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Confined laser-cooled atoms in a nonthermal state

Andreas Dechant,1,2 Shalom Tzvi Shafier,1 David A. Kessler,1 and Eli Barkai1
1Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel

2Department of Physics #1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
(Received 18 April 2016; published 31 August 2016)

The Boltzmann-Gibbs density, a central result of equilibrium statistical mechanics, relates the energy of a
system in contact with a thermal bath to its equilibrium statistics. This relation is lost for nonthermal systems such
as cold atoms in optical lattices, where the heat bath is replaced with the laser beams of the lattice. We investigate
in detail the stationary phase-space probability for Sisyphus cooling under harmonic confinement. In particular,
we elucidate whether the total energy of the system still describes its stationary state statistics. We find that this is
true for the center part of the phase-space density for deep lattices, where the Boltzmann-Gibbs density provides
an approximate description. The relation between energy and statistics also persists for strong confinement and
in the limit of high energies, where the system becomes underdamped. However, the phase-space density now
exhibits heavy power-law tails. In all three cases we find expressions for the leading-order phase-space density
and corrections which break the equivalence of probability and energy and violate energy equipartition. The
nonequilibrium nature of the steady state is corroborated by explicit violations of detailed balance. We complement
these analytical results with numerical simulations to map out the intricate structure of the phase-space density.
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I. INTRODUCTION

For a particle in contact with a thermal bath, the stationary
phase-space probability density is the Boltzmann-Gibbs den-
sity [1], which is given by PBG(x,p) ∝ e−H (x,p)/(kBT ), where
H (x,p) is the Hamiltonian in terms of the position x and
momentum p of the particle and T is the temperature of
the heat bath. This relates the system’s equilibrium statistics
(the phase-space density) to its energy (the Hamiltonian); in
thermal equilibrium, states that have the same energy occur
with the same probability. If we replace the thermal bath with
a nonthermal one, the system is generally not in equilibrium
and the connection between probability and energy is lost.

An important example of such a nonthermal system is
laser cooling [2–6]. This term describes a multitude of
techniques that are used to cool atoms or small particles in
laboratories all over the world. The common feature of all
these techniques is that the surrounding heat bath is replaced
with the light field of the laser, which generally does not
constitute a thermal equilibrium bath. Nevertheless, it is often
convenient to assign an effective temperature, in terms of
the average kinetic energy, to this optical bath and thus to
the atom or particle and treat its statistics as if the bath
were thermal. This effective temperature can be very low,
which, along with the ease of tunability, makes laser cooling
highly attractive from an experimental point of view. For the
particular case of a Sisyphus cooling lattice [2,3,7], this allows
temperatures of a few μK to be reached. Despite assigning
a temperature, it is important to note that atoms cooled by
the Sisyphus mechanism are not in a thermal state. Notably,
their momentum probability density exhibits heavy power-law
tails [8–10] and their dynamics is governed by long-ranged
temporal correlations and superdiffusion [11–13]. For a free
(aside from the cooling lattice) particle these effects have
been well understood from a semiclassical description of the
atoms’ dynamics [2,3,7,14], which are discussed in more detail
below.

Here we go a step beyond the free particle by introducing
an additional confining potential acting on the atoms in the
lattice [15]. For the free particle, the only degree of freedom
contributing to the energy is its momentum, so its stationary
momentum probability density can trivially be related to the
total energy. Introducing confinement yields the position of
the particle (with its corresponding potential energy) as an
additional degree of freedom. In this situation the relation
between total energy and stationary state statistics indeed
becomes nontrivial. In order to answer the question as to
whether and under what conditions the energy of the system
determines the stationary state phase-space probability density,
we determine the latter from the semiclassical Fokker-Planck
equation description of the system. We do so analytically in
three limiting cases and show that, while the leading-order
results depend only on the energy, higher-order corrections
violate the one-to-one correspondence of probability and
energy.

We begin with a brief review of Boltzmann-Gibbs statistics
of a Brownian particle in a potential and some immediate
consequences in Sec. II. Then in Sec. III we introduce the
semiclassical description of Sisyphus cooling and mention
some consequences for the statistics of free cooled atoms.
Adding the confining potential, we arrive at the central equa-
tion of this work in Sec. IV, the Fokker-Plank equation for the
phase-space probability density. In Sec. V, we start analyzing
the latter by showing how the Boltzmann-Gibbs density serves
as a starting point for an expansion describing the center part of
the density for deep lattices. The resulting expression gives us
corrections to the Boltzmann-Gibbs result that violate energy
equipartition. The next part of the analysis in Sec. VI focuses
on an underdamped approximation. We show that for strong
confinement, the total energy is approximately conserved.
Thus, to leading order, the resulting phase-space density
depends only on energy. However, we find heavy power-law
tails for high energies, in stark contrast to the exponential
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energy dependence of the Boltzmann-Gibbs density. As we
show in Sec. VII, these high-energy tails persist even if the
confinement is weak, which is a consequence of the peculiar
structure of the Sisyphus cooling force. We obtain an explicit
expression for the large-energy behavior of the phase-space
density, including corrections that, once again, violate energy
equipartition. In Sec. VIII we proceed to show that our system
is indeed in a nonequilibrium stationary state in that it violates
detailed balance and relate these violations to the probability
current. Finally, in Sec. IX, we relate our findings to the
experimental systems of Sisyphus cooling of confined atoms
and discuss the relevant parameter regime and how the devi-
ations from Boltzmann-Gibbs statistics might be observed in
experiments. Throughout the analysis, we support our findings
with numerical simulations, which we then use to explore the
regime where the expansions break down and show that the
results are fully consistent with the behavior emerging from the
limiting cases. This paper complements our Letter [15] with
detailed derivations and a much extended discussion of the
results while also introducing several additional aspects. The
latter include an analysis of the symmetry of the phase-space
density, a realistic momentum-dependent diffusion coefficient,
and a quantification of detailed-balance violations, as well as
a results for realistic experimental parameters.

II. BOLTZMANN-GIBBS STATISTICS

The paradigmatic model that leads to Boltzmann-Gibbs
statistics in a natural way is a Brownian particle in a confining
potential. This situation can be cast into a Langevin equation
[16]:

ṗ = −γp − U ′(x) +√
2Dpξ,

ẋ = p

m
. (1)

For simplicity, we restrict our discussion to the one-
dimensional case and denote by x the position of the particle
and by p its momentum. Equation (1) describes a particle of
mass m moving in the conservative force field F (x) = −U ′(x),
where U (x) is a confining potential. In addition, the particle is
immersed in a thermal environment, which is responsible for
the Stokes friction Ffric(p) = −γp and the fluctuating force
Ffluc = √

2Dpξ . These two forces describe in an effective
manner the collisions between the particle and the constituent
particles of the environment. Since the environment is thermal,
the damping coefficient γ and the momentum diffusion con-
stant Dp are related via the temperature T by the fluctuation-
dissipation theorem, Dp = mγkBT . ξ is a Gaussian white
noise of unit magnitude, i.e., 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). Here
〈· · · 〉 denotes an average over the ensemble of realizations
of the process ξ (t). Equivalently, the system may be described
via a Kramers-Fokker-Planck equation for the phase-space
probability density [17]:

∂tP (x,p,t)

=
{
− p

m
∂x + ∂p[γp + U ′(x) + Dp∂p]

}
P (x,p,t). (2)

It is then easy to show that the solution of the stationary state
equation ∂tP (x,p,t) = 0 is precisely given by the Boltzmann-

Gibbs density [17],

PBG(x,p) = Z−1e
− H (x,p)

kBT , (3)

where the Hamiltonian gives the total energy of the particle
as a function of its position and momentum, H (x,p) =
p2/(2m) + U (x), and Z = ∫

dxdpe−H (x,p)/(kBT ) is the nor-
malizing partition function.

The Boltzmann-Gibbs density (3), which is readily gen-
eralized to higher dimensions, has a number of important
properties and consequences. It depends on the coordinate
x and momentum p only through the Hamiltonian. This
means that equal-energy surfaces in phase space are also
surfaces of equal probability. An immediate consequence is the
equipartition theorem, which relates equilibrium expectation
values of the Hamiltonian to the temperature [18,19]:

〈p ∂pH (x,p)〉eq = 〈x ∂rH (x,p)〉eq = kBT . (4)

For the canonical harmonic potential, U (x) = mω2x2/2, this
yields the more familiar relation

kBT

2
= 〈Ek〉eq = 〈Ep〉eq, (5)

where Ek = p2/(2m) is the kinetic and Ep = mω2x2/2 the
potential energy. Thus, every quadratic degree of freedom
contributes kBT/2 to the average energy. Whenever the
phase-space probability density is a function of H (x,p) only,
equality holds between the moments. However, the right hand
side of Eq. (4) is only given by the temperature in the
Boltzmann-Gibbs case. Furthermore, the Boltzmann-Gibbs
density is exponential in the Hamiltonian, and thus additive
contributions to the system’s energy factorize in terms of the
phase-space density. In particular, the kinetic and the potential
energy term separate:

PBG(x,p) = Px(x)Pp(p),

with Px(x) = Z−1
x e

− U (x)
kBT , Pp(p) = Z−1

p e
− p2

2mkBT . (6)

This means that, in equilibrium, the kinetic and potential
degrees of freedom are independent of each other and can
be described separately. In particular, the equilibrium average
kinetic energy is not affected by introducing or changing the
potential.

III. SEMICLASSICAL DESCRIPTION OF
SISYPHUS COOLING

In the above discussion, we took into account the effect of
the bath through a dissipative friction term and a fluctuating
random force which causes diffusion. As it turns out, a similar
description can be employed to describe laser cooling of atoms
[5]. Here the dissipation and diffusion describe changes in the
atomic momentum due to the interactions with the photons
of the light field by scattering, absorption, and emission. For
Sisyphus cooling [2,3,7], the atom interacts with a standing
light wave. As long as the atom is not localized in the resulting
lattice potential, its trajectory can be described as a classical
particle with momentum p and position x. If, furthermore
the momentum of the atom is large compared to the recoil
momentum by interacting with a single photon, we can treat
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the interactions with the light field as a continuous process
rather than individual events. Under these conditions, it can
be shown that the motion of the atoms can be described by a
semiclassical Langevin equation [3]:

ṗ = − γp

1 + p2

p2
c

− U ′(x) +√
2Dp � ξ,

ẋ = p

m
. (7)

Here � denotes an anti-Itō stochastic integral (see below). The
interactions between the atom and the cooling lattice are taken
into account via an effective friction and a fluctuating force. We
stress that U (x) here is an additional spatial potential, which
is distinct from the cooling lattice. The Langevin equation
(7) is quite similar to the one for a Brownian particle (1), the
apparent difference being the nonlinearity of the friction force:

Ffric = −γp/(1 + p2/p2
c ). (8)

The latter is Stokes-like only for small momenta |p| � pc

but decreases with momentum as Ffric ∝ −1/p for large
momenta |p| � pc. While we explicitly discuss Sisyphus
cooling, we note that a similar velocity dependence of the
cooling force is obtained also for Doppler cooling [5] and
we thus expect our results to describe the latter case with
some minor modifications. Beyond the nonlinear friction force,
the diffusion coefficient now depends on the momentum,
Dp = D0 + D1/(1 + p2/p2

c ). This implies that we need to
specify the interpretation of (7) as a stochastic integral [17,20];
here anti-Itō or end-point interpretation, denoted by � is the
appropriate one, leading to the correct Kramers-Fokker-Planck
equation (12). We emphasize that the above semiclassical treat-
ment neglects quantum-mechanical effects and interactions
between the atoms. The first is a good approximation for fast
atoms [21], while the second holds true for low densities. Both
conditions are usually satisfied in typical Sisyphus cooling
experiments [10,12].

