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A recent experiment by Kwak et al. [Sci. Rep. 5, 9010 (2015)] demonstrated the relevance of resonance-assisted
tunneling for optical microcavities where resonance chains emerge in phase space due to boundary deformations.
In this paper we adapt the perturbative description of resonance-assisted tunneling to calculate optical modes and
the imaginary part of their complex wavenumber which determines the lifetime of the mode. We demonstrate
our method at three example cavity shapes and compare our results to numerical data and perturbation theory for
weakly deformed microdisk cavities.
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I. INTRODUCTION

Depending on their boundary shape, optical microdisk
cavities show various kinds of ray dynamics ranging from
integrable in a circular cavity to fully chaotic, e.g., in a cardioid.
However, generic deformations exhibit mixed dynamics where
regions of regular and chaotic dynamics coexists in phase
space [1,2]. This mixed phase space is typically interspersed
by resonance chains which emerge due to the Poincare-
Birkhoff theorem from perturbed periodic orbits [3,4]. These
resonance chains consists of an alternating sequence of stable
and unstable periodic orbits surrounded by a separatrix with
a chaotic layer, see Fig. 1(d) for an example. Classically
disjoint regions in phase space are in general coupled quantum
mechanically by dynamical tunneling [5,6].

Therefore, optical microcavities are paradigmatic systems
to study dynamical tunneling [7,8]. Here, the quasi-two-
dimensional dynamics of either the electric or magnetic field is
described by a Schrödinger-type mode equation [9]. Therefore,
dynamical tunneling leads to a finite Q factor (or lifetime)
of optical modes, even in systems where rays are trapped
for arbitrarily long times due to total internal reflection.
On the other hand, the coupling of classically separated
regions via dynamical tunneling allows, e.g., the pumping of
high-Q modes [10,11] or the creation of tunneling-induced
transparency [12].

However, classical phase-space perturbations, e.g., gener-
ated by boundary deformations of the cavity, have a strong
impact on dynamical tunneling and typically further reduce
the lifetime of optical modes in comparison to a circular cavity.
This Q spoiling has been traced back for strong perturbations
to chaos-assisted tunneling [13–16], where regions of chaotic
ray dynamics in phase space enhance dynamical tunneling.

But also for relatively weak perturbations Q spoiling is
observed [17]. In this regime of weak perturbations, nonlinear
resonance chains in the phase space can enhance dynamical
tunneling, which is then called resonance-assisted tunneling
(RAT). RAT is well investigated theoretically for kicked
Hamiltonian systems (two-dimensional maps) [18–23] and
experimentally verified in microwave resonators [24]. Its
application to optical microcavities is less investigated. But
here a recent experiment by Kwak et al. [25] pointed out
a particular relevance: They observe an avoided resonance
crossing in the real part of complex wave number kR and
verified that the coupling strength between optical modes

is connected to the area surrounded by the separatrix of a
resonance chain in phase space.

In this paper, we demonstrate that RAT has also an impact
on the lifetime of modes in a deformed microcavity which is
determined by the imaginary part of the complex wave number
kR. For this purpose, we model one dominant resonance chain
in phase space by a generalized pendulum approximation from
which we perturbatively deduce the coupling between modes
of the circular cavity. Thereby, we predict the imaginary part
of the complex wave numbers and the mode pattern of the
microcavity.

The paper is organized as follows. In Sec. II we introduce
the systems which we investigate throughout the article
and describe ray and wave dynamics in a deformed optical
microcavity. In Sec. III we explain the derivation of complex
wave numbers and optical mode pattern from the generalized
pendulum approximation of the resonance chain in phase space
and we present a comparison of our results to an existing
perturbation theory for weakly deformed microcavities [26].
A conclusion and outlook is given in Sec. IV.

II. DEFORMED OPTICAL MICROCAVITIES

In this section we first discuss the ray dynamics of deformed
optical microcavities in phase space (Sec. II A). Second, we
describe the wave dynamics by the mode equation (Sec. II B).
More details on ray and wave dynamics can be found in
Ref. [27]. Furthermore, we introduce the systems on which
we focus in this paper.

