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Stochastic bifurcations in a prototypical thermoacoustic system
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We study the influence of noise in a prototypical thermoacoustic system, which represents a nonlinear self-
excited bistable oscillator. We analyze the time series of unsteady pressure obtained from a horizontal Rijke tube
and a mathematical model to identify the effect of noise. We report the occurrence of stochastic bifurcations in a
thermoacoustic system by tracking the changes in the stationary amplitude distribution. We observe a complete
suppression of a bistable zone in the presence of high intensity noise. We find that the complete suppression
of the bistable zone corresponds to the nonexistence of phenomenological (P) bifurcations. This is a study
in thermoacoustics to identify the parameter regimes pertinent to P bifurcation using the stationary amplitude
distribution obtained by solving the Fokker-Planck equation.
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I. INTRODUCTION

Many natural and engineering systems are nonlinear in
nature and display bifurcations for suitable change in any of
the system parameters. Often, these bifurcations can result in
detrimental consequences in a real system. Especially Hopf
bifurcation where the system transitions from a nonoscillatory
state to an oscillatory state is found to be undesirable in many
real systems [1,2]. The effect of noise on the dynamics of these
nonlinear systems cannot be neglected as most real systems
are noisy. Noise acts as another bifurcation parameter as it can
shift bifurcation thresholds [3], induce oscillations [4–6], and
introduce novel dynamical states [7]. The noise present in a
real system could be independent or dependent on the state of
the system. Furthermore, the noise could also be uncorrelated
or correlated in nature. It is often difficult to establish the exact
nature of noise in a real system. This difficulty brings in the
necessity of investigating the effect of noise in mathematical
models of real systems along with physical experiments.

The accurate determination of the bifurcation point is nearly
impossible in the presence of noise. This difficulty in determin-
ing the bifurcation point is because the measured observable
is no longer a deterministic quantity but a stochastic variable.
Thus a single realization that we obtain in an experiment or
from a mathematical model is incapable of providing the
complete information about the state of the system. In
the presence of noise, stochastic differential equations (SDEs)
are adopted instead of ordinary differential equations to de-
scribe the evolution of the system. Hence, we need to calculate
the probability density function of the observable rather than
its absolute value in the presence of noise. The probability
density function of a stochastic variable can be obtained by
solving the Fokker-Planck (FP) equation associated with the
SDE [8–10].

As against the deterministic bifurcation where we track the
evolution of the absolute value of the observable, we track
the change in the probability distribution of the observable
in the presence of noise. The qualitative changes observed in
the probability distribution of the observable are termed as
phenomenological bifurcations (P bifurcations). Bifurcation
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associated with the change in sign of the largest Lyapunov
exponent is termed as dynamic bifurcation (D bifurcation).
Both P and D bifurcations are classified as stochastic bifur-
cations [11]. There are studies on the effect of additive and
multiplicative noise on stochastic bifurcations that happen
in nonlinear systems. Additive noise does not change the
location of the extrema of the stationary probability density
function whereas multiplicative noise can shift the extrema of
the distribution [7].

The phenomenon of stochastic bifurcation is very well stud-
ied using models. The stochastic Hopf bifurcation is studied
in the context of various nonlinear oscillators [1,7,12] and in
biological systems including neuron models, synthetic gene
oscillators [1,13], and cellular networks [14]. The framework
of stochastic bifurcation is also used to study the effect of noise
in self-sustained bistable oscillators [1]. Furthermore, there
are several experimental studies on stochastic bifurcation in
nonlinear systems [15,16].

