement outcome and (---) may
indicate a time average or an ensemble average, depending
on whether y(#) is assumed to be ergodic.

The standard measures for oscillator performance either
consider a free-running LO or provide a means only to
statistically characterize measurement outcomes under black-
box conditions. We may derive explicit analytic forms for
different measurements of variance in the presence of feedback
locking in order to provide insights into opportunities to
improve net LLO performance through modification of the
stabilization protocol.

We write time-domain expressions for variance using the
relevant definitions provided above and the link between
corrections in feedback and the history of the LLO’s evolution.
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For the true variance we substitute Eq. (4) to find

PHYSICAL REVIEW E 94, 022204 (2016)

— 2
22
GyzLLO(k) Var[ 5] = UfLo(k) + <%) C’yZLo(k -D- ggk o (52, 5°) &)

and calculate the expected value of the LLO sample variance in a similar manner using Eq. (3),

k—1 k—1

r=1 s=1

We see that the characteristics of the locked LO can be
expressed in terms of the unlocked LO and the covariance
between two quantities o (x, y), capturing correlations between
them. This may include the covariance of different measure-
ment outcomes on the LO [e.g., o(3F°,5°)] or different
corrections applied to the LO [e.g., o(C,,C,)]. It is this
observation, that we may express relevant statistical quantities
surrounding the performance of locked local oscillators in
terms of measurement covariances, that will provide a path
towards the development of stabilization routines exploiting
temporal correlations in the LO noise (and hence measurement
outcomes).

III. PERFORMANCE MEASURES FOR FREQUENCY
STANDARDS IN THE FOURIER DOMAIN

We require an efficient theoretical framework in which to
capture these effects, and hence transition to the frequency
domain, making use of the power spectral density of the LO’s
fractional frequency error Sy () in order to characterize the
average performance over a hypothetical statistical ensemble.
In this description residual LLO instability persists because the
feedback is insensitive to LO noise at high frequencies relative
to the inverse measurement time. Additional instability due to
the Dick effect comes from aliasing of noise at harmonics of
T, the effective loop bandwidth.

We may analytically calculate the effects of measurement,
dead time, and the feedback protocol itself on frequency stan-
dard performance in the frequency domain as follows. Defining
a normalized, time-reversed sensitivity function g(#;" —t) =
gt —1)/ T,(ek) , where g(¢) is assumed to be time-reversal
symmetric about 7", the midpoint of the kth interval [#,#{],
we can express the true variance as a convolution of(k) =

E{[f_ooOO y()g — t)dt]?}. Expanding this expression gives
aito= [~ [ " Etosenelr - (e - f)arar

(1)

/ / RIP(ADG (1" —1)g (1 — 1')dt'de, (12)

where R[%(Ar) is the two-sided autocorrelation function
and At =1t —1t. Using the Wiener-Khinchin theorem we
write RTS(Ar) = f’l{S; S(w)}, relating the autocorrelation

o(cx,cy)> - %Z

N
% {(yLo<k>+ngZa<cr,c>—2ng o (7°.C )
u=1

N

k—1 1—-1
050 +a@ )Y o(Cy.Co)

=1 y=I z=1

(10)

(

function to the Fourier transform of the power spectral density
of the LO noise. Defining the Fourier transform of g(¢;" — 1),

Gi(w) = foo gty —1)e'dur. (13)

]

Here |G(w)|* is called the transfer function for the kth
sample, describing the spectral properties of the measurement
protocol itself. For measurements performed using Ramsey
interrogation with /2 pulses of negligible duration and zero
dead time, the transfer function has a sinc-squared analytic
form |G (w)[* = [sin (0T /2)/(@T /2)12.

We may then express the true variance

o0
oy (k) = % / Sy(@)|Gi(@)*dw, (14)
0

where the substitution of the one-sided power spectral density
(PSD) Sy(w) is possible because |Gi(w)* is even. This
result is similar to the convolution theorem, which states
that F{f « g} = F{f}F{g}, where x denotes convolution and
f and g are Fourier-invertible functions. This framework,
which expresses the true variance as the overlap integral
of the noise power spectrum and the transfer function for
the measurement protocol, has recently seen broad adoption
in the quantum information community where time-varying
dephasing noise is a major concern for the stability of quantum
bits [21-24,31-34].