A. Ray dynamics

Rays inside microcavities with homogeneous refractive
index n propagate on straight lines until boundary reflections.
Therefore it is convenient to describe the ray dynamics in a
Poincaré section where positions q along the boundary and
tangential momenta p = sin χ of the reflections are tracked,
see Fig. 1(a). Since we consider only cavities with mirror
reflection symmetry, we restrict the phase space to positive
momenta without loss of generality.

The ray dynamics in phase space shows nicely the charac-
teristics of the boundary shape of the cavity. A perfect circular
microdisk leads to integrable dynamics with action-angle
variables (q,p) where p stays constant and q increases linearly
under time evolution, see Fig. 1(b). For weak perturbations of
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FIG. 1. A circular cavity with a periodic ray orbit is shown in
(a); χ is the angle of incidence. Orbits (black curves with dots) are
shown in the phase space (q,p = sin χ ) of (b) a circular cavity, (c)
system A, (d) system B, and (e) system C; qmax is the circumference
of the deformed disk. Gray shaded regions indicate the leaky region.

the circular boundary the ray trajectories in phase space are
deformed and resonance chains of order r:s emerge around
periodic orbits with momenta

pr:s = cos

(
π

s

r

)
(1)

and frequencies

ωr:s = 2π
s

r
(2)

due to the Poincare-Birkhoff theorem, see Fig. 1(c) for an
example with r:s = 4:1. Here, s is the number of circumcircles
after r reflections. In this paper we want to focus on the so-
called microflower cavity [28–30] of the form

r(φ) = R[1 + ε cos(Nφ)], (3)

where a resonance chain can be easily create by adjusting
(ε,N ). By increasing the perturbation strength ε further the
chaotic layer of the separatrix is enlarged, see Fig. 1(d). Large
resonance chains of higher order can be created by increasing
N , see Fig. 1(e). In addition to the billiard dynamics, a leaky
region is defined in phase space by the refractive index n.

TABLE I. The tabular shows the boundary parameters [see
Eq. (3)] of the three systems which we consider in this paper.
Furthermore, the refractive index and the order of the dominant
resonance chain above the critical line is shown.

System ε N n r:s

A 0.0025 4 2.0 4:1
B 0.013 4 2.0 4:1
C 0.002 9 1.6 9:2

Rays with |p| < 1/n are not totally but partially reflected
[31]. Therefore, resonance chains below the critical line are
negligible for our purpose.

In the following, we want to have a dominant resonance
chain above the critical line which we are able to model with
a generalized pendulum approximation. Therefore, we set the
parameters of the three systems on which we focus in the
paper to the values listed in Table I. Note that also in systems
A [Fig. 1(c)] and C[Fig. 1(e)] a thin chaotic layer around the
separatrix exists, but it is too small to be visible in the plots.

B. Wave dynamics

Wave dynamics of optical microcavities is determined by
Maxwell’s equations which reduce for quasi-two-dimensional
objects to the scalar mode equation

[� + k2n2(�r)]�(�r) = 0 (4)

for � representing the z direction of either the electric field
(transverse magnetic [TM] polarization) or the magnetic field
(transverse electric [TE] polarization) [9]. At the cavity’s
boundary � and its normal derivative ∂ν� needs to be
continuous with

∂ν�in = ∂ν�out for TM polarization, (5)

1

n2
in

∂ν�in = 1

n2
out

∂ν�out for TE polarization. (6)

Furthermore, the outgoing wave condition

�(ρ,φ) = h(k,φ)
exp (ikρ)√

ρ
(7)

for large ρ needs to be fulfilled. Consequently, Eq. (4) is
solvable only for a discrete set of complex wave numbers
x = kR. The real part of x determines the vacuum wavelength
λ = 2πR/Re x and the imaginary part of x describes the
intensity loss of an optical mode in the microcavity in time
as

‖�(t)‖2 =
∫

cavity
|�|2 d2r = e−t (8)

with loss rate  = −2c Im x/R. Therefore, the lifetime
τ = 1/ of an optical mode is quantified by the quality
factor Q = −Re x/(2Im x). In the following we consider TM
polarization. However, our methods are generalizable to TE
polarization by using the appropriate values of x. In case of a
circular microdisk, the complex wave numbers are computed
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analytically as the roots of

Sm(x) = n
J ′

m

Jm

(nx) − H ′
m

Hm

(x) (9)

with J and H being Bessel and Hankel functions both of the
first kind. The resulting complex wave numbers xm,l and its
corresponding optical modes �m,l given by

�m,l(ρ,φ; x) =
{ Jm(nkρ)

Jm(nx) cos(mφ) for ρ � R

Hm(kρ)
Hm(x) cos(mφ) for ρ > R

(10)

are labeled with two mode numbers representing the number
of nodes in the azimuthal and radial directions, respectively.