The literature on stochastic bifurcation in engineering
systems is minimal. Many engineering systems are nonlinear,
and most engineering systems work in the presence of
noise. Due to the nonlinear nature, they can undergo sudden
transitions from a nonoscillatory state to an oscillatory state
for an infinitesimal change in any of the system parameters.
The oscillatory state following a Hopf bifurcation can cause
a total collapse or decrease in performance of an engineer-
ing system [17]. One such engineering system where the
margins of safe operation are limited by Hopf bifurcation
is a thermoacoustic system [18]. A thermoacoustic system
is a self-excited system where a heat source is located in a
confinement or duct [19,20]. Many power generating systems,
such as gas turbine engines, industrial burners, and aircraft
engines, belong to the category of thermoacoustic systems.
A positive feedback established between the unsteady heat
release rate and the inherent fluctuations of the acoustic field
present in the duct could result in a Hopf bifurcation. From
the literature, it can be seen that thermoacoustic systems
often undergo subcritical Hopf bifurcation. A thermoacoustic
system which undergoes subcritical Hopf bifurcation is often
modeled as a self-sustained bistable oscillator [21–23].

As most of the thermoacoustic systems work in the presence
of noise, the effect of noise on the dynamical states of a
thermoacoustic system becomes an important topic of study.
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The presence of noise can transition the thermoacoustic system
from a nonoscillatory state to an oscillatory state when the
system is in the bistable regime. There are several experimen-
tal [24,25] and numerical studies [26,27] on the influence of
noise in thermoacoustic systems. Recently, Gopalakrishnan
and Sujith [23] performed a study on a horizontal Rijke tube
in order to understand the effect of noise on the hysteresis
characteristics. They performed experiments and adopted a
mathematical model to achieve this objective. They found
that the width of the bistable zone decreases with an increase
in the intensity of noise. Moreover, they also reported that
there is a suppression of the bistable zone in the presence of
high intensity noise. Therefore, it is evident from the results
reported by Gopalakrishnan and Sujith [23] that the bifurcation
point cannot be ascertained. This difficulty in identifying
the Hopf and fold points in the presence of high intensity
noise brings in the need to calculate the stationary probability
density function of the measured observable. As mentioned
earlier, the stationary probability density function can be
calculated by solving the FP equation of the system. Noiray
and Schuermans [28,29], in their pioneering work, introduced
Fokker-Planck formalism in the thermoacoustic literature.
They derived the FP equation for a thermoacoustic system
undergoing supercritical Hopf bifurcation. Their primary focus
was to derive growth and decay rates of thermoacoustic
oscillations for the unsteady pressure data obtained from a
gas turbine engine and compare it with the numerical model.

To summarize, the influence of noise characteristics on
noise induced transitions has been studied in thermoacoustic
systems. The FP equation has been derived for a ther-
moacoustic system depicting supercritical Hopf bifurcation.
The amplitude distribution obtained as a solution to the FP
equation has been used to calculate the growth and decay
rate of oscillations. The suppression of bistable zone in the
presence of high intensity noise is also observed both in
experimental and in numerical frameworks. However, the
issue of identifying the critical points of transition remains
to be explored. The amplitude distribution must be adopted
instead of the absolute value of the amplitude to determine the
transition. In this paper, we adopt the concept of stochastic
bifurcation to study the effect of noise in a thermoacoustic
system. We study the influence of noise in experiments on a
Rijke tube and in a mathematical model. The model proposed
by Balasubramanian and Sujith [21], which depicts subcritical
Hopf bifurcation, is used in this paper. We derive the stationary
amplitude distribution from the FP equation corresponding to
the governing equations described by the model. We identify
the parameter regimes corresponding to P bifurcation in the
system.