Recalling that statistical measures of LLO variance rely not
only on expressions for the true variance over noise ensembles,
but also on covariances between measurements or corrections,
we must equivalently express the covariance in terms of
transfer functions. Using the identity 02(A £ B) =0c*(A) +
02(B) £ 20 (A, B), we define a sum and a difference sensitivity
function g;f[(t) and g ,(7), with respect to two measurements
indexed k and /. These expressions are general functions of
time with two regions of high sensitivity corresponding to the
individual measurement periods:

g(t—1)  forre[r.rf]
g = xg(t—1) fort e[t 1] (15)
0 otherwise.

These time-domain sum and difference sensitivity functions
have their corresponding frequency-domain transfer functions,
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defined as their Fourier transforms normalized by T,gk’l):
o =t " —t
Gt = | (g( b2 et}

' —c0 Ty Te

Substituting this and the form of the true variance (14) into
the variance identity above and rearranging terms gives the
covariance of the two measurement outcomes

1 xS,
o () = 5~ /0 #QG,‘L@)F— |G,:,,<w>|2>dw

)e“‘”dr. (16)

a7
] o0
= /0 Sy ()G (w)do, (18)

whereby G,%, ;(w) is defined to be the pair covariance transfer
function. For the case of flat-top Ramsey measurements over
the intervals [t,fq I,t,f’ ;] this term takes the form

G; (w) = (@ TETL) ™ cos [o(if —1)] + cos [w(if —1{)]
—cos [o(tf —1})] — cos [o(f —1f)]}. (19)

This is a generalization of the transfer function previously
derived for the special case of periodic, equal-duration Ramsey
interrogations [26,29] and allows effective estimation of y(z)
for any ¢ and for any set of measured samples y;. Now, with
the expressions above we may calculate all relevant terms in
Egs. (9) and (10) in the Fourier domain.

We thus see that this approach allows expression of time-
domain LO variances as overlap integrals between S,(w) and
the transfer functions capturing the effects of the measure-
ment and feedback protocol, including correlations between
measurements or corrections in time. Through this formalism
we may incorporate arbitrary measurement protocols (e.g.,
arbitrary and dynamic Ramsey periods and dead times): The
underlying physics of, e.g., the changing linewidth of the
measurement is explicitly captured through the form and
implicit time dependence of the transfer function used to
characterize the measurement protocol.

IV. EXPLOITING NOISE CORRELATIONS TO IMPROVE
FEEDBACK STABILIZATION

Recasting variance metrics for the stability of LOs in
terms of transfer functions is particularly powerful because
it provides a path to craft measurement feedback protocols
designed to reduce residual variance measures for the LLO by
modifying the protocol’s spectral response. Our key insight
is that the non-Markovianity of dominant noise processes in
typical LOs, captured through the low-frequency bias in S, (w)
[26,29], implies the presence of temporal correlations in y(t)
that may be exploited to improve feedback stabilization. These
correlations are captured in the set of n past measurement
outcomes ¥x = {Jx.1, - - - »Vk.n}; accordingly, future evolution
of y(t) may be predicted based on a past subset of measure-
ments within ¥y, so long as the past measurements and point
of prediction fall within the characteristic correlation time
for the LO noise given by S,(w). This approach provides a
direct means to account for LO evolution that is normally not
compensated during dead time in the measurement process
and is missed by the averaging process over Tk.
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A. Optimal estimator for corrections

The formal basis of our analytic approach, in summary, is
to calculate a covariance matrix in the frequency domain via
transfer functions to capture the relative correlations between
sequential measurement outcomes of an LLO and use this
matrix to derive a linear predictor of the LLO frequency offset
at the moment of correction. Under appropriate conditions this
predictor provides a correction with higher accuracy than that
derived from a single measurement, allowing us to improve the
ultimate performance of the LLO. Since the predictor is found
using information from previous measurements (feedback) and
a priori statistical knowledge of the LO noise to predict the
evolution of the LO (feedforward), we call the scheme hybrid
feedforward.