Optical modes with small l are called whispering-gallery
modes, indicating their characteristic to slide along the cavity’s
boundary. These modes typically have the highest lifetime for
a certain range of Re x. In this paper we therefore focus on
predicting complex wave numbers of these whispering-gallery
modes. For an exact treatment of arbitrary deformed optical
cavities, Eq. (4) needs to be solved numerically with, e.g.,
the boundary element method (BEM) [32]. In case of weakly
deformed optical cavities with mirror reflection symmetry,
a perturbative treatment of the deformation allows us to
compute optical modes and complex wave numbers up to a
minimal wavelength [26,33–36]. We compare our predictions
of complex wave numbers based on RAT to the perturbation
theory for optical cavities in Sec. III C. For a comparison of ray
and wave dynamics we use a boundary Husimi representation
[37] of an optical mode. For circular cavities the modes are
concentrated around the momenta [31]

pm,l = m

nRe xm,l

(11)

with an exponential decay towards classically forbidden
regions, see Fig. 2(a). Optical modes in weakly deformed
cavities roughly mimic classical phase space structures as
shown, e.g., for system A in Figs. 2(b) and 2(d). Here, the
long-lived modes avoid either the stable [Fig. 2(d)] or unstable
[Fig. 2(b)] fixed point. Particular modes show a hybridization
between two classically separated tori below and above a
resonance chain, as shown in Fig. 2(c). Additional deviations
between ray dynamics in a billiard system and waves in an
optical cavity arise from the dielectric boundary conditions.
The Goos-Hänchen shift �q ∼ λ is the offset between the
incoming and outgoing rays along q at the dielectric interface
[38,39]. In Ref. [40] it was shown that the Goos-Hänchen shift
lifts a periodic orbit in momentum due to the curved cavity
shape. This periodic orbit shift (POS) together with Fresnel
filtering [41,42] lead to wave mechanical corrections to the
ray dynamics in p.

III. RESONANCE-ASSISTED TUNNELING FOR
OPTICAL MICROCAVITIES

In this section we use a perturbative description of RAT to
predict optical mode patterns and their loss rates. First, we use
a generalized pendulum approximation to model one dominant
resonance chain in phase space (Sec. III A). Afterwards, we
deduce the mode coupling and the loss rates of optical modes
from a perturbative treatment of the pendulum approximation
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FIG. 2. Boundary Husimi function of optical modes in (a) a
circular cavity and [(b)–(d)] system A are shown from low intensity
(white) to high intensity (dark blue). The mode numbers are [(a)
and (b)] (m,l) = (21,1), (c) (m,l) = (22,1), and (d) (m,l) = (23,1).
Underlying classical phase-space structures are shown as gray curves.

(Sec. III B) and compare our results to the perturbation theory
for deformed microdisk cavities (Sec. III C).

A. Generalized pendulum approximation

For the prediction of complex wave numbers we need
to model one dominant resonance chain in phase space.
Therefore, we use the so-called generalized pendulum approx-
imation [6,18,43]

Hr:s(q,p) = H0(p) + 2Vr:s cos

(
2πr

q

qmax
+ φ0

)
, (12)

which creates r resonance eyes in phase space between q = 0
and qmax. The resonance chain is generated in phase space
around the maximum of the dispersion H0(p) which describes
the integrable dynamics of the circular microdisk in the
corotating frame with frequency ωr:s . This leads to a stationary
resonance chain in Hr:s(q,p), meaning that an orbit inside the
separatrix encircles one stable fixed point.