II. EXPERIMENTAL SETUP AND MATHEMATICAL
MODEL

A horizontal Rijke tube with an electrically heated wire
mesh is used to perform the experiments. The schematic of the
setup is shown in Fig. 1. The tube is of a square cross section
and 1 m long. The cross-sectional area of the duct is 93 ×
93 mm2. A blower (1 HP, Continental Airflow Systems, Type-
CLP-2-1-650), operated in the suction mode, is used to provide
the mean flow. The flow rate is measured using a compact

FIG. 1. The schematic of the experimental setup. This figure
is reproduced with permission from Ref. [23]. Copyright 2015
Cambridge University Press.

orifice mass flow meter (Rosemount 3051 SFC). A rectangular
chamber of dimensions 120 × 45 × 45 cm3, referred to as a
decoupler, is located at the outlet end of the Rijke tube to
reduce the acoustic interactions between the blower and the
duct. The decoupler maintains the pressure fluctuations to be
zero at that end. A dc power supply unit (TDK-Lambda, GEN
8-400, 0-8 V, 0-400 A) provides the necessary electrical power
to the wire mesh. A mesh type electric heater is used because
it can supply a high amount of electric power for a fairly long
duration without any significant structural deformation [30].

The measurement system consists of a pressure transducer
(or a microphone) PCB103B02 connected to a PCI 6221 data
acquisition card to record the acoustic pressure and a K-type
thermocouple to measure the steady state temperature. The
sensitivity of the pressure transducer is 217.5 mV kPa−1, the
resolution is 0.2 Pa, and the uncertainty is ±1% of the reading.
The pressure data were acquired at a sampling frequency
of 10 kHz for 3 s. Loudspeakers (Ahuja AU 60) are used
to apply external noise. Gaussian white noise is generated
using LABVIEW SIGNAL EXPRESS and is input to a loudspeaker
through an amplifier. More details on the experimental setup
can be found in Gopalakrishnan and Sujith [23].

We use a simple nonlinear model that depicts the bistable
behavior observed in experiments on a horizontal Rijke tube.
A modified form of the model developed by Balasubramanian
and Sujith [21] is used in this paper. To develop this
model, the nondimensional momentum and energy equations
are linearized neglecting the effect of mean flow [31] and
temperature gradient. The linearized equations of momentum
and energy for the acoustic field are as follows:

γM
∂u′

∂t
+ ∂p′

∂x
= 0, (1)

∂p′

∂t
+ γM

∂u′

∂x
= Q̇′, (2)

where γ is the ratio of specific heat capacities, M is the mean
flow Mach number, and Q̇′ is the fluctuating heat release rate.
This set of partial differential equations [Eqs. (1) and (2)]
can be converted to ordinary differential equations through
Galerkin expansion [32]. In this expansion, the pressure (p′)
and velocity (u′) fluctuations are expressed as a combination
of the basis functions in the domain. Any linearly independent
set of functions that satisfy the boundary conditions can be
chosen as the basis functions. The pressure (p′) and velocity
(u′) fluctuations can be expressed in terms of the acoustic
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modes as follows:

u′ =
∞∑

j=1

ηj (t) cos jπx, p′ = −
∞∑

j=1

γM

jπ
η̇j (t) sin jπx.

(3)

The heat release rate fluctuation is modeled as a function of
the velocity fluctuations,

Q̇′ = Q̇′[u′
f (t − τ )]. (4)

Here, τ represents the time delayed feedback. For small time
delay, u′

f (t − τ ) can be approximated as

u′
f (t − τ ) ≈

∞∑
j=1

[ηj (t) − τ η̇j (t)] cos jπxf . (5)

For simplicity, we consider a single mode for the analysis.
The ordinary differential equations obtained after adopting the
Galerkin technique [32] are given below,

dη

dt
= η̇ (6)

dη̇

dt
+ 2εωη̇ + ω2η = Q̇′ + ξ (t), (7)

where 2εω is the damping coefficient and ω = π . The unsteady
heat release rate function is given by