For a detailed explanation of why the nonlinear friction
and the momentum-dependent diffusion coefficient appear, the
reader is referred to [2,3]. We note that the four parameters
pc, γ, D0, and D1 can be expressed in terms of the experi-
mental control parameters like the intensity and detuning of
the cooling lasers; see Sec. IX. Very roughly, the cooling lattice
consists of two superimposed standing waves with orthogonal
polarization. The splitting of the atomic Zeemann sublevels
and the transition rates between them thus depend on the
atoms’ position in the lattice. Conversely, the potential seen by
the atom depends on which state it is in. If the frequency of the
lattice beams is chosen in the right way, the atom will climb
a potential barrier, transition to a different state for which the
same position is a potential minimum and then has to climb
yet another barrier. Repeating this process, the atom dissipates
kinetic energy via the emission of photons. It is intuitively clear
that how well this process works depends crucially on the speed
of the atoms: Atoms at rest remain in the lowest energy state
corresponding to their position, while very fast atoms cannot
distinguish between going uphill and downhill in the optical
lattice. This explains why the friction force is weak if the atom
is either very slow or very fast. The momentum-dependent
part of the diffusion coefficient D1/(1 + p2/p2

c ) reflects the

fact that the transitions between different atomic states are
probabilistic and thus the atom will occasionally transit at
the wrong time. This part of the diffusion coefficient satisfies
a fluctuation-dissipation relation with the friction force. The
first, momentum-independent, part of the diffusion coefficient
D0, however, is due to spontaneous emission events and has
no counteracting friction term, thereby driving the system
out of equilibrium. We remark that deriving the semiclassical
equations of motion (7) relies on averaging the dynamics over
one wavelength of the cooling lattice [3] and thus the former
do not depend on the spatial modulation of the laser field.
It can be shown that this approximation does not change the
qualitative dynamics [23]; however, as discussed in Sec. IX,
it requires that the scale of the confining potential should be
much larger than the lattice wavelength.

In the absence of the confining potential, U (x) = 0,
the resulting dynamics have been discussed in detail in
Refs. [8,9,24–26]. The fact that the friction force is weak for
fast atoms means that those atoms dissipate little energy and
thus can stay fast for a very long time. This induces a broad
stationary state momentum distribution [9],

Pp(p) = Z−1

(
1 + D0

D0 + D1

p2

p2
c

)− 1
2D

, (9)

long-ranged temporal correlations [8] in the atomic mo-
mentum, which lead to superdiffusion for shallow lattices
[25,26]. Here we stress that the temporal correlations [11],
the asymptotic power-law tails of the momentum density [10],
and the superdiffusive motion [12] have all been observed
in experiments. In general, the dynamics are controlled by
the dimensionless parameter D ≡ D0/(γp2

c ). This parameter
is inverse to the depth U0 of the cooling lattice by D =
cEr/U0 [25], as used frequently below. Here Er is the photon
recoil energy and c ∼ 20 is a constant whose precise value
depends on the details of the experiment. Briefly summarizing
the qualitative results for the free case, for D < 1/5 the
momentum correlations decay sufficiently fast in time that the
diffusion is normal. For D > 1/5, superdiffusion sets in and for
D > 1 there is no longer a stationary momentum probability
density [24]. Since without the confining potential, the only
degree of freedom entering the Hamiltonian is the momentum,
H (p) = p2/(2m), we can trivially write the stationary density
Eq. (9) as a function of the Hamiltonian,

Pp(p) = Z−1

[
1 + H (p)

Ec

]− 1
2D

, (10)

with Ec = p2
c (1 + D1/D0)/(2m) and H (p) = p2/(2m). The

above form of the probability density is formally equivalent
to a Tsallis distribution [9,27,28]. As shown below, this
equivalence no longer holds for the confined system [15].
Equivalently, we find the probability distribution of energy:

PE(E) = Z̃−1

√
Ec

E

(
1 + E

Ec

)− 1
2D

. (11)

We note that the parameter D depends only on D0. By contrast,
D1 appears in the asymptotic power-law behavior of the
momentum density (9), Pp(p) ∝ p−1/D only as a prefactor
[8]. Given this, for the sake of simplicity, we consider the case

022151-3



DECHANT, SHAFIER, KESSLER, AND BARKAI PHYSICAL REVIEW E 94, 022151 (2016)

D1 = 0 going forward, which does not change the qualitative
results. We briefly discuss the effect of nonzero D1 in Sec. IX.
Formally, Eq. (7) with p interpreted as the position is related
to the diffusion of a particle in a logarithmic potential [29–31],
which can be used to model a range of physical systems
[32–34]. In these cases, however, it is not clear what the
physical equivalent of the potential U (x) is.

Taking into account the confining potential with the
Boltzmann-Gibbs result in mind immediately raises the ques-
tion whether the phase-space density may be written as a
function of the Hamiltonian. In this case, the average kinetic
energy would be independent of the confinement, energy
equipartition would hold and some effective temperature could
be assigned to the system. In the following, we address this
question and investigate the similarities between the thermal
Boltzmann-Gibbs case and Sisyphus cooling.

IV. CONFINEMENT AND SISYPHUS COOLING

As long as the semiclassical picture is valid, the motion of
the atoms can be described by Eq. (7), where we consider a
pure harmonic potential, U (x) = mω2x2/2. In the following,
we focus only on the steady state, ∂tP (x,p,t) = 0. The
stationary phase-space density P (x,p) is then given in terms
of a Kramers-Fokker-Planck equation [17]:[

�(−p∂x + x∂p) + ∂p

(
p

1 + p2
+ D∂p

)]
P (x,p) = 0.

(12)

In order to simplify the notation, we have changed to dimen-
sionless position and momentum variables x = mωx̃/pc,p =
p̃/pc. Since going forward we mostly use the dimensionless
variables, we from now on refer to the dimensionful variables
as x̃ and p̃. We have further reintroduced the dimensionless
parameter D ≡ D0/(γp2

c ) and defined � ≡ ω/γ . In terms of
this dimensionless description, it is clear that the properties
of the system are governed by the two parameters D and �.
Equation (12) constitutes the main object of investigation of
this work. The first term on the left-hand side of (12) describes
the Hamiltonian part of the evolution, the oscillation of a
particle in a harmonic well. The second term contains the
friction and the noise, which are effects of the “bath.”

At this point, we also introduce two equivalent ways
of writing Eq. (12), which turn out to be convenient for
the following discussion. The first alternate representations
follows from a simple rescaling of position and momentum,
z = x/

√
D and u = p/

√
D,[

�(−u∂z + z∂u) + ∂u

(
u

1 + Du2
+ ∂u

)]
PD(z,u) = 0,

(13)

with P (x,p) = PD[x/
√

D,p/
√

D]/D. Clearly, (13) reduces
to the equation for the Boltzmann-Gibbs case (2) in the
limit D → 0. We use this in the next section to perform a
systematic expansion around this limit. Second, we change
to a polar representation of the phase space, by introduc-
ing the energy ε = (x2 + p2)/2 and the phase-space angle
α = arctan(p/x),0 � α < 2π . In terms of these coordinates,

Eq. (12) reads[
�∂α︸︷︷︸

Hamiltonian
evolution

+ Lε,α︸︷︷︸
friction

and noise

]
PP (ε,α) = 0, with (14)

Lε,α = ∂α

sin(α) cos(α)

1 + 2ε sin2(α)
+ ∂ε

2ε sin2(α)

1 + 2ε sin2(α)

+ D

{
2∂α sin(α) cos(α)∂ε + 1

2ε
∂α cos2(α)∂α

+ [sin2(α) − cos2(α)]∂ε + 2 sin2(α)∂εε∂ε

}
,

with P (x,p) = PP [(x2 + p2)/2, arctan(p/x)], since the Ja-
cobian of the transformation is unity. The advantage of this
representation is that the Hamiltonian part of the evolution
consists of just a derivative with respect to α, whereas the
friction and noise terms are now more complicated. We use
Eq. (14) extensively in Secs. VI and VII to find the behavior at
large frequencies and large energies, respectively. Note that the
dimensionless energy ε is related to the physical energy E via
E = εp2

c /m. In the following Secs. V, VI, and VII, we discuss
the mathematical properties of the solution of Eqs. (12), (13),
and (14) and the physical implications. This solution can be
obtained analytically in terms of expansions in certain limits.
The general features elucidated in these expansions, however,
persist even beyond the validity of the expansions themselves,
as we establish via numerical simulations. In Sec. IX, we come
back to the actual experimental system of Sisyphus cooling
with added confinement and discuss the relevant parameter
regime, as well as other physical effects that need to be taken
into account.

V. DEEP LATTICES: DEVIATIONS FROM
BOLTZMANN-GIBBS

The dimensionless parameter D is inversely proportional to
the depth of the cooling lattice (see Sec. III). For deep lattices,
D is thus small. In the following, we show that in this limit, the
low-energy part of the phase-space density can be obtained by
expanding around the Boltzmann-Gibbs density for small D.
We find that the resulting density generally depends explicitly
on momentum and position and is only a function of the
Hamiltonian for strong confinement. Further, to second order
in D and beyond, energy equipartition is violated and the
average potential energy always exceeds the average kinetic
energy.

As noted before, Eq. (13) reduces to a Boltzmann-Gibbs-
like equation in the limit of D → 0. In particular, the
normalized solution for D = 0 is

P
(0)
D (z,u) = 1

2π
e− z2+u2

2 , (15)

which is precisely the Boltzmann-Gibbs density (3). Starting
from this, we define an auxiliary function g(z,u) via

PD(z,u) = P
(0)
D (z,u)g(z,u). (16)
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Plugging this into Eq. (13), we obtain an equation for g(z,u):

[L0 + DL1 + D2L2]g(z,u) = 0,

L0 = �(z∂u − u∂z) − u∂u + ∂2
u,

(17)
L1 = 2�(zu2∂u − u3∂z) − 3u2 + u4 − 3u3∂u + 2u2∂2

u,

L2 = �(zu4∂u − u5∂z) − u4 + u6 − 2u5∂u + u4∂2
u.