This approach shares common objectives with application
of optimal control techniques such as Kalman filtering [25]
in the production of composite frequency standards from
an ensemble of physical clocks [35] or in compensating for
deterministic frequency shifts due to, e.g., aging or changes
in the ambient temperature of a clock [36,37]. The primary
advance of this work is the insight that stochastic evolution
of the LO can be predicted and compensated using optimal
control protocols inside the feedback loop.

In hybrid feedforward, results from a set of n past measure-
ments are linearly combined with weighting coefficients ¢,
optimized such that the kth correction C provides maximum
correlation to y(¢;) at the instant of correction #; [Fig. 1(c)].
Assuming that the LO noise is Gaussian, the optimal least
minimum mean square estimator (MMSE) is linear and the
optimal value of the correction is given by C; = ¢, - ¥;: the
dot product of a set of correlation coefficients ¢; derived
from knowledge of S,(w) and a set of n past measured
samples ¥ = {Vx.1, .-, Vkn}- Wedefinean (n + 1) x (n + 1)
covariance matrix where the (n + 1)th term represents an ideal
zero-duration sample at 7; and in the second line we write the
covariance matrix in block form

[ o (Fe1,5%1) o 31y (%))
m = | OOade) o Ga(@) )

Lo (v(1)7x.1) o () (#))
M, ¥ ]
LFY o (()y()) ]

In this form the matrix M; describes correlations between
measurement outcomes while the vector F;, describes correla-
tions between each measurement and the LLO at the time of
correction. The MMSE optimality condition is then fulfilled
for

21

F we [
¢ = —"2—" / S, (w)do, (22)
. )
VFFM,F; 0

where wy is an overall correction gain. The covariance matrix
elements are calculated as defined above in terms of the LO
noise power spectrum.

In the practical setting of a frequency standard experiment,

we wish to improve two metrics simultaneously: the accuracy
of each correction and the long-term stability of the LLO
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output. The former is achieved by maximizing the correlation
between Cy and y(#;), while the latter is captured by the metrics
of frequency variance, sample variance, and Allan variance at
long averaging times.

Consideration of a single cycle of hybrid feedforward
correction calculated over a time sequence yx can provide
a value for the ensemble-averaged ( yLLO(t,f)z) in terms of co-
variance matrix elements, despite the fact the LLO frequency
variance under hybrid feedforward cannot be expressed in a
closed nonrecursive form for more than a single cycle. This in
turn provides a metric for the correction accuracy for hybrid
feedforward, defined as the inverse of the LLO frequency
variance at time f; normalized by that for the free-running
LO. This captures the extent to which a correction brings
yHO(t) — 0 at the instant of correction ¢ = tf,

-1

[ (r)’) ) By 2
Ay = —"" = 1~|—wk—wk— 23)
(o (r)?) N

We can gain insights into the performance of the correction
protocol by considering limiting cases. In the limit of white
noise with negligible correlations My — I, the identity matrix
possessing only diagonal elements. In this limit the rightmost
term in Eq. (23) reduces to wy|Fx|, which is small [there are
negligible correlations between measurement outcomes and
y(#)]. Here accuracy Ay — 1/(1 + w,%) and is maximized by
setting wy = 0; this is interpreted as performing no feedback at
all, as measurements (and hence corrections) are uncorrelated
with y(z;). By contrast with perfect correlations all elements
of the covariance matrix take value unity. Standard feedback
works perfectly by selecting unity gain and selecting the
number of measurements to be combined, n = 1, to correct
based on a single measurement.

In intermediate regimes induced by LLO noise with
finite correlation times [e.g., colored power spectra Sy ()]
the ensemble-averaged accuracy of the hybrid feedforward
correction is maximized (for w; > 0) by minimizing the term

FE MyF. We can interpret the effect of My as an effective

rotation matrix, reducing the magnitude of this expression
by effectively maximizing the angle between MyFy and F.
While it is unphysical to reduce this to zero based on the
limiting cases discussed above, it is possible to appropriately
select k, based on characteristics of S, (w), in order to improve
correction accuracy.