Q̇′ = −c1(η − τ η̇) − c2(η − τ η̇)3 + c3(η − τ η̇)5, (8)

where c1, c2, and c3 are constants. It is to be noted that the
model captures the experimental results only qualitatively.
This is because the heat release rate expression used in
the model does not capture the exact physical conditions
in experiments. The expression for heat release rate adopted
in the model does not represent the actual heat transfer
rate from a mesh which is the heating element used in the
experiments. Furthermore, we neglected the effect of mean
flow in the model. These changes bring in the quantitative
differences between the model and the experiments. Therefore,
the values of the parameters that must be maintained in the
model are quite different from that in experiments in order
to observe similar dynamical features. We have adopted the
specific expression for heat release rate [Eq. (8)] to capture
the essential features of a thermoacoustic system. The heat
release rate responds to the velocity fluctuations at the heater
location after a time delay. Furthermore, the heat release rate
provides a nonlinear feedback on the evolution of pressure
and velocity fluctuations [21]. In experiments, a subcritical
bifurcation to oscillatory behavior is observed as the heater
power is varied. A simple way to capture this behavior in the
model is to include third and fifth order nonlinear terms in the
expression for the heat release rate instead of adopting a more
general nonlinear function. The constants are chosen such that
the bistable behavior observed in experiments can be captured.
The model for heat release rate given in Eq. (8) is similar to the
functions adopted in earlier studies by Campa and Juniper [33]
and Subramanian et al. [2]. In Eq. (7), we include a Gaussian
white noise term ξ with 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t + τ )〉 = Iδ(τ )
to capture the influence of noise present in the system, where
I is the noise intensity.

III. RESULTS

The time series of unsteady pressure is acquired from
experiments in the presence and absence of external noise for
a range of the bifurcation parameter. The heater power is used
as the bifurcation parameter in experiments. The median of the
peak acoustic pressure P is nondimensionalized with the limit
cycle amplitude at the Hopf point attained in the absence of
external noise (PH ) to obtain p = P/PH . The heater power K

in experiments is nondimensionalized with the value of heater
power at the Hopf point attained in the absence of external
noise (KH ). Thus, k = 1 − K/KH . The bifurcation diagram
between the nondimensional variables p and k is presented
in Fig. 2. It is to be noted that the system is not forced with
external noise in the case of Fig. 2(a). However, there will be
inherent fluctuations in the system which must be accounted
for. The amplitude of these fluctuations or the noise level in
the system is estimated by measuring the rms amplitude of
the acoustic pressure when the system is in the nonoscillatory
state. Then the noise amplitude is nondimensionalized by the
amplitude of limit cycle attained at the Hopf point in the
absence of external noise. The nondimensional noise intensity
α is estimated to be 0.02 in the absence of external forcing.

A clear hysteresis region or bistable zone can be observed
in Fig. 2(a). We observe that the width of the bistable zone
decreases with increase in the intensity of external noise [23].
Furthermore, in the presence of external noise of intensity α =
0.5, the bistable zone gets suppressed as evident from Fig. 2(b).
The bifurcation points are not discernible in the case of high
intensity noise as opposed to the case where external noise is
absent. In the presence of fluctuations, multiple realizations are
required to describe the transition as any measured observable
from the system is a stochastic variable. In this case, the peaks
in the time series of acoustic pressure will follow a definite
distribution rather than a single value. The transition could
be meaningfully described in terms of the nature of the
amplitude distribution in such cases. Bifurcations in the system
could be observed as changes in the distribution of the
amplitude.

We intend to obtain the steady state amplitude distribution
in three parameter regimes, k < kf , kf < k < kH , and
k > kH , where kf and kH correspond to the fold and Hopf