We see that the equation for the function g(z,u) contains three
terms multiplied by different powers of D. For D = 0, the
resulting equation, L0g(z,u) = 0, obviously has the solution
g(z,u) = 1, which yields the Boltzmann-Gibbs result (15). To
proceed, we assume that we can expand g(z,u) for small D:

g(z,u) = 1 + Dg(1)(z,u) + O(D2). (18)

Plugging this into Eq. (17) and equating orders in D, we obtain
an equation for g(1)(z,u):

L0g
(1)(z,u) − 3u2 + u4 = 0. (19)

Examining the operator L0, we can already guess what the
solution to this equation might be. If g(1)(z,u) is a polynomial
in z and u of total order N , then L0 leaves the total order
unchanged. The inhomogeneous terms in (19), on the other
hand, are of order 4, so if there exists a polynomial solution,
we necessarily have N = 4:

g(1)(z,u) =
4∑

k=0

4−k∑
l=0

a
(1)
kl zkul. (20)

Plugging this into Eq. (19) then gives us a set of linear
equations for the coefficients a

(1)
kl . For the first-order expansion,

we explicitly give the coefficients in Appendix A. We can
continue the expansion in terms of D, Eq. (18), to higher
orders. Before we proceed to do so, however, let us remark
on the validity of the expansion. We implicitly assumed
that Dg(1)(z,u) is small. Since we know that g(1)(z,u) is a
polynomial of total order 4 in z and u, we need not only for D

to be small but also terms of the form Dzkul with k + l � 4.
This means that our expansion is valid for small D in the center
part of the phase-space density. Up to first order in D, we find
for the normalized phase-space probability density

P
(1)
D (z,u) = e− z2+u2

2

2π

(
1 + D

4(3 + 4�2)
{3u4 + 18z2 − 27

+ (4u3z − 12uz)� + [3(u2 + z2)2 − 24]�2}
)

.

(21)

Comparing this first-order result to the Boltzmann-Gibbs one,
we note that, in contrast to the latter, Eq. (21) does not
depend on u and z as a function of only the Hamiltonian
H (u,z) = (z2 + u2)/2. Consequently, it has less symmetry
than the zero-order Boltzmann-Gibbs approximation: It is not
symmetric with respect to interchanging z and u or reversing
z → −z or u → −u individually. However, we note that all
these symmetries are restored in the limit � � 1, i.e., strong
confinement, where to leading order in �, we find

P
(1)
D (z,u)  e−H (z,u)

2π

(
1 + D

4
{[3H 2(z,u) − 8]}

)
. (22)

FIG. 1. Phase-space probability density for � = 0.5 and D =
0.1 plotted using the position and momentum (x,p) (top) and,
respectively, energy and phase-space angle (E,α) (bottom). The
colored areas are the results of numerical Langevin simulations;
the black lines represent the third-order small-D expansion. For the
Boltzmann-Gibbs case D → 0, these plots would display perfect
circles (top) and, respectively, straight lines (bottom). The slightly
tilted elliptical shape (top) and, respectively, wavy lines (bottom) are
due to the deviations from Boltzmann-Gibbs for finite D.

A similar behavior is found for any D and large � in Sec. VI.
The equation for the second-order correction g(2)(z,u) is

easy to derive:

L0g
(2)(z,u) + L1g

(1)(z,u) − u4 + u6 = 0. (23)

Since the term L1g
(1)(z,u) contains contributions proportional

to p8, g(2)(z,u) is a polynomial of total degree N = 8.
Generally, we can write the expansion of g(z,u) up to order
DM as

g(z,u) = 1 +
M∑

n=1

Dn

4n∑
k=0

4n−k∑
l=0

a
(n)
k,l z

kul ; (24)

thus, g(M)(z,u) is a polynomial of order N = 4M . For the
following analysis, we perform this expansion up to third order
M = 3, where we use Mathematica to handle the cumber-
some algebra. The resulting phase-space density is shown in
Fig. 1. Plotting the latter using the energy-angle coordinates
introduced in Eq. (14) clearly exhibits the deviations from the
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FIG. 2. Equipartition ratio χ as a function of the trap strength �

for different values of D. The solid lines are the third-order result
Eq. (26); the circles are the result of numerical Langevin simulations.
For comparison, we also show the results of a fourth-order expansion
in D at � = 0.1, which are closer to the numerical results.

Boltzmann-Gibbs density, which is independent of the angle
α. This density has a number of features which distinguish it
from the Boltzmann-Gibbs density, which we discuss in the
following. In Sec. II, we saw that a phase-space density that
only depends on the Hamiltonian leads to energy equipartition,
which in our rescaled variables corresponds to 〈z2〉 = 〈u2〉 = 1
for D = 0. In order to quantify the deviations induced by finite
D, we define the equipartition ratio

χ = 〈z2〉/〈u2〉 = 〈x2〉/〈p2〉 = 〈εp〉/〈εk〉, (25)

where εp = x2/2 and εk = p2/2 are the dimensionless po-
tential and kinetic energy. Obviously, χ = 1 corresponds to
energy equipartition. From the third-order expansion, we find

χ (3) = 1 + 6

3 + 4�2
D2 − 6(38�2 − 21)

(3 + 4�2)2
D3. (26)

We see that there is no linear term in this expansion, meaning
that the first-order result (21) does induce any violation of
energy equipartition, even though it is not a function of the
Hamiltonian only. Further, for large �, the deviations from
equipartition are also of order �−2, which agrees with the
finding that the phase-space density becomes a function of
the Hamiltonian in this limit. The average potential energy is
always larger than the average kinetic energy. This is reflected
in the slightly elongated shape of the phase-space density
along the x axis; see Fig. 1. These deviations from energy
equipartition are strongest for small trapping strengths � and
increase with increasing D; see Fig. 2. Not surprisingly, the
results of the small-D expansion deviate from the numerical
ones for larger values of D, where the expansion breaks down.
Nevertheless, the trends with respect to � and D are captured
correctly. When plotted as a function of D for � = 0.1, we
see that the deviations from equipartition are maximal for
D ≈ 0.3, where the potential energy is about 20% larger than
the kinetic one; see Fig. 3. The reason for the decrease at larger
D is due to the fact that the average energy in the stationary
state diverges for D > 1/2. This is discussed in more detail in
Sec. VII.

FIG. 3. Equipartition ratio χ as a function of the parameter D for
� = 0.1. The solid line is the third-order result Eq. (26); the circles
are the result of numerical Langevin simulations. For small D, the
agreement between numerics and theory is good; at larger D, the two
results deviate. In particular, the numerically obtained equipartition
ratio exhibits a turnover and decreases for larger D.

Instead of looking at the equipartition ratio, it is worthwhile
to also discuss the behavior of the potential and kinetic energy
individually. The results from the third-order expansion are
shown in Fig. 4. Here we normalized the energy to the
kinetic energy of a free particle at the same value of D. Even
for large frequencies, where the phase-space density can be
expressed as a function of the Hamiltonian, both the kinetic
and the potential energy are less than the kinetic energy of a
free particle. This underlines the nontrivial interplay between
the confining potential and the nonlinear friction force. Since
the friction force is strongest for particles of moderate momen-
tum, the slowing down near the turning points of the oscillatory
motion in the potential increases the dissipation. This stays true
in the limit of small �, where the average kinetic energy is still
reduced compared to the free case, even though the potential
energy is now larger. Due to the perturbative nature of the above
results, the overall effect shown here is small. However, it can
be quite substantial at realistic parameter values beyond the

FIG. 4. Average potential and kinetic energy from the third-order
small-D expansion as a function of � for D = 0.1. Both have been
divided by the average kinetic energy of the free particle. Note that
the kinetic energy is reduced compared to the latter.
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FIG. 5. Antisymmetric part Eq. (27) of the phase-space proba-
bility density for � = 0.5 and D = 0.1. The colored areas are the
results of numerical Langevin simulations; the black lines represent
the third-order small-D expansion.

validity of the perturbation expansion, where we numerically
find an average potential energy that is several times larger
than the kinetic one; see Sec. IX. At first glance it might
seem disconcerting that, even as � → 0, we do not recover
the free particle result. However, here we are only discussing
the stationary behavior of the system. For very small �, it
will take longer and longer to reach this stationary state, as
the oscillation period in the potential grows as 1/� until at
� = 0 there is no stationary state at all. The stationary state
limit t → ∞ and the limit � → 0 thus do not commute.

The expansion for the phase-space density (21) for D �=
0 also differs from the Boltzmann-Gibbs case in that it is
no longer symmetric with respect to u → −u or z → −z;
only the combination of both operations is a symmetry of the
problem: PD(z,u) = PD(−z, − u). This can be conveniently
visualized by defining the antisymmetric and symmetric part
of the probability density:

P
sy
D (z,u) = 1

2 [PD(z,u) + PD(−z,u)]

⇒ P
sy
D (z,u) = P

sy
D (−z,u) = P

sy
D (z, − u),

P as
D (z,u) = 1

2 [PD(z,u) − PD(−z,u)]

⇒ P as
D (z,u) = −P as

D (−z,u) = −P as
D (z, − u). (27)

For the zeroth-order Boltzmann-Gibbs result, the antisymmet-
ric part of the phase-space density vanishes. For nonzero D,
however, this antisymmetric part highlights a feature that is
hard to discern in the total density: The probability of position
and momentum having opposite signs is increased with respect
to equal signs; a particle to the right of the center of the
potential is more likely to be moving left, and vice versa;
see Fig. 5. This kind of behavior can be encoded in a single
quantity by defining

η =
∫ 0
−∞ dz

∫∞
0 duPD(z,u) + ∫∞

0 dz
∫ 0
−∞ duPD(z,u)∫ 0

−∞ dz
∫ 0
−∞ duPD(z,u) + ∫∞

0 dz
∫∞

0 duPD(z,u)

= 1 − 2

∫∞
0 dz

∫∞
0 duP as

D (z,u)∫∞
0 dz

∫∞
0 du

[
P

sy
D (z,u) + P as

D (z,u)
] , (28)

FIG. 6. Antisymmetry ratio η [Eq. (28)] as a function of �

for different values of D. The solid lines are the third-order
result [Eq. (26)], the circles are the result of numerical Langevin
simulations, and the dashed lines are the large-frequency expansion
discussed in Sec. VI.

where we split the phase-space density into symmetric and
antisymmetric part. The parameter η is precisely a ratio of the
probabilities of having position and momentum in opposite
and the same directions. Contrary to the equipartition ratio, η

has a non-monotonous behavior as a function of frequency;
see Fig. 6. While for both small and large �, having position
and momentum in the same and opposite directions is equally
likely, for intermediate values of �, opposite directions are
more likely. For large � this agrees with the observation that
the phase-space density is a function of the Hamiltonian only
in this limit and thus has rotational symmetry in phase space.
In this limit the motion of the particle can be described as
oscillations in the potential with a slowly changing energy
due to dissipation and diffusion; see Sec. VI for a more
detailed discussion. For small �, on the other hand, the kinetic
energy of the particle typically varies on much shorter time
scales than the potential one. Thus, position and momentum
are less correlated, and η, which essentially measures these
correlations, is small.