Beyond the accuracy of single corrections, in all slaved
frequency standards we rely on repeated measurements and
corrections to provide long-term stability, a measure of how
the output frequency of the LLO deviates from its mean value
over time. We study this by calculating the sample variance of
a time sequence of measurement outcomes averaged over an
ensemble of noise realizations (cryz[N 1). A moving average
style of hybrid feedforward provides improved long-term
stability, as the correction C; will depend on the set of
measurement outcomes ¥x = {Jx—n+1, - - - , ¥k}, among which
previous corrections have been interleaved, as illustrated in
Fig. 2. In this case the covariance matrix must be updated to
reflect the action of each correction. See the Appendix for a
detailed form of the sample variance in the case of this form
of stabilization.
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Hybrid Feedforward: Overlapping corrections
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FIG. 2. Schematic diagram of hybrid feedforward with an exam-
ple protocol using n = 3. Start and end times of measurements are
defined arbitrarily, permitting nonuniform-duration measurements,
although measurements are illustrated as uniform for clarity. Cor-
rections C,E"=3) are applied either in nonoverlapping blocks of three
measurements or as a moving average (depicted here). In the latter
case, the covariance matrix must be recalculated to correctly account
for any variations in measurement duration. Dashed red arrows
indicate the first corrections performed without full calculation of
the covariance matrix. This effect vanishes for k > n.

B. Numerical simulations

In order to test the general performance of hybrid feedfor-
ward in different regimes we perform numerical simulations of
noisy LOs with user-defined statistical properties, character-
ized by S, (w). We produce a fixed number of LO realizations in
the time domain [38] and then use these to calculate measures
such as the sample variance over a sequence of simulated
measurement outcomes with user-defined Ramsey measure-
ment times, dead times, and the like. In these calculations we
may assume that the LO is free running, experiencing standard
feedback, or employing hybrid feedforward and then take an
ensemble average over LO noise realizations in order to pro-
duce the expectation value of the relevant variance metric. Our
calculations include various noise power spectra, with tunable
high-frequency cutoffs, including common flicker frequency
[Sy(w) o 1/w] and random walk frequency [S,(w) o< 1 /a)2]
noise, as appropriate for experiments incorporating realistic
LOs.

We begin by exploring the value of varying the Ramsey
periods T,gk) in an n measurement sequence in order to vary
sampling of the LO frequency noise power spectrum Sy (w).

As an example, we set n =2 and permit T,(el) and T,gz) to
be varied as optimization parameters in order to maximize
correction accuracy under hybrid-feedforward correction. We
employ a multidimensional optimization in the form of
a Nelder-Mead simplex over the measurement durations,
finding that a measurement protocol consisting of a long
measurement period followed by a short period maximizes
correction accuracy (Fig. 3, inset). Intuitively this structure
ensures that the measurement routine samples both high-
and low-frequency regimes of Sy(w). The ordering of a long
Ramsey period followed by a short one ensures minimum
delay (and hence maximum correlation) between the most
recent measurement sampling the high-frequency regime and
the noise at time of correction y(#;).
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FIG. 3. Calculated correction accuracy of the first correction for
hybrid feedforward normalized to feedback (accuracy equals 1),
under different forms of S,(w) as a function of the ratio of Ramsey
periods between the two measurements employed in constructing
C,(Cz). Correction accuracy for feedback is calculated assuming the
minimum Ramsey time; thus, for the ratio of Ramsey measurements
taking value unity on the x axis, the hybrid feedforward scheme takes
twice as long as feedback. The inset is a depiction of the form of C,(Cz)
used in hybrid feedforward, depicting the slower measurement being
performed first.