FIG. 2. Bifurcation diagram corresponding to the time series of
unsteady pressure obtained from experiments with nondimensional
noise intensity (a) α = 0.02 and (b) α = 0.5. A significant bistable
zone can be observed in (a) where the critical points of transition
(Hopf and fold points) are clearly seen. In the presence of high
intensity noise, the hysteresis zone is completely suppressed as seen
in (b). �: Increasing k; ∇: decreasing k.
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points of the thermoacoustic system in the absence of external
noise. We performed a Hilbert transform of the time series
of unsteady pressure to obtain the variation of amplitude and
phase with time [34]. A histogram of the amplitudes provides
the amplitude distribution for the cases of k < kf and k > kH .
In the regime kf < k < kH , the system remains in only one of
the two asymptotic states, i.e., either in the nonoscillatory state
or in the oscillatory state. However, we require the amplitude
distribution, obtained for a parameter chosen in the bistable
regime, to capture both stable states. Therefore, we adopt the
following procedure to acquire the time series (of 120 s long)
of unsteady pressure and develop the amplitude distribution.
Initially the parameters are chosen such that the system is in
the nonoscillatory state of the bistable regime. The system is
given an excitation of amplitude greater than the unstable limit
cycle amplitude at the middle of the run for 10 s. The frequency
of the excitation is same as that of the stable limit cycle. This
perturbation transitions the system to the oscillatory state
allowable for the same parameter. During this process, we
acquire the time series of fluctuating pressure to capture the
nonoscillatory and oscillatory states attained by the system.

The amplitude distributions obtained for the parameter
regimes k < kf , kf < k < kH , and k > kH in the absence
[Figs. 3(a)–3(c)] and presence [Figs. 3(d)–3(f)] of external
noise are shown in Fig. 3. The length of the time series was
maintained constant to obtain the amplitude distribution for
all the subfigures in Fig. 3 except for Fig. 3(b). A longer
time series was required for Fig. 3(b) in order to obtain a
smooth distribution. In the absence of external noise, the
amplitude distribution changes from unimodal to bimodal
and again to unimodal as the parameter is changed. In
the presence of high intensity external noise, the amplitude
distribution remains unimodal for all the parameter regimes.
Thus, no change in the amplitude distribution is observed in
the presence of high intensity noise. To study this behavior
of the probability distribution of amplitudes, we derive the
Fokker-Planck equation corresponding to Eqs. (6) and (7).
The probability distribution is a solution to the Fokker-Planck
equation.

Stationary probability distribution from
the Fokker-Planck equation

We write the state variables η and η̇ [used in Eqs. (6) and (7)]
in terms of slowly varying amplitude and phase [35],

η(t) = a(t) cos θ (t), (9)

η̇(t) = −ωa(t) sin θ (t), (10)

where θ (t) = ωt + φ(t). We define a parameter β = 2εω −
c1τ . The term ε will be absorbed into the parameter β which
is subsequently used as the bifurcation parameter. Then, we
transform Eqs. (6) and (7) in terms of the new variables a(t)
and φ(t),

da

dt
= f1(a,θ ) sin θ + g1(a,θ )ξ (t), (11)

dφ

dt
= f2(a,θ ) cos θ + g2(a,θ )ξ (t), (12)

FIG. 3. The left panel shows the distribution of amplitude of
acoustic pressure N (a) in the presence of nondimensional noise
intensity α = 0.02 for (a) k < kf , (b) kf < k < kH , and (c) k > kH .
The right panel shows the distribution of amplitude of acoustic
pressure N (a) in the presence of nondimensional noise intensity α =
0.5 for (d) k < kf , (e) kf < k < kH , and (f) k > kH . P bifurcation
is observed as the distribution changes from unimodal to bimodal
and then back to unimodal as the parameter is changed in the
presence of low intensity noise (left panel). However, the distribution
remains unimodal irrespective of the change in control parameter
in the presence of high intensity noise as seen in right panel. kf

and kH correspond to parameter values at the fold and Hopf points,
respectively, of the system in the presence of low intensity noise.

where

f1 = −aβ sin θ + c1a cos θ

ω
+ c2a

3(cos θ + ωτ sin θ )3

ω

− c3a
5(cos θ + ωτ sin θ )5

ω
, (13)

f2 = f1

a
, g1 = − sin θ

a
, g2 = −cos θ

aω
. (14)