VI. STRONG CONFINEMENT: UNDERDAMPED
APPROXIMATION

In the previous section, we noticed that the center part of the
phase-space probability density can be written as a function of
the Hamiltonian for � � 1, i.e., a strong confining potential.
In this section we show that this observation holds true for the
entire distribution as well. In particular, we obtain to leading
order in �−1 a phase-space density that depends only on the
atoms’ energy. Importantly, this energy probability density has
power-law tails with an exponent that depends on the lattice
depth D. Beyond leading order, we find a nontrivial structure
in phase space.

Our starting point is Eq. (14), the parametrization of
the phase-space density in terms of the energy E and the
phase-space angle α. Dividing by �, Eq. (14) can be written
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as

∂αPP (ε,α) = − 1

�
Lε,αPP (ε,α). (29)

For � � 1, we then have to leading order ∂αPP (ε,α) = 0.
Thus, the phase-space density is to leading order independent
of the angle α. Physically, � � 1 means that the oscillation
frequency in the trap is much larger than the damping rate.
A particle would thus complete many oscillations before its
energy changes substantially due to dissipation and its motion
can be approximately described by the Hamiltonian dynamics.
In this sense, the expansion in large � is a weak damping limit,
also referred to as the underdamped approximation [35,36].
This can be made more rigorous by comparing the change in
energy due to damping Ediss and diffusion Ediff per period
of the unperturbed oscillation:

Ediss =
∮
T

dx̃Ffric(p̃(x̃)). (30)

Here we use the dimensionful units and denote by T the closed
circular Hamiltonian orbit. Employing the form for the friction
force (8) and changing to dimensionless units, we find

εdiss = −�−1
∮
T

dx
p(x)

1 + p2(x)
. (31)

Since the energy ε = (x2 + p2)/2 is conserved along Hamil-
tonian orbits, we may use this to express p as a function of x

and obtain

εdiss = 4�−1
∫ √

2ε

0
dx

√
2ε − x2

1 + 2ε − x2

= 2π�−1

(
1 − 1√

1 + 2ε

)
. (32)

The energy change due to diffusion is given by the momentum
diffusion coefficient,

Ediff = D0T

m
, (33)

where T = 2π/ω is the period of the oscillation. In dimen-
sionless units, this reads

εdiff = 2πD�−1. (34)

From Eqs. (32) and (34), we conclude that the energy change
due to dissipation and diffusion is proportional to �−1, which
justifies the approach of using the Hamiltonian evolution with
a slowly changing energy. Comparing the relative change in
energy per oscillation, we have

εdiss

ε
=

2π
(
1 − 1√

1+2ε

)
� ε

,

εdiff

ε
= 2πD

� ε
. (35)

We notice that both quantities are small not only for large
frequency �, but also for large energy ε. For the diffusive
contribution this would be true even for linear friction. For
the dissipative term, on the other hand, for linear friction,
εdiss/ε is found to be independent of ε and thus small
only for large frequency. Thus, for the nonlinear friction
force discussed above, the system becomes underdamped both

FIG. 7. Energy density as a function of energy for D = 0.3 and
different values of �. The solid red line is Eq. (37); the dashed red
line the corresponding asymptotic ε−1/D behavior. The circles are
numerical simulations for � = 2; the squares are for � = 0.1.

for large frequency and for large energy. The former limit
is discussed in the following, whereas we exploit the latter
property in Sec. VII.

Having assured ourselves that the underdamped approx-
imation works for our system, we proceed to discuss what
results we can obtain from it. From the leading-order be-
havior ∂αPP (ε,α) = 0, we conclude PP (ε,α)  Pε(ε)/(2π ) +
O(�−1). Plugging this into Eq. (14) and integrating over α, we
obtain an equation for the leading-order energy density Pε(ε):

∂ε

[
1 − 1√

1 + 2ε
+ Dε∂ε

]
Pε(ε) = 0. (36)

Solving this energy diffusion equation, we find the main result
of this section:

Pε(ε) = Z−1
ε (1 + √

1 + 2ε)−
2
D ,

with Zε = 2− 2
D D

(1 − D)(2 − D)
. (37)

Clearly, this density is very different both from the Boltzmann-
Gibbs density [Eq. (3)] and the Tsallis-like form [Eq. (11)]
obtained without the confining potential. We compare Eq. (37)
to numerical simulations in Figs. 7 and 8. Good agreement is
already obtained for moderate values of � ≈ 2, suggesting
that the corrections to the leading-order behavior are generally
small. This is substantiated by Fig. 8, where we show the
ratio between the numerically obtained energy density and
Eq. (37). For � = 2 this ratio is close to 1, whereas for
� = 0.1, we see that the likelihood of large energies is
increased, in agreement with the observation from Sec. V
that the total energy increases towards small �. As for the
case without the confining potential, Eq. (11), this stationary
density has power-law tails in the energy, Pε(ε) ∝ ε−1/D .
Importantly, the exponent of the tails is universal for large
energies, even when � is not large; see Fig. 7. Compared to
the free case Pε(ε) ∝ ε−1/(2D)−1/2, however, the exponent of
the tails is different, and the energy density for the confined
system decays more rapidly at large energies. Note that in both
cases D = 1 marks a transition where the stationary density
is no longer normalizable and thus the solution becomes
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FIG. 8. Ratio of the numerically obtained energy density and the
analytical large-frequency result Eq. (37). Circles are for � = 2,
squares for � = 0.1. The red dashed line indicating the value of 1
has been added for clarity.

time-dependent for D > 1. A time-dependent solution is also
needed to describe the moments of the density beyond certain
values of D. For example, the average energy is given by

〈ε〉 = D(2 − D)

(2 − 3D)(1 − 2D)
. (38)

This expression diverges at D = 1/2, and the average energy
increases as a function of time for D > 1/2. This behavior
is akin to the divergence of the kinetic energy at D = 1/3
for the free case [9,11,24]. While we do not investigate
the time-dependent solution at this point, we note that the
divergence of the average energy occurs at larger values of D

when we include the confining potential as compared to the
free case. Since D is a measure of the ratio of heating due
to spontaneous emission and cooling due to the lattice, this
implies that the potential actually improves the dissipation
mechanism. This is in agreement with the observation from
the small-D expansion in Sec. V, where we found that in
the presence of the confining potential, the kinetic energy is
reduced. The divergence of the average energy at D = 1/2
also explains the results for the equipartition ratio depicted in
Fig. 3. For D slightly below 1/2, the average of the energy is
dominated by the large-energy tails of the phase-space density.
Since, as we saw before, the underdamped limit is also valid
for large energies, the average energy is well described by a
phase-space density that depends only on the Hamiltonian and,
consequently, we have equipartition of energy in this regime.
For large � this holds for any D and the kinetic and potential
energy are equal to leading order in �,〈εk〉 = 〈εp〉 = 〈ε〉/2.

From Eq. (37), we can immediately deduce the phase-space
density for large �:

P (x,p) = Pε(H (x,p))/(2π )

= (2πZε)−1(1 +
√

1 + x2 + p2)−
2
D . (39)

By integrating over p or x, respectively, we can, in principle,
obtain the marginal densities Px(x) and Pp(p). These have no
closed-form representation; however, it is easy to see that their

FIG. 9. Momentum distribution for D = 0.3. The black line is
the result (9) without the confining potential; the red line is obtained
by numerically integrating the large-� expansion of the phase-space
density (39) over x. The circles are the result of Langevin simulations
for � = 4. Clearly, the confinement leads to a narrower momentum
distribution, which suggests improved cooling (see Sec. IX for a more
detailed discussion).

asymptotic tails behave as

Pp(p) 
√

π�
(

2−D
2D

)
2πZε�

(
1
D

) |p|− 2
D

+1, (40)

and likewise for Px(x). As with the energy density, the
tails Pp(p) ∝ |p|−2/D+1 are markedly different from the free
case Pp(p) ∝ |p|−1/D [Eq. (9)]. The resulting momentum
distribution is shown in Fig. 9.

So far, we have focused on the leading-order term, which
depends only on energy. By taking into subleading orders, we
can gain insight on the phase-space structure of the distribution
[37]. We expand the full phase-space density with respect to
� and obtain

PP (ε,α) = Pε(ε)

2π

[
1 + f1(ε,α)

�
+ O(�−2)

]
. (41)

The function f1(ε,α) represents the (generally angle-
dependent) first-order correction to the angle-independent
leading-order result. Plugging this expansion into the Kramers-
Fokker-Planck-equation (29), we find an equation for f1(ε,α)
by equating the coefficients of the terms of order �−1:

∂αf1(ε,α) = −Lε,αPε(ε)

Pε(ε)

⇒ f1(ε,α) = − 1

Pε(ε)

∫ α

0
dα′Lε,α′Pε(ε) + f̃1(ε). (42)

Here f̃1(ε) is some function that depends only on ε. Performing
the integral over α, we get

f1(ε,α) = − sin(α) cos(α)

1 + 2ε sin2(α)
− φ(ε,α)

(1 + 2ε)
3
2

− sin(2α)

2(1 + 2ε){ε[cos(2α) − 1] − 1}
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−
[
α − φ(ε,α)√

1 + 2ε
+ D cos(α) sin(α)

]
∂εPε(ε)

Pε(ε)

−D[α − cos(α) sin(α)]
∂εε∂εPε(ε)

Pε(ε)
+ f̃1(ε). (43)

Here we introduced the function

φ(ε,α) = arctan[
√

1 + 2ε tan(α)] + π

⌊
α

π
+ 1

2

⌋
, (44)

where �x� denotes the floor function, i.e., the largest integer
smaller than x. This function removes the discontinuities in
arctan[tan(α)] introduced by the divergence of tan(α) at α =
(2k + 1)π/2. Equation (43) also places a condition on Pε(ε).
In order to be consistent, we require f1(ε,α) = f1(ε,α + 2π ).
Using the above definition of the function φ(ε,α), we find from
Eq. (43)

0 = f1(ε,α) − f1(ε,α + 2π )

= 2π

Pε(ε)

[
∂ε

(
1 − 1√

1 + 2ε

)
Pε(ε) + D∂εε∂εPε(ε)

]
. (45)

Taking the derivative outside the parentheses, we recover
precisely Eq. (36) and thus the solution (37) is consistent.
Plugging in Eq. (37), we find for the corresponding terms in
Eq. (43)

∂εPε(ε)

Pε(ε)
= − 2

D(1 + 2ε + √
1 + 2ε)