With Sy (w) o 1/wand Sy(w) o 1/ w? we observe increased
correction accuracy under hybrid feedforward relative to
traditional feedback in Fig. 3. For a ratio of T,(el) /T,(f) —
100 we see improvements in accuracy up to 50% through
use of our protocol. This indicates clearly that the use of
statistical information about the noise can be used to improve
feedback corrections via incorporation of prediction of the
LO’s evolution. In the presence of rapid fluctuations in y(¢)
arising from a broadband white power spectrum, the benefits
of hybrid feedforward are mitigated, as expected. Under
such circumstances the LO noise evolution is § correlated in
time, meaning there is no temporal correlation to exploit via
hybrid feedforward. In the parameter ranges we have studied
numerically we find that correction accuracy is maximized for
n = 2-3, with diminishing performance for larger n. Again,
this is determined by the relevant correlation time of the LO
noise.

As described above, we also consider the improvement in
long-term stability achievable for a locked LO under different
feedback stabilization protocols. We calculate (oyz[N 1) up
to N = 100 measurements, calculated using feedback and
hybrid feedforward with n = 2 assuming the simple case of
uniform Ty and overlapping corrections [Figs. 4(a) and 4(b)].
We present the resulting normalized improvement in (ayz[N 1)
relative to the LLO under standard feedback in Fig. 4(c),
observing clear improvement (reduction) in (oi[N ]) through
the hybrid feedforward approach. Benefits vary with the
details of the selected noise power spectrum but vary 5-25 %
of (O'yZ[N 1) relative to standard measurement feedback. We
present data for different functional forms of S, (w), including
low-frequency-dominated flicker noise (proportional to 1/w)
and power spectra with more significant noise near T,!
(proportional to 1/w'/?). The benefits of our approach appear
most significant in the long term when high-frequency noise
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FIG. 4. (a) and (b) Calculated sample variance for an unlocked
LO, feedback, and hybrid feedforward, as a function of measurement
number N, for different power spectra (indicated on graphs). Calcu-
lations assume S, (w) o 1/w, with a high-frequency cutoff w./27r =
100/ T, and S,(w) o 1/w'"/? with a cutoff frequency w. /27 = 1/T.,
demonstrating the importance of high- f noise near w/27 = T, .
PSDs with different v dependences are normalized to have the
same value at wy,, = 1/1007,. (c) Normalized sample variance data
from (a) and (b) presented as the ratio of (o7[N])"™ /(a7 [N])*®
in order to demonstrate improvement due to hybrid feedforward
(numbers less than unity indicate smaller sample variance under
hybrid feedforward). (d) Calculated (af[N ]) for N=20 as a
function of duty factor, normalized to the sample variance for the
free-running LO. Data above the red dashed line indicate that the
standard feedback approach produces instability larger than that
for the free-running oscillator. Both data sets assume Sy (w) « 1/w,
with w./27 = 100/ T,. Crosses represent data with ten noise spurs
superimposed on Sy (w), starting at w/27 = 1.157,"! and increasing
linearly with step size 0.157,!.

reduces the efficacy of standard feedback. Notably, because
of well known relationships between LO phase noise and
LO frequency noise [28], significant high-frequency weight
in Sy (w) is commonly encountered.

As another example we explicitly explore how hybrid
feedforward can mitigate Dick-effect-related aliasing by per-
forming calculations using noise with strong contributions
near Tc‘l. In Fig. 4(c) we calculate the expectation value
of the sample variance at a fixed value of N =20 for a
LLO stabilized using either traditional feedback or hybrid
feedforward. The sample variances are normalized by that for
the free-running LO, meaning that values of this metric less
than unity demonstrate improvement due to stabilization and
smaller values indicate better stabilization. On the horizontal
axis we vary the duty factor d, defined as the ratio of the
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interrogation time to total cycle time d = Tg/ T, from 1% to
unity (no dead time).

Knowledge of correlations in the noise allows hybrid
feedforward to provide metrologically significant gains in
stability relative to traditional feedback. These differences
arise because even though the noise processes are random,
knowledge of the statistical properties of the noise provides a
means to effectively model the average dynamical evolution of
the system and accurately predict how the system will evolve
in the future. Exact performance depends sensitively on the
form and magnitude of S, (w), but results demonstrate that
systems with high-frequency noise content around w/27w ~
T~! benefit significantly from hybrid feedforward.