In Ref. [25] the quadratic approximation of H0(p) was
obtained via fitting the effective mass of the pendulum. In
this paper we obtain a general dispersion H0(p) for a circular
cavity by exploiting the fact that Eqs. (1) and (2) hold for
all rationals s/r and that the frequency function ω(p) is
continuous. Therefore, we get

ω(p) = 2 arccos (p). (13)

We define the HamiltonianH0(p) via integrating the corotating
frequency function ω(p) − ωr:s = ∂H0/∂p as

H0(p) =
∫ p

pr:s

[ω(p′) − ωr:s] dp′, (14)
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FIG. 3. Panel (a) shows the dispersion H0(p) (light orange curve)
given by Eq. (15) and its quadratic approximation (dark black curve),
see Eq. (16). The panels (b)–(d) show the phase space (dark black
curves with dots) of systems A–C, respectively. Orange curves are
contours of the pendulum approximation Hr:s .

which results in

H0(p) = 2

(
p arccos(p) −

√
1 − p2 +

√
1 − p2

r:s

)
− ωr:sp.

(15)

The leading order of H0(p) expanded around p = pr:s is the
quadratic term

H0(p) = − (p − pr:s)2√
1 − p2

r:s

+ O[(p − pr:s)
3], (16)

which nicely describesH0(p) around pr:s as shown in Fig. 3(a).
Note that the minus sign of H0 is not exceptional and appears,
e.g., in approximations of resonance chains in the standard
map, too (see, e.g., Ref. [43]). For system C, the quadratic
approximation of H0 is used, which gives slightly better
results than the full H0(p) in this case. An estimate of the
perturbation strength Vr:s can be deduced from the linearized
billiard dynamics of the stable periodic orbit of the resonance
chain [21]; with the expansion of H0(p) given by Eq. (16) this
results in

Vr:s =
(

qmax

2πR

)2 √
1 − p2

r:s

4r2

(
arccos

[
Tr Jr:s

2

])2

. (17)

Here, Tr Jr:s is the trace over the monodromy matrix of the
stable periodic orbit. This estimate gives proper results for
weak perturbations as in system A and C. However, for
stronger perturbations as in system B the linearized dynamics
is insufficient to reproduce an accurate Vr:s . In this case better
results forVr:s were achieved by numerically matching the area
enclosed by the separatrix. For the three systems investigated
in this paper the generalized pendulum approximations are
compared to the ray dynamics in Figs. 3(b)–3(d). Note that the

regions where the ray dynamics is not well described by the
pendulum approximation, e.g., near the bouncing ball orbit at
p = 0, are inside the leaky region and therefore not important
for our purpose.

B. Mode approximation

In this section we employ the above pendulum approx-
imation of a resonance chain to predict the complex wave
number x̃ = k̃R of an optical mode �̃ in the deformed cavity
from complex wave numbers x = kR of optical modes �

in a circular cavity. Since we have to fulfill the selection
rules of RAT [18,19,25], only modes with mode numbers
associated to the order r:s of the resonance chain contribute to
the prediction. In case of optical microcavities, this means that
a mode (m,l = 1) can only couple to modes (m − jr,l + js)
with integer j � 0 [25]. Therefore, the linear combination we
use to approximate the mode of the deformed cavity is

�̃m,l(ρ,φ; x̃) = N−1
∑
j�0

aj�m−jr,l+js(ρ,φ; x̃), (18)

with coefficients aj which need to be determined and normal-
ization constant N 2 = ∑

j�0 |aj |2. From Eq. (8) we conclude
that the imaginary part Im x̃m,l of complex wave numbers is in
leading order proportional to ‖�̃m,l‖2. Therefore, our central
assumption is

Im x̃m,l = N−2
∑
j�0

|aj |2Im xm−jr,l+js . (19)

The coefficients aj are deduced from the generalized pendulum
approximation Hr:s via secular perturbation theory, which
results in a fixed a0 = 1 and

aj =
∏
u�j

Vr:se
iφ0

H0
(
pmod

m,l

) − H0
(
pmod

m−ur,l+us

) (20)

for j > 0 [18,19]. For the three systems, φ0 = π is the global
phase from the Hamiltonian Hr:s ; see Eq. (12).