,

∂εε∂εPε(ε)

Pε(ε)
= 4ε

√
1 + 2ε − 2D(1 + ε + √

1 + 2ε)

D2(1 + 2ε)
3
2 (1 + √

1 + 2ε)2
. (46)

Before we proceed to discuss this result, let us determine the
as of yet unknown function f̃1(ε). In order to find it, we require
a consistency condition like (45), which we obtain from the
second order of the large-� expansion. For the latter, we have
the equation

∂αf2(ε,α) = − 1

Pε(ε)
Lε,α[f1(ε,α)Pε(ε)]. (47)

In particular, we want f2(ε,α) to be periodic in α, so we
necessarily have∫ 2π

0
dα′Lε,α′ [f1(ε,α′)Pε(ε)] = 0. (48)

Since the entire problem is π periodic [corresponding to
(x,p) → (−x, − p)], we only need to consider the integral
from 0 to π . We split the integral at α′ = π/2,

0 =
∫ π/2

0
dβ L′

ε,β

[
f1

(
ε,

π

2
− β

)
Pε(ε)

]

+
∫ π/2

0
dγ L′′

ε,γ

[
f1

(
ε,

π

2
+ γ

)
Pε(ε)

]
, (49)

where we introduced the new variables β = π/2 − α and
γ = α − π/2. Here L′

ε,β and L′′
ε,γ are the correspondingly

transformed operators. From the symmetry of Lε,α [see
Eq. (14)], it can be seen that the operator transforms in the
same manner for β and γ , so that L′

ε,α = L′′
ε,α and we can thus

FIG. 10. First-order angle-dependent correction to the phase-
space density as a function of the angle for different energies and
D = 0.3.

write

0=
∫ π/2

0
dβL′

ε,β

{[
f1

(
ε,

π

2
− β

)
+ f1

(
ε,

π

2
+ β

)]
Pε(ε)

}
.

(50)

Now, the angle-dependent part of Eq. (43) is antisymmetric
around α = π/2. While this is not immediately apparent, it
can be shown after a little algebra. Thus, this angle-dependent
part drops out of the integral and we have

0 =
∫ π/2

0
dαLε,α[f̃1(ε)Pε(ε)] (51)

by reverting to α. This gives us

∂ε

[
1 − 1√

1 + 2ε
+ Dε∂ε

]
f̃1(ε)Pε(ε) = 0, (52)

which is exactly Eq. (36) but now for f̃1(ε)Pε(ε). An obvious
solution to this equation is f̃1(ε) = C, where C is an arbitrary
constant. Demanding that the first-order phase-space density
is normalized then immediately yields C = 0. In principle,
there exists a second solution to Eq. (52); however, this can be
shown to be non-normalizable. Thus, the angle-independent
part f̃1(ε) in Eq. (43) is indeed zero.

We can proceed to examine the solution (43) in more detail.
The function f1(ε,α) is shown in Fig. 10. First of all, we
note that the correction is small for both large and small
energies and thus the dependence on the angle α is strongest for
intermediate energies. For small energies, the friction force is
almost linear and we recover the Boltzmann-Gibbs result with
small corrections; see Sec. V. For large energies, expanding
Eq. (43), we find

f1(ε,α)  −D cot(α) + (1 + D) sin(2α)

2Dε
+ O(ε− 3

2 ). (53)

We see that indeed the function is of order ε−1 for large ener-
gies. However, the resulting expression diverges at α = 0 and
all α = π , which would lead to (nonintegrable) divergences
in the probability density. To resolve this issue, let us expand
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around α = 0 instead:

f1(ε,α)  − 1 + 2ε + 2
√

1 + 2ε

(1 + 2ε)(1 + √
1 + 2ε)2

2εα + O(α2). (54)

This expression is, of course, regular at α = 0, but tends to
−α for large ε, in contrast to the behavior observed in Fig. 10.
So which of the two expansions is correct? The answer is,
of course, both, depending on the relative size of α and ε, as
the limits ε → ∞ and α → 0 do not commute. As long as α

is farther away than 1/
√

2ε from 0 or π , the large-energy
expansion (53) yields the correct result. However, as we
approach one of the points, α = 0 or α = π , we have to use
the small-angle expansion (54). These noncommuting limits
can be glimpsed from Fig. 10, where we see sharp features
emerging at α = 0 and π for large energies. Physically, these
features stem from the nonlinearity of the friction force. As a
high-energy particle oscillates in the confining potential, it is
fast during most of its orbit, and the dissipation is weak, leading
to an overall decrease of the effects with energy. Close to
the turning points α = 0,π , however, the particle slows down
and the friction increases up to the point where it becomes
Stokes-like. Thus, even at high energies, there always remains
a small section of phase space where the friction is relevant.

The phase-space density up to first order in � is shown in
Fig. 11. Even for moderately large values of �, this first-order
result captures the probability density very well, since the
correction term f1(ε,α) by itself is small. In Fig. 12, we
show the corresponding antisymmetric part, as defined in
Eq. (27). The general features are very similar to the results
from the small-D expansion, which is no longer valid at
these moderate values of D (here D = 0.3). This hints at the
generality of the asymmetry in phase-space and the deviations
from equipartition, even beyond the range of validity of
the respective approximations. Note that, similarly to the
small-D expansion, the violation of energy equipartition is a
second-order effect that is not included in Eq. (43). While it is,
in principle, also possible to obtain higher-order corrections,
the calculations for obtaining them are much more involved.
In Fig. 13, we show the result for the second-order correction
obtained by numerically solving Eq. (47). This does indeed
exhibit the expected feature, an increased probability along
the x axis (α = 0 and α = π ), which is responsible for the
enhancement of the potential energy compared to the kinetic
one. Besides the fact that violations of equipartition are of order
�−2, we note that the coefficient f2(ε,α) of the second-order
term is numerically much smaller than the first-order one. This
explains why we see good agreement with first-order results
even at moderate �; see Figs. 11 and 12.

VII. LARGE ENERGIES: ASYMPTOTIC POWER LAWS

In the previous section, we discussed that the dynamics
becomes underdamped not only for large frequencies (strong
trapping) but also generically for large energies; see Eq. (35)
and discussion following it. In this section we want to
formalize this and show that many of the features of the large-�
expansion, in fact, carry over to the large-energy behavior
at arbitrary �. In particular, the high-energy power-law tails
Pε(ε) ∼ ε− 1

D are shown to be universal, independent of �.

FIG. 11. Phase-space probability density for D = 0.3 and � =
2, plotted using the position and momentum (x,p) (top) and,
respectively, energy and phase-space angle (E,α) (bottom). The
colored areas are the results of numerical Langevin simulations; the
black lines correspond to the first-order large-� expansion Eq. (41).
Both results agree well and exhibit an obvious asymmetry in phase
space.

FIG. 12. Asymmetric part of the phase-space probability density
for D = 0.3 and � = 2. The colored areas are the results of numerical
Langevin simulations; the black lines correspond to the first-order
large-� expansion Eq. (41).
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FIG. 13. Second-order angle-dependent correction to the phase-
space density as a function of the angle for different energies and
D = 0.3.

As before, the subleading corrections exhibit a complicated
structure in different regions of phase space.

We adopt a similar formalism as before; this time, however,
expanding in terms of energy,

PP (ε,α)  Nεβ

[
1 + g1/2(α)

ε
1
2

+ g1(α)

ε
+ O(ε

3
2 )

]
, (55)

with some normalization constant N . This expansion warrants
some explanation. Since we know that the system becomes
underdamped for large energies, we anticipate that, similar
to the result (37), the phase-space density is to leading order
independent of the angle α. Another way to see this is that
the operator Lε,α in Eq. (14) is apparently of order E−1 for
large energies, so that we have �∂αP (ε,α) = O(E−1). The
power-law behavior of the leading-order term and half-integer
order terms in the expansion are motivated by the large-energy
expansion of the stationary energy density (37),

Pε(ε)  Z−1
ε (2ε)−

1
D

[
1 −

√
2

Dε
1
2

+ 1

D2ε
+ O(ε− 3

2 )

]
, (56)

where similar terms occur. We plug the expansion (55) into the
Kramers-Fokker-Planck equation (14) and expand for large
energies, resulting in an equation containing powers of ε.
Equating orders of ε, we find conditions on the functions
g1/2(α), g1(α), and so on. Up to order ε−1, these read

∂αg1/2(α) = 0,

∂αg1(α) = 1

2�
{−(1 + 2β)[2Dβ sin2(α) − 1]

+Dβ cos2(α) + cot2(α)}. (57)

The first condition obviously demands that g1/2(α) = g̃1/2 is a
constant, while the second one gives us after integration

g1(α) = − 1

2�
{cot(α) + β[2α(Dβ − 1)

− D(1 + β) sin(2α)]} + g̃1. (58)

Demanding that g1(α) should be 2π periodic, we get a
condition on β that yields β = 0 or β = −1/D. Since the
first solution is non-normalizable at large energies, β = −1/D

is the relevant solution. This shows that the power-law tails
Pε(ε) ∝ ε−1/D are, in fact, the universal large-energy behavior.
Apart from the constant g̃1, the above is then completely
equivalent to the large-energy expansion of the large-�
solution [Eq. (53)], which is reassuring. The constants g̃1/2 and
g̃1 have to be determined from next order in the expansion.