Results presented in Fig. 4(d) indicate an improvement
provided by hybrid feedforward that is most marked for a
low duty factor d where the Dick effect is known to be most
severe, although the overall sample variance grows for both sta-
bilization protocols in this limit. As d — 1 the performances
of traditional feedback and hybrid feedforward converge, as
standard feedback corrections become most effective when
dead time is shortest. We even find that in certain regimes
where noise near 7,' is so strong that standard feedback
makes long-term stability worse than applying no feedback
at all, hybrid feedforward can provide useful stabilization.

For these calculations we have selected noise power spectra
that, while conservative, are inspired by typical LO phase noise
specifications weighted to enhanced high-frequency content
due to the conversion between phase and frequency instability
[28]. We specifically compare Sy (w) « 1/w and Sy (w) «x 1/w
with added noise spurs near the inverse cycle time 7.
The latter condition mimics LO noise in real experimental
situations with tight-SWAP clocks such as the pulsed optically
pumped (POP) atomic clock [39]. The POP clock has a duty
cycle d ~ 0.7 and a dominant LO noise term Sy(w) « 1/
with sharp spurs near the inverse cycle time, matching the
conditions treated in Fig. 4. From these data our results
suggest a potential improvement in sample variance ~5-10 %
using this extremely simple (and unoptimized) protocol. We
note that the noise strength treated in this figure is very
strong; we have generally observed that relative gains are
determined by the form of §,(w) rather than its absolute
magnitude.

V. CONCLUSION

In summary, we have presented a set of analytical tools
describing LLO performance in the frequency domain for
arbitrary measurement times, durations, and duty cycles.
We have employed this formalism, based on generalized
transfer functions, to develop a software-only approach to LO
feedback stabilization in slaved passive frequency standards,
bringing optimal estimation techniques inside the feedback
loop. The techniques we propose incorporate a series of
past measurements and statistical knowledge of the noise to
improve the accuracy of feedback corrections and ultimately
improve the stability of the slaved LO. We have validated
these theoretical insights using numerical simulations of
noisy local oscillators and calculations of relevant stability
metrics.
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The results we have presented represent only initial steps,
which we believe may be possible focused on the integration of
optimal estimation techniques to improve clock stabilization
without the need for hardware modification. For instance, we
have numerically demonstrated improved correction accuracy
using nonuniform duration Tk over a cycle, as well as long-
term stability improvement using only the simplest case of
uniform Tx. These approaches may be combined to produce
LLOs with improved accuracy relative to the reference at
the time of correction and improved long-term stability. In
cases where the penalty associated with increasing Ty is
modest (captured in the statistical properties of the noise),
such composite schemes can provide substantial benefits as
well, improving both accuracy of correction to the LLO and
overall frequency standard stability.

Other expansions may leverage the basic analytic formalism
we have introduced; we have introduced the transfer functions
|G (w)|? and G%. ,(w), but have assumed only the simplest form
for the time-domain sensitivity function and fixed overall gain.
However, it is possible to craft a measurement protocol to
yield |G (w)|* that suppresses the dominant spectral features
of the LO noise. We have observed that through such an
approach one may reduce the impact of aliasing on clock
stabilization, indicating a path for future work on reducing
of the so-called Dick limit in precision frequency references.
Finally, recent experiments by Mavadia et al. [40] have
demonstrated that similar concepts in optimal estimation and
predictive correction may be integrated using machine learning
techniques to gain information about S,(w) on the fly and
experimentally demonstrating that similar hybrid feedforward
stabilization can yield experimental gains in long-term LLO
stability. It is exciting to explore combinations of analytic
and numerical techniques to find tradeoffs in performance vs
computational efficiency.