In contrast to the case of maps and billiard systems, optical
modes satisfy dielectric boundary conditions on the cavity’s
interface while the generalized pendulum approximation Hr:s

fits to the billiard dynamics of a closed system. In Ref. [25] the
POS was respected by using augmented ray dynamics at fixed
Re x. Here, we use a modified momenta pmod

m,l of an optical
mode instead of pm,l given by Eq. (11). The advantage is that
we can use the same generalized pendulum approximation for
all modes, e.g., all values of Re x. The modified momenta are
calculated from the Goos-Hänchen shift, which results in a
periodic orbit shift given by [40]

�pPOS = �q(pr:s)

2rc

√
1 − p2

r:s (21)

with radius of curvature rc. With an approximation for the
Goos-Hänchen shift obtained by Artmann [39]

�q(p) = 2p√
n2p2 − 1

√
1 − p2Re k

(22)

at p = pr:s and an average radius of curvature rc ≈ R of stable
and unstable periodic orbits along the r:s resonance chain, this
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FIG. 4. Complex wave numbers for systems (a) A, (b) B, and
(c) C are shown in a semilogarithmic plot. Thick orange dots are
numerically determined (BEM) and blue stars show the predicted
values by Eq. (19). Gray diamonds represent the predictions based
on the second-order perturbation theory from Ref. [26]. Small black
dots correspond to complex wave numbers of a circular cavity.

leads to an effective shift,

�mPOS = pr:s√
p2

r:s − n−2
, (23)

in the mode number m. Note that this shift in the mode number
is around �m ∼ 1.5 (e.g., �m = 1.414214 for system A).
Therefore, it cannot be seen as a small correction and has
a considerable effect in Eq. (20). Since Fresnel-Filtering is
typically small for large Re x [42] we approximate pmod

m,l using
POS only. Therefore, we get the modified momentum

pmod
m,l = 1

nRe xm,l

(m − �mPOS). (24)

Note that the effective shift in the mode number m is
independent of m,l. Therefore, it is equal for all modes in
the system.

For the three systems A, B, and C, see Figs. 1(c)–1(e),
the complex wave numbers predicted by Eq. (19) are shown
in Fig. 4. They nicely correspond to numerically determined

values. Moreover, Eq. (19) is easy to use also for larger values
of Re x where |Im x| is tiny so numerical methods have an
enormous effort to determine its value. For this reason no
further numerically determined values of x are shown in Fig. 4.
We also analyzed modes with small l > 1 and get similar
results.

With Eq. (18) the near field of an optical mode can
be calculated. A comparison between the predicted and
numerically determined mode pattern is shown in the upper
panels of Fig. 5 for system A. Modes with a small mode
number are less influenced by the boundary deformation and
look almost like optical modes of a circular cavity, see Fig. 5(a).
Here, the energy gap [see Fig. 5(a) lower panel] of the involved
modes is rather large so the coupling terms aj in Eq. (20) are
small. Right before and after the resonance peak, see Figs. 5(b)
and 5(d), two involved modes are strongly coupled by a small
energy denominator. They show a transition from localization
on unstable periodic orbit [Fig. 5(b)] to localization on stable
periodic orbit [Fig. 5(d)]. Note that such a transition has been
also observed for maps [44,45] and for an optical mode with
fixed mode numbers by changing system parameters [46]. The
prediction by Eq. (18) fails very close to the resonance case,
see Fig. 5(c), due to nearly vanishing energy denominators.

According to Eq. (18), we calculate the far-field amplitude
Fm,l(φ) of a mode predicted by RAT via

Fm,l(φ) ∼
∑
j�0

aj

e−iπ(m−jr)/2

Hm−jr (x̃m,l)
cos[(m − jr)φ]. (25)

In Fig. 6 the resulting far-field intensity pattern |Fm,l(φ)|2
for the mode (m,l) = (21,1) in system A is shown. For
a comparison to numerically determined (BEM) far-field
intensities, we normalized both pattern to the same value. Thus,
a good agreement is observed.