However, Eq. (58) has the same issue that we already
observed with Eq. (53): It diverges at α = 0,π . The reason
for this is that we expanded Lε,α for large ε without paying
attention to α. However, as we saw before, the limits ε → ∞
and α → 0 do not commute. Because of this, we need to
perform a similar expansion, but in the region where α is
close to 0 or π , i.e., where close to the turning points, where
the energy is large but the momentum is not. In this region,
however, the position x is of order

√
ε, so we can expand

Eq. (12) for large x. Recalling Eq. (12),[
�(−p∂x + x∂p) + ∂p

(
p

1 + p2
+ D∂p

)]
PS(x,p) = 0,

(59)

where we explicitly denote the solution inside the strip by
PS , we see that for x large and p of order 1, the very first
term is of order 1/x, the second one are of order x, and
the final two terms are of order 1. Note that PP (ε,α) =
PS(

√
2ε cos(α),

√
2ε sin(α)); i.e., the Jacobian of the variable

transformation is unity. We write an expansion for the phase-
space density similar to Eq. (55),

PS(x,p)  M|x|γ
[

1 + h1/2(p)

x
+ h1(p)

x2
+ O(x−3)

]
, (60)

where M is a normalization constant. We plug this into
Eq. (59), expand for large x, and evaluate the coefficients,

�∂ph1/2(p) = −∂p

p

1 + p2
,

�∂ph1(p) = −∂p

(
p

1 + p2
+ D∂p

)
h1/2(p). (61)

Solving for h1/2(p) and h1(p), we have

h1/2(p) = − 1

�

p

1 + p2
+ h̃1/2,

h1(p) = D + p2(1 − D)

�2(1 + p2)2
− h̃1/2 p

�(1 + p2)
+ h̃1. (62)

So far, the two expansions Eqs. (55) and (60) are independent
of each other. Whereas Eq. (55) is valid at most points in phase
space, where |p| � 1 (or equivalently |α| � 1/

√
2ε), Eq. (60)

describes the strip where |p| � 1 (or equivalently |α| �
√

2ε).
However, they describe an expansion of the same function in
these different areas of phase space and consequently should
be related. In particular, taking the |p| → ∞ limit of Eq. (60)
inside the strip should match onto the α → 0 limit of Eq. (55)
outside the strip. From the zeroth-order term this immediately
gives γ = 2β = −2/D and M = 21/DN . Further expanding
g1/2 and g1(α) around α = 0 gives

g1/2(α)ε− 1
2 = g̃1/2ε

− 1
2 ,

g1(α)ε−1 
[
g̃1 − 1

2�α
+ O(α)

]
ε−1. (63)
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We need to compare this to the large-p expansion of h1/2(p)
and h1(p):

h1/2(p)x−1 
{
h̃1/2 − 1

�

[
1

p
− 1

p3
+ O(p−5)

]}
x−1

h1(p)x−2 
[
h̃1 + 1

�2

1 − D

p2
− h̃1/2

�

(
1

p
− 1

p3

)

+O(p−4)

]
x−2. (64)

Close to α = 0, we further have p  √
2ε[α + O(α3)] and

x  √
2ε[1 + O(α2)] and thus

h1/2(p)(2ε)−
1
2  h̃1/2(2ε)−

1
2 − 1

2�

1

αε
+ O(ε−3/2),

h1(p)(2ε)−1  h̃1(2ε)−1 + O(ε− 3
2 ). (65)

Matching the coefficients of different orders in ε between
Eqs. (63) and (65) then connects the integration constants of the
two expansions: h̃1/2 = g̃1/2/

√
2 and h̃1 = g̃1/2. As remarked

before, we need to go to higher orders in ε to find the integration
constants g̃1/2 and g̃1. This is similar to the function f̃1(ε) we
found for the large-� expansion in Eq. (43). This procedure is
carried out up to order ε−2 in Appendix B. The result, plotted

FIG. 14. Phase-space probability density for D = 0.3 and � =
0.5 from the large-energy expansion Eq. (66), plotted using energy
and phase-space angle (E,α). The thick black lines denote the
approximate boundary between the strip and the outside area.
Note that for large energies, the matching at the boundary works
increasingly well.

in Fig. 14, for the expansion up to first order, in terms of ε and
α is

PP (ε,α)  Nε− 1
D

⎧⎨
⎩

1 −
√

2
D

ε−1/2 + {
1

D2 + 1
2�

[(
1 + 1

D

)
sin(2α) − cot(α)

]}
ε−1, for

√
2εα � 1,

1 − [√
2

D
+

√
εα

�(1+2εα2)

]
ε−1/2 + {

1
D2 + 1

2�2

[
2D−1

(1+2εα2)2 + D−D2+2
√

2εα�
D(1+2εα2)

]}
ε−1, for

√
2εα � 1.

(66)

The above discussion shows that the power-law tail found
in the large-� result (37) is, in fact, generic for large energies,
where the system always is underdamped, independent of �.
To leading order, the stationary state is thus characterized by
the energy. Just like for small D and large �, the corrections
lead to a complex structure of the phase-space density.
We note that while the large-energy expansion agrees with
the first-order large-� expansion in the appropriate limits,
the contribution from the strip actually also contains terms
of order �−2. In that sense, just as the first-order large-�
expansion contains information that is not contained in the
first-order large-energy one, the converse is also true.

VIII. PROBABILITY CURRENTS AND
DETAILED BALANCE

In the previous sections we discussed the unusual stationary
state behavior of confined atoms in Sisyphus cooling. The sta-
tionary state is nonthermal in that there exists no well-defined
temperature and that energy equipartition does not hold. In that
sense, we may refer to this stationary state as a nonequilibrium
stationary state. In this section, we examine the stationary
state from the viewpoint of detailed balance and quantify the
deviations from the latter in order to gain a more detailed
understanding of the nonequilibrium properties of the system.

Detailed balance, which is often taken as the defining
property of an equilibrium system, means that for every
possible transition in the system, the forward and backward

process are equally likely [17,20]. In terms of the transition
probabilities, this can be expressed as [20]

P (x ′,p′,t + τ ; x,p,t) = P (x, − p,t + τ ; x ′, − p′,t), (67)

where P (x ′,p′,t ′; x,p,t) is the joint probability density for
finding a particle at (x,p) at time t and at (x ′,p′) at time t ′.
Here the minus sign in front of the momentum is a consequence
of the momentum being odd under time reversal. For the
stationary state in a Markovian system, we can express this in
terms of the conditional probability density P (x ′,p′,τ |x,p,0):

P (x ′,p′,τ |x,p,0)P (x,p)

= P (x, − p,τ |x ′, − p′,0)P (x ′, − p′). (68)

For τ = 0, the conditional probability density reduces to
a δ function, P (x ′,p′,0|x,p,0) = δ(x − x ′)δ(p − p′). Since
this function is even under (p,p′) → (−p, − p′), detailed
balance implies that P (x,p) = P (x, − p); i.e., the stationary
probability density has to be even under momentum reversal
[20]. As we saw in Secs. V and VI, the stationary state of our
system of confined cold atoms does not satisfy this property
and therefore does not respect detailed balance.

For a Kramers-Fokker-Planck equation describing one-
dimensional underdamped motion in a potential,

{−p∂x + ∂p[U ′(x) − Ffric(p) + Dp∂p]}P (x,p) = 0, (69)
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detailed balance is equivalent to the conditions [17,38]

Dp − D−p = 0, (70a)

∂xJ
rev
x + ∂pJ rev

p = 0, (70b)

J ir
x = J ir

p = 0. (70c)

Note that we use dimensionless variables here. For a confined
particle, the reversible currents J rev

i correspond to the oscil-
latory motion of the particle in the potential. The irreversible
currents, on the other hand, are induced by the dissipative and
fluctuating forces due to the bath. Equation (70a) implies that
the momentum diffusion coefficient Dp should be an even
function of p. This condition holds for the optical lattice
system. For Eq. (69) the reversible and irreversible probability
currents are given by

J rev
x = pP (x,p), J rev

p = −U ′(x)P (x,p),

J ir
x = 0, J ir

p = [Ffric(p) − Dp∂p]P (x,p). (71)

Plugging this into Eq. (70), we see that detailed balance
is equivalent to stationary solution P (x,p) solving both the
Hamiltonian and the “bath” part of the Kramers-Fokker-Planck
equation individually:

[−p∂x + U ′(x)∂p]P (x,p) = 0, (72)

[−Ffric(p) + Dp∂p]P (x,p) = 0. (73)

Equation (72) implies that P (x,p) = f [p2/2 + U (x)]. From
Eq. (73), we further have

P (x,p) = g(x) exp

[∫ p

0
dp′ Ffric(p′)

D′
p

]
. (74)

The two expressions for P (x,p) are compatible only if a
fluctuation-dissipation relation holds,

Ffric(p)

Dp

= −β̃p, (75)

and we have the Boltzmann-Gibbs density,

P (x,p) = N exp

{
− β̃

[
p2

2
+ U (x)

]}
, (76)

where β̃ > 0 plays the role of an inverse effective temperature.
Thus, for the general class of systems described by Eq. (69),
an (effective) Boltzmann-Gibbs ensemble is the only possible
solution obeying detailed balance [39]. For Sisyphus cooling,
we have from Eq. (7) in terms of dimensionless variables
Ffric = −p/(1 + p2),Dp = D[1 + D(1 + p2)] and thus,

Ffric(p)

Dp

=
− p

1+p2

D + DD

1+p2

, (77)

with D = D1/D0; see Eq. (8). This satisfies the condition
(75) only for D → 0, where we obtain the Boltzmann-Gibbs
density, see Sec. V and Appendix C. In this limit D1/γp2

c

corresponds to the above defined effective temperature β̃. For
D1 = 0, as assumed in the previous sections, the effective
temperature in the Boltzmann-Gibbs limit D = D0/γp2

c → 0
vanishes. The violation of detailed balance and thus the

nonequilibrium nature are due to the absence of a fluctuation-
dissipation relation like Eq. (75) between the noise and the
friction force. While the friction force and the momentum-
dependent part DD/(1 + p2) of the diffusion coefficient [see
Eq. (7) and the following discussion] are both due to the
motion of the atoms in the optical lattice and thus obey a
fluctuation-dissipation relation, the momentum-independent
part D of the diffusion coefficient, which represents spon-
taneous emission of photons, has no dissipative counterpart.
A similar breakdown of detailed balance can also be observed
in other systems with nonlinear friction forces [39,40].

We now want to quantify the violation of the detailed-
balance conditions Eq. (70). We focus on the case where the
diffusion coefficient is even in the momentum so that Eq. (70a)
is satisfied. The remaining two conditions are then equivalent
to Eqs. (72) and (73). These two equations imply a geometric
property for the total probability current �J = (Jx,Jp), where
Ji = J rev

i + J ir
i . As is verified by direct calculation, as long as

detailed balance holds, the probability current is perpendicular
to the gradient of the density �∇P = (∂xP,∂pP ), i.e., �J · �∇P =
0 [41]. This means that for a system with detailed balance, the
probability current always flows along equiprobability lines.
For the optical lattice system with D �= 0, on the other hand,
detailed balance is broken and thus �J · �∇P �= 0. The current is
related to the local mean phase-space velocity via �vP = �J/P ,
where, by definition,

∂t

(〈x〉
〈p〉
)

= 〈�vP 〉. (78)

In the steady state, the left hand side vanishes and thus
the average phase-space velocity 〈�vP 〉 is zero; however, it
is generally still nonzero locally. We use the scalar product
between the phase-space velocity and the normalized gradient
of the density

φ = �vP · 1

P
�∇P =

�J · �∇P

P 2
(79)

as a measure of the misalignment between current and
equiprobability lines and hence detailed-balance violation. In
the large-� limit and for constant Dp ≡ D0, we can write the
probability density as

P (x,p)  P0(x,p)

[
1 + f (x,p)

�

]
+ O(�−2), (80)

with P0(x,p) = Pε[(x2 + p2)/2]/(2π ) and f (x,p) =
f1[(x2 + p2)/2, arctan(p/x)]; see Eq. (41). From the
definition of the probability current Eq. (71), we then find

φ = 1

P0(x,p)

{
[P0(x,p)[p∂x − x∂p]f (x,p)]

−
[

p

1 + p2
∂p + D{∂p ln(P0(x,p))}∂p

]
P0(x,p)

}
+ O(�−1). (81)

Note that φ depends on the first-order correction f (x,p)
even in the limit � → ∞. Further recognizing that [p∂x −
x∂p]f (x,p) = −∂αf1(ε,α) and using Eqs. (37) and (42), we
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FIG. 15. The scalar product between the mean velocity and the
gradient of the phase-space density φ = �vP · �∇P/P [Eq. (82)]. The
color corresponds to the value of φ; the arrows denote the direction
of the current parallel to the gradient: inward for positive φ, outward
for negative φ.

finally find

φ = ∂p

p

1 + p2
+ D∂2

p ln(P0(x,p))

= ∂p

p

1 + p2
− 2∂2

p ln(1 +
√

1 + p2 + x2) + O(�−1).