In the parameter regimes we have studied the relative
performance benefits of the hybrid feedforward approach
are of metrological significance, especially considering they
may be gained using only software modification without
the need for wholesale changes to the clock hardware or
measurement procedure. We believe the approach may find
special significance in tight-SWAP (size, weight, and power)
applications such as space-based clocks where significantly
augmenting LO quality is generally impossible due to system-
level limitations. Future work should focus on detailed studies
of measurement routines optimized for specific clocks such
as HORACE. Overall, we believe that this work indicates
clear potential to improve passive frequency standards by
incorporation of optimal estimation techniques in the feedback
loop itself.

Note added in proof. Recently, we became aware of related
work seeking to employ covariance techniques to improve
measurements of quantum clocks [41].
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APPENDIX: VARIANCES FOR LOCKED LOCAL OSCILLATORS WITH HYBRID FEEDFORWARD

The standard measures for oscillator performance consider either a free-running LO or provide a means only to statistically
characterize measurement outcomes under black-box conditions. Here we present explicit analytic forms for different
measurements of variance in the presence of feedback locking.

The expected value of the LLO sample variance can be found by substituting (3) into the definition of the sample variance,
producing a generic expression for traditional feedback (one measurement per correction cycle) and hybrid feedforward (multiple
measurements per cycle):

N N N N
1 1 2
E[ofiolNT] = 57 D 1 oio®) + 5 D D o (77%.557) = - Do (5. 51°) (A1)
k= p'=1q'=1 I'=1
L K'/n] LK /n] K'/n]

T oo +80 D > 0(CrC) =28 ) o (5°.Cl) ZZU

k'=1 r=1 s=1 u=1 p'=1q'=1

Lp'/n] lg'/n] N Lk'/n) L'/n]

2
< | 750+ 2, Z Co3i° + &y Z Col -y 2ol w’+a X ai®+a d C)p (A2
I'=1 u=1 v=1
1 N Lk'/n] k' /n] Lk'/n]
== o) + & Z Z o(Cr.Co) =280 Y o (5:°.Cu)
k'=1 u=1
LA Lp'/n] 1q'/n]
+—= > Y oI +2pzy Y Y. 0(Cp.Cy)
p'=1q'=1 p=1 g=1
N Lk /n) LI'/n]
— 52 e TO) +aea Y Y ol | (A3)

I'=1 k=1 I=1

where in the case of hybrid feedback, N is defined to be the total number of measurements and » is the number of measurements
per cycle. The summation signs with unprimed indices are sums over whole cycles (of which there are | N/n]) and the primed
indices are sums over all N measurements. In general, £ [UyzLLo[N ]] contains recursive terms that cannot be concisely expressed
in terms of the LO PSD S, (w) and covariance transfer function G*(w).

The Allan variance, the conventional measure of frequency standard instability, can be expressed analogously

1 [e.¢]
fol(n) =5 f S, (@) G(w)Pdw, (A4)
2 0
where the transfer function, for ideal Ramsey interrogation, is
2sin* (wTg/2
1G(w)* = M, (A5)
(@Tr/2)?

where Tk lacks an index because the definition of the Allan variance assumes equal-duration interrogation bins [26]. The Allan
variance calculated via this frequency-domain approach can be compared to its value via the time-domain approach, which
consists of finding the variance of the difference between consecutive pairs of measurement outcomes:

Aol () = 3G — 37, (A6)

where ¥y is the kth measurement outcome and (- - - ) may indicate a time average or an ensemble average, depending on whether y(¢)
is assumed to be ergodic. The LLO Allan variance can be found by substituting (4) into the definition of the Allan variance (A6):

1 _ 2
Aofiok) = EE[(ykLi? - 5°)] (A7)
1 _ 8+l _ _ 8k _ 2
= EE[(% e L= (A8)
8k 8k—1

1 G\ & \’
- 2[ Oiolk+ 1+ (1+ g?) 710) + (gk : %ok =

28k _ 8+ 1O - 2(8k + 8+1) 10 -
+EU()’/E$1J1]§O1) 2(1+ g:: U()’II:O»)’I];EI)_gk—fG(y,]:O,y,I;OI). (A9)
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