To derive the stochastic equations for a and φ, we perform
averaging of Eqs. (11) and (12) over one cycle of oscillation.
More details on averaging can be found in Roberts and
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Spanos [36],

da = F1dt + I

4aω2
dt +

√
I

2ω2
dW1(t), (15)

dφ = F2dt + 1

a

√
I

2ω2
dW2(t), (16)

where W1(t),W2(t) are independent Wiener processes and

F1 = 1

2π

∫ 2π

0
f1 sin θ dθ, (17)

F2 = 1

2π

∫ 2π

0
f2 cos θ dθ. (18)

Clearly, the equation for amplitude is independent of the phase.
Therefore, it is not necessary to write the joint probability
density for amplitude and phase. The transition probability
density function p(a,t) for the amplitude can be obtained as a
solution of the following Fokker-Planck equation:

∂p(a,t)

∂t
= ∂

∂a

[(
βa

2
− 3c2na3

8ω
+ 5c3ma5

16ω
− I

4aω2

)
p(a,t)

]

+ ∂2

∂a2

[
I

4ω2
p(a,t)

]
, (19)

where n = ωτ + (ωτ )3 and m = ωτ + 2(ωτ )3 + (ωτ )5. The
stationary probability density p(a) can be obtained from
Eq. (19) as given below,

p(a) = Ca exp

[
− a2ω2β

I
+ 3c2nωa4

8I
− 5c3mωa6

24I

]
, (20)

where C is the normalization constant. The extrema of the
stationary probability density function p(a) can be obtained
from the roots of the equation given below,

8βa2 − 6c2na4

ω
+ 5c3ma6

ω
− 4I

ω2
= 0. (21)

The extrema can be obtained for different values of β and
I , where I is the intensity of additive noise. The number of
real roots of Eq. (21) indicates the nature of the probability
distribution. The distribution is unimodal if the number of real
roots is 1 whereas the distribution is bimodal if the number of
real roots is 3 [1].

Here, we define a normalized parameter μ = 1 − β/βh,
where βh is the value of the parameter β at the Hopf point.

The bifurcation diagram on the (μ,I ) plane is shown in
Fig. 4. Regions I and III correspond to unimodal probability
distribution of amplitude whereas region II corresponds to
bimodal amplitude distribution. For low intensities, P bifur-
cations can be observed when the parameter μ is varied.
As the noise intensity is increased, the bimodality region

FIG. 4. The regimes of unimodal and bimodal stationary proba-
bility distribution on the (μ,I ) plane, where μ is the control parameter
and I is the intensity of the noise. Regions I and III correspond to
the parameter regimes where the amplitude distribution is unimodal
whereas region II corresponds to the parameter regime of bimodal
amplitude distribution. The boundaries of the regions represent the
locus of points where P bifurcation occurs. P bifurcations are not
observed above a noise intensity.

reduces which corresponds to the reduction in width of the
hysteresis zone observed in the experiments. Beyond a noise
level (noise intensity I = 0.06 in the model), P bifurcations are
not observed. In this case, the probability distribution remains
unimodal for changes in the parameter μ. The same behavior
is observed in experiments for high external noise levels as
evident from Fig. 3.

IV. DISCUSSIONS

We studied the influence of noise in a thermoacoustic
system using the time series of unsteady pressure obtained
from experiments and a mathematical model. We observed
stochastic P bifurcations in the system in the presence of noise.
In experiments and in the model, a reduction in the width of
the bistable zone is observed with increase in the intensity of
external noise. The hysteresis region gets suppressed in the
presence of high intensity noise. We used stationary amplitude
distribution along with the median of peaks to describe the
bifurcation as the observables are obtained from a noisy
system. We identified stochastic P bifurcations in the system
as changes in the stationary probability distribution in the
presence of low intensity noise. However, P bifurcations are
not observed in the presence of high intensity noise. Therefore,
the noise intensity at which hysteresis region is suppressed
corresponds to the regime where P bifurcations do not exist.
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