(82)

Intriguingly, φ is to leading order independent of D. This
seems counterintuitive, since the detailed-balance violations
should vanish for D → 0. As it turns out, this is an artifact
of setting D1 = 0, since then, as discussed above, the ef-
fective temperature for D → 0 is zero and there is thus no
well-defined detailed balance preserving state in this limit.
Repeating the calculation for a nonzero D1 yields limD→0 φ =
0 as it should; see Appendix D. The average 〈φ〉 over all
phase space is zero, reflecting the fact that there is no global
probability current in the steady state. We thus interpret φ as a
measure of local flow due to the detailed-balance violation of
the system. The quantity φ for � → ∞ is shown in Fig. 15,
where we see that the local phase-space velocity can be
both parallel and antiparallel to the density gradient. The
local mean phase-space velocity �vP = (ẋ,ṗ) represents the
average change in position and momentum of particles located
at a phase-space point (x,p). In areas where φ is positive,
particles on average move from a low-density to a high-density
region. This is mostly observed for small momenta, where the
friction is effective and thus causes a flow towards the central,
low-energy region. In most areas of phase space, the flow
is directed towards larger energies due to the weak friction,
balancing out the inward flow close to the (p = 0) axis.

We stipulate that probability currents that do not flow
along equiprobability lines are generally connected to a
nonzero entropy production as a measurable consequence of
the nonequilibrium nature of the system. The breaking of de-
tailed balance necessarily implies the presence of irreversible
probability currents in the system [42]. As shown in Ref. [43],
a distinct contribution to the entropy production also arises

from the breaking of detailed balance. Indeed, the entropy
production can be directly expressed via the irreversible
currents [44], which in the case of momentum-dependent
forces leads to an anomalous entropy production [45]. We
suggest that the geometric properties of the probability current
discussed above may yield a more detailed understanding of
the precise way the system deviates from equilibrium. We
leave this investigation to future work.

IX. PHYSICAL CONSIDERATIONS FOR THE
COLD ATOM SYSTEM

So far, we treated the solution of our main equation (12)
from a mathematical point of view, with only occasional
reference to the actual system of Sisyphus cooling of confined
atoms. In the following, we first delineate the experimentally
relevant parameter regime in terms of the dimensionless
parameters D and �. We also discuss the effects of the
momentum-dependent diffusion coefficient and Stark shifts
induced by introducing the confining potential. Finally, we
present numerical simulations for two example sets of param-
eters to estimate the magnitude of the observed effects. In the
following we refer to the dimensionful coordinates as x̃ and
p̃, while x and p denote their dimensionless counterparts; see
Eq. (12).

Magnitude of the confinement. As the semiclassical de-
scription of Sisyphus cooling relies on spatially averaging the
motion of the atoms over a wavelength of the cooling lattice [3],
it will work reliably only when the atoms are able to move over
several lattice periods on the time scale of interest. This puts a
natural constraint on the magnitude of the confining potential;
the latter has to be weak enough so as to not localize the atoms
on the length scale of the cooling lattice. We can estimate the
magnitude of the confining field by demanding that the typical
spread of the atomic cloud should be much larger than the
lattice period, 〈x̃2〉 � (2π/k)2, where k is the wave vector
of the cooling laser. As long as this holds and our theory is
valid, we have 〈x̃2〉 = p2

c /(mω)2〈x2〉, where 〈x2〉 is of order 1.
Thus, we should have ω � pck/(2πm) or � � pck/(2πmγ ).
In terms of the lattice parameters, the parameters pc, γ, D0,
and D1 can be expressed as [3]

pc = m�s0

9k
, γ = 3�k2|δ|

m�
,

D0 = 11�
2k2�s0

18
, D1 = �

2k2δ2s0

�
, (83)

where � is the natural linewidth of the atomic transition, δ < 0
is the laser detuning, and s0 = (2�2

R/�2)/(1 + 4δ2/�2) is the
saturation parameter with the Rabi frequency �R. The lattice
depth U0 is related to the above parameters by U0 = 2�δs0/3.
The dimensionless parameter D is given by D = 22Er/U0

with the recoil energy Er = �
2k2/(2m) corresponding to the

emission of a photon of wavelength k [46]. Using the above
relations for the parameters, we get the condition

� � 1

108π

��

Er

�s0

δ
. (84)

For cesium 133Cs, which is commonly used in Sisyphus cooling
experiments Er = 5.4 × 10−29J and � = 7.4 × 106 s−1 [47],
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and thus

� � 1.19
�s0

δ
. (85)

In the following, we consider two exemplary sets of parame-
ters, δ = 10� and �2

R = 40�2 (large detuning) and δ = 1.5�

and �2
R = 6.6�2 (moderate detuning). Both choices lead to

a lattice depth U0 ≈ 130Er , which is the point where the
minimal kinetic energy for free atoms is reached according
to the semiclassical treatment [3,48]. This leads to a value of
D ≈ 0.17. For these kinds of lattice parameters, we are thus
at moderate values of D, which are far enough from the point
where the average energy diverges [D = 1/2; see Eq. (38)] to
be able to characterize the system by the stationary solution,
yet still large enough for the deviations from Boltzmann-Gibbs
to become important; see Sec. V. In the large-detuning limit
the bound on � turns out to be � � 5.9 × 10−3, whereas
for moderate detuning we find � � 0.26. In both cases, �

has to be very small, which means that we cannot employ
the underdamped description of Sec. VI. However, we saw
in Eq. (26) that the deviations from energy equipartition
are most pronounced at small � and thus these effects are
rather important in this regime. For moderate detuning, and
not too small �, also the asymmetry of the phase-space
density, quantified in Eq. (28), might be observed. For the
simulations, we take � to be one-tenth of the above limit,
i.e., � = 5.9 × 10−4 for large detuning and � = 0.026 for
moderate detuning.

Momentum-dependent diffusion coefficient. In Sec. III, we
saw that the diffusion coefficient Dp actually depends on
momentum, but we so far ignored this since it does not
change the qualitative results of our analysis. The momentum-
dependent diffusion coefficient is given by

Dp̃ = D0 + D1

1 + p̃2

p2
c

, (86)

which reduces to the momentum-independent case for D1 = 0.
The momentum-dependent part is small for large momenta
|p̃| � pc, where the nonlinearity of the friction force becomes
important. Precisely for this reason, the qualitative results,
which hinge on this nonlinearity, are not changed by the
introduction of a finite D1, in particular the parameter D =
D0/(γp2

c ), which controls the behavior, is unchanged. As long
as the ratio D = D1/D0 is not too large, we can repeat the same
procedure as in Sec. V for the small-D expansion including the
momentum-dependent diffusion coefficient; see Appendix C.
As a result, we see that a nonzero D1 essentially amplifies
the deviations from the Boltzmann-Gibbs behavior. This is
intuitively reasonable, as an enhanced diffusion coefficient at
small momenta will push the particles to higher momenta,
where they feel the effect of the nonlinear friction more
strongly. In terms of the lattice parameters, the ratio D1/D0

can be expressed as [3]

D = D1

D0
= 18

11

δ2

�2
. (87)

For moderate detuning, D1 is thus comparable to D0,D ≈
3.7; for large detuning, D1 is much bigger than D0,D ≈ 160.
In both cases the modified small-D expansion presented in
Appendix C is not applicable and we have to rely on numerical

simulations. We note, however, that the trend of increasing
deviations from Boltzmann-Gibbs behavior with increasing D

persists.
Stark shifts. In the previous discussion, we treated the

harmonic confinement as an additional force that acts on the
atoms but does not otherwise affect the friction or diffusion
terms in the Kramers equation (12). Experimentally, the
confinement could be realized by a static, or low-frequency,
electric field. Then, the atomic states experience a position-
dependent light shift due to the interaction with the trapping
field. This light shift affects the detuning δ and thus the cooling
mechanism. For a two-level atom, the dc Stark shift to the
ground state is can be obtained from second-order perturbation
theory [49],

δεg = |〈e|Hi |g〉|2
εe − εg

, (88)

where g and e denote the ground and excited states, HI is
the interaction Hamiltonian, and (δ)ε is the respective energy
(shift). In a static electric field of amplitude E , the interaction
Hamiltonian reads

Hi = − �E �μ, (89)

with the atomic dipole operator μ. This gives us

εg = −1

2
α0E2, with α0 = −2

|〈e|μ|g〉|2
εe − εg

, (90)

α0 being the static polarizability of the atom. This quasistatic
approximation is valid when the frequency of the electric
field that constitutes the confinement is much lower than the
frequency of the atomic transition ω0 [49]. Introducing the
intensity I = 2cε0E2, this reads

εg = − α0

4cε0
I, (91)

or in terms of the potential U = −α0/(2ε0c)I,

εg(x̃) = 1
2U (x̃). (92)

The excited state has the opposite shift εe = −εg . In
our case, the trapping potential is harmonic, and we get the
estimate estimate for the total light shift ε = εg − εe

relative to the detuning,

ε

�δ
= 1

�δ
U (x̃) = mω2

2�δ
x̃2 = mv2

c

2�δ
x2, (93)

where in the last step we replaced the physical position x̃ by
the our dimensionless variable x. Using that 〈x2〉 is of order
one, we find for the average relative light shift

ε

�δ
≈ 1

324

��

Er

�s2
0

δ
≈ 1.2

�s2
0

δ
, (94)

where the rightmost expression is again for cesium. For large
detuning, we find that the relative light shifts are approximately
3.1 × 10−4. In the large-detuning regime, we can thus treat the
confining potential as a classical force without worrying about
the additional induced light shifts. For moderate detuning we
find relative shifts of around 0.09, which are small but might
still lead to a position-dependent detuning and thus cooling
rate. From this point of view, it is thus advantageous to work
in the large-detuning regime.
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FIG. 16. Momentum (red line) and position (blue line) probability
density versus position and momentum in units of the recoil
momentum pr = �k/m and the lattice wavelength λ = 2π/k for
medium detuning. The black line is the momentum probability density
for the same parameters without the confining potential.