C. Comparison to perturbation theory for weakly
deformed microdisks

Next, we compare the RAT prediction of complex wave
numbers to the perturbation theory for deformed microdisk
cavities derived by Dubertrand et al. [26]. Here, the boundary
deformation is treated as a perturbation to a circular cavity as

r(φ) = R + εf (φ). (26)

The resulting complex wave numbers for TM modes with
positive parity are in second-order perturbation theory given
by [26]

x̃m,l =xm,l

[
1 − εF1,mm + ε2

(
1

2
(3F2

1,mm − F2,mm)

+ xm,l

(
F2

1,mm − F2,mm

)H ′
m

Hm

(xm,l)

− (n2 − 1)xm,l

∑
p �=m

F1,mpF1,pm

Sk(xm,l)

)]
(27)

with m and p non-negative and Fourier harmonics,

Fu,pm = εp

πRu

∫ π

0
f (φ)u cos(pφ) cos(mφ) dφ, (28)

022202-5



JULIUS KULLIG AND JAN WIERSIG PHYSICAL REVIEW E 94, 022202 (2016)

RAT

(a) (b) (c) (d)

BEM

1
n

p4:1 1
0.0

−0.1

p

H0(p)

1
n

p4:1 1
p

1
n

p4:1 1
p

1
n

p4:1 1
p

FIG. 5. The upper row shows the mode pattern predicted by RAT in Eq. (18) for system A. In comparison, the middle panels shows the
mode pattern numerically calculated with the BEM [32]. The dispersion relation given by H0 (curve), Eq. (15), is shown in the lower panels
where thick dots at [pmod
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line is a guide to the eye. The mode numbers are (a) (m,l) = (18,1), (b) (m,l) = (21,1), (c) (m,l) = (22,1), and (d) (m,l) = (23,1).

of the boundary deformation function where εp is one for p =
0 and two otherwise. The comparison to the RAT predictions of
x are shown in Fig. 4. Interestingly, the perturbation theory by
Dubertrand et al. reproduces in first order no peak in Im x (not
shown). In second order only the first peak in Im x is predicted.
The reason is that modes with different azimuthal mode
numbers are only coupled via the last term in Eq. (27) where
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FIG. 6. The far-field intensity pattern of the mode (m,l) =
(21,1) in system A is shown (a) in a polar plot and (b) for the
symmetry reduced part of the radiation angle φ. The light orange
curve corresponds to the RAT prediction while the black curve
represents numerical calculation (BEM). Both far-field intensities
are normalized to the area below the curve in (b).

F1,pm enters. In this paper we investigate deformation of the
form f (φ) = R cos(Nφ) [see Eq. (3)] where N corresponds
to the number r of eyes in the dominant resonance chain.
Therefore, the Fourier harmonics

F1,pm = εp

4
(δm−p,±r + δm+p,r ) (29)

restrict the azimuthal mode numbers of involved modes to
differ by r . This corresponds to the first peak in Im x. In the
next (third) order perturbation theory we expect that Fourier
harmonics

F2,pm = εp

8
(δm−p,±2r + δm+p,2r + 2δm,p) (30)

with different p and m enter which describe the coupling of
modes whose mode numbers differ by 2r . Hence, we expect
that every higher-order perturbation theory reproduces one
further peak in Im x.

IV. CONCLUSION AND OUTLOOK

In this paper we studied the reduction of the lifetime of
optical modes in deformed microcavities due to resonance-
assisted tunneling. We predicted the imaginary part of the
complex wave numbers x = kR by modeling one dominant
resonance chain in phase space with a generalized pendulum
approximation. This allows us to expand the mode of a
deformed cavity in modes of a circular cavity and deduce
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the couplings by perturbation theory of resonance-assisted
tunneling. Additionally, the dielectric boundary conditions are
crucial for optical microcavities. Therefore, we incorporate an
effective shift in the momentum of the optical modes when
we compare them to the classical phase space. Furthermore,
we predicted the internal and far-field mode structure in the
deformed cavity. We studied three systems where we change
either the order of the dominant resonance chain or the
perturbation strength, which shows the validity of our method
up to systems with a mixed phase space and large chaotic layer
around the resonance chain. However, we analyze tunneling
through one resonance chain in the phase space. For higher

values of Re x or strong boundary deformations, multiple
resonance chains become important and need to be included
in the prediction similar to case of maps [20].

Our results motivate the extension of perturbation theory for
weakly deformed optical microcavities derived by Dubertrand
et al. [26] to third (and higher) orders.
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