Numerical results. Since our limiting expansions are not
valid for the parameters stated above, let us discuss some
results from numerical Langevin simulations with the above
parameters. Let us first discuss the case of moderate detuning.
Here we find a stationary average potential energy 〈Ep〉 ≈
90Er and average kinetic energy 〈Ek〉 ≈ 60Er , which yields
an equipartition ratio of 1.5. The potential energy is thus
significantly enhanced with respect to the kinetic one. This
is mirrored in a discernible difference between the position
and momentum distributions; see Fig. 16. Interestingly, the
average kinetic energy is smaller than the value for the same
parameters without the confining potential, 〈Ek〉free ≈ 83Er ,
which was obtained in Refs. [48,50]. We further find a
small but discernible asymmetry in the phase-space density,
resulting in an asymmetry parameter of η ≈ 1.02. The power-
law tails of the energy distribution can only be observed
at very large energies E � 103Er ; see Fig. 17. For large

FIG. 17. Energy probability density for model cesium as a
function of energy in units of the recoil energy. The red line
corresponds to medium detuning ( = 1.5�,I = 3.3Is), the blue
line to large detuning ( = 10�,I = 20Is). The dashed line is the
expected asymptotic power law PE(E) ∝ E−1/D for large energies.

FIG. 18. Momentum (red line) and position (blue line) probability
density versus position and momentum in units of the recoil
momentum pr = �k/m and the lattice wavelength λ = 2π/k for
large detuning. The black line is the momentum probability density
for the same parameters without the confining potential.

detuning, this asymmetry vanishes within the accuracy of the
simulations; however, both the potential and kinetic energy
are reduced considerably, to 〈Ep〉 ≈ 68Er and 〈Ek〉 ≈ 21Er .
The imbalance between potential and kinetic energy becomes
even larger at an equipartition ratio of 3.2 and the position
and momentum distribution differ significantly; see Fig. 18.
Most strikingly, the average kinetic energy is well below the
minimum value for Sisyphus cooling without confinement,
〈Ek〉free ≈ 66Er , within the semiclassical picture of course
[3,48]. At large detuning, the power-law tails of the energy
distribution cannot be observed for reasonable values of the
total energy; see Fig. 17. We note that a larger potential energy
compared to the kinetic one was found in terms of a diffusion
approximation in Ref. [48]. However, this approximation
predicts the divergence of potential and kinetic energy at
different values of D, which is in contradiction to the result
[Eq. (38)] that is confirmed by the numerical simulations.
Further, within the diffusion approximation, the kinetic energy
is unaffected by the confinement and always corresponds to
the result for unconfined atoms, again in contradiction to our
findings.

Measurement protocol. A possible protocol to measure
both the position and the momentum density of the atoms
independently may be the following: Taking into account
the above considerations, the atoms could trapped within a
confining field, provided by a laser beam that is very far red
detuned from the atomic transitions or by an electrostatic
potential. For simplicity one could trap the atoms in all
spatial directions but only have the optical lattice along one
direction, similar to the setup employed in Ref. [12] to observe
the diffusion of the atoms. Then we let the atoms relax
into a stationary state, the characteristic time scale for this
is estimated from our simulations being around 10 ms for
 = 1.5� and around 100 ms for  = 10�. In the stationary
state, we could then determine the position density of the
cloud by illuminating and imaging it. In order to obtain the
momentum density, we turn off both the confining field and
the optical lattice rapidly and take snapshots of the ensuing
ballistic expansion of the cloud. Once the size of the cloud is
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significantly bigger than its stationary extension in the trapped
state, the position of the atoms will essentially be proportional
to their momentum at the time of release times the flight time
and we can thus extract the momentum density in the trapped
state. We note that also this kind of time-of-flight measurement
was applied before in [10] to determine the steady momentum
density of Sisyphus cooled atoms without confinement. From
the position and momentum density one can then obtain the
average potential and kinetic energy by integration.

X. CONCLUSION

In the preceding sections, we have discussed the nonequi-
librium stationary state that results from confining cold atoms
that are subject to Sisyphus cooling. We obtained analytical
results in terms of expansions in three limiting regimes. The
common theme of all these expansions is that the leading-order
phase-space density is a function of the Hamiltonian only. The
advantage of this description is obvious: Instead of position
and momentum, we only need the total energy to characterize
the stationary state of the system. For small values of the
parameter D (D0 � γp2

c or U0 � Er ), which corresponds
to deep optical lattices in the physical system, we indeed
recover a Boltzmann-Gibbs-like density describing the center,
small-energy part of the phase-space density. However, this is
only correct to leading order, as the correction terms for any
finite D break the equivalence between energy and probability
and we need to describe the system in terms of position and
momentum. A measurable consequence is that the average
potential energy of the atoms will be larger than their average
kinetic energy. This expansion does not, however, make any
predictions about the tails of the probability density, which are
always exponential within the approximation, while, in reality,
they are power laws.

A complementary viewpoint is the underdamped limit,
which is attained either when the confining potential is strong
relative to the damping coefficient (ω � γ ) or for very large
energies [E � p2

c /(2m)]. In this underdamped limit, the atoms
perform oscillations in the confining potential, with an energy
that changes slowly in time. A natural consequence is that
the total energy describes the statistics to leading order. In
this limit, we ascertain that the phase-space density and its
marginals are indeed heavy-tailed power-law densities. We
stress that the exponent of the power-law is more negative
than for the case without the confining potential, implying that
confining the atoms does alter their statistics in a qualitative
manner. Once we go beyond the leading order, we again find
that the correction terms break the equivalence of energy and
probability.

Our analytical results are based on perturbation theory. In
the nonperturbative regime, where we expect larger effects, we
performed numerical simulations that confirm that the relevant
features persist even beyond the validity of the expansions.
In particular, the imbalance between potential and kinetic
energy can potentially be very large, so that measuring the
average potential energy in the trapped state does not allow
one to infer their kinetic energy. Rephrasing this in terms of
temperature, this means that the temperature extracted from
a measurement of the potential energy will be larger than
the actual kinetic temperature of the atoms, which often is

the quantity of interest. The fact that the minimum kinetic
temperature in the trapped state can actually be lower than
without the confining potential is surprising and would not
have been obtained from naively treating the system within
the thermal Boltzmann-Gibbs approximation.

Our results are thus interesting both from the viewpoint of
statistical mechanics and cold atom physics. From a statistical
mechanics perspective we have here a system that closely
approximates the equivalence of energy and probability, that
is a central hypothesis of equilibrium statistical mechanics, in
certain limits, which, however, can also show strong deviations
from this paradigm in other regimes. Predicting these intricate
statistics for a well-controlled and existing experimental
systems means that their experimental confirmation is within
reach. As for the more practical application, by combining
trapping and Sisyphus cooling, a continuously cooled atomic
cloud with a well-defined stationary state can be realized. Our
results suggest that in this situation the kinetic temperature
of the cloud can be even lower than without the trapping
as the confinement improves the efficiency of the cooling
mechanism. Further, Sisyphus cooling is often used as an
intermediate cooling stage. As such, if Sisyphus cooling is
employed with a confining field, knowing the resulting steady
state may be useful to properly design the subsequent cooling
stages. Finally, in a recent experiment (see Ref. [12]) focusing
on the superdiffusive dynamics of the unconfined atoms, the
atoms were actually prepared in a trap and then released. As we
show, the steady state for confined atoms differs qualitatively
from free atoms and a more detailed analysis of the free
expansion should take this nontrivial initial state into account.
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APPENDIX A: COEFFICIENTS FOR THE
SMALL-D EXPANSION

The coefficients in the expansion (20) can be obtained by
plugging the expansion into Eq. (19):

4∑
k=0

4−k∑
l=0

a
(1)
kl L0z

kul − 3u2 + u4 = 0, (A1)

with L0 = �(z∂u − u∂z) − u∂u + ∂2
u.

Acting with L0,

L0z
kul = �(lzk+1ul−1 − kzk−1ul+1) − lul + l(l − 1)ul−2,

(A2)

and demanding that the resulting equation should be valid
independent of u and z, we can equate the coefficient of any
specific combination of powers zkul to zero. The resulting
equations can be solved for the coefficients a

(1)
kl . We can

drastically reduce the number of equations by noting the
symmetry of our problem. The original equation for g(z,u), is,
just like the Fokker-Planck equation (13), invariant under an
inversion (z,u) → (−z, − u). As the solution should obey the
same symmetry, this immediately implies that all coefficients
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where k + l is odd should be zero. The remaining equations
then determine all of the remaining coefficients save a

(1)
00 :

a
(1)
kl = 0 for k + l odd, or k + l > 4,

a
(1)
02 = a

(1)
31 = 0, a

(1)
04 = 3(1 + �2)

4(3 + 4�2)
,

a
(1)
11 = − 3�

4(3 + 4�2)
, a

(1)
13 = �

4(3 + 4�2)
, (A3)

a
(1)
20 = 9

2(3 + 4�2)
, a

(1)
22 = 3�2

2(3 + 4�2)
,

a
(1)
40 = − 3�)

4(3 + 4�2)
.

The final coefficient a
(1)
00 is fixed by demanding that the

resulting probability density should be normalized:

a
(1)
00 = −3(9 + 8�2)

4(3 + 4�2)
. (A4)

APPENDIX B: ASYMPTOTIC MATCHING FOR
THE LARGE-ENERGY EXPANSION

From the discussion in Sec. VII, we know that the expansion
(55) outside the strip has singularities at α = 0,π . This means
that the expansion coefficients gk(α) can have different values
in the upper (p > 0) and lower (p < 0) half plane of phase
space. To account for this, we modify Eq. (55),

P ±
P (ε,α)  Nεβ

[
1 +

K∑
k=1

g±
k/2(α)

ε
k
2

+ O(ε− K+1
2 )

]
, (B1)

where “+” denotes p > 0 and “−” denotes p < 0. Similarly,
the approximate solutions to Eq. (59) inside the strip may be
different depending on whether we are in the right x > 0 or
left x < 0 half plane of phase space. Instead of Eq. (60), we
then write

P ±
S (x,p)  M|x|γ

[
1 +

K∑
k=1

h±
k/2(p)

xk
+ O(x−K−1)

]
, (B2)

where in this case “+” stands for x > 0 and “−” for x < 0.
We now plug the expansions (B1) [respectively (B2)] into the
appropriate equations (14) [respectively (59)], keeping terms
up to order K = 2. We find to lowest order in ε

g±
1/2(α) = g̃±

1/2, h±
1/2(p) = − 1

�

p

1 + p2
+ h̃±

1/2. (B3)

Here g̃ and h̃ denote integration constants. The next order
yields

g±
1 (α) = (1 + D) sin(2α) − D cot(α)

2D�
− αβ

�
(1 + Dβ) + g̃±

1 ,

h±
1 (p) = D + (1 − D)p2

�2(1 + p2)2
− p

�(1 + p2)
h̃±

1/2 + h̃±
1 . (B4)

Next we want to match the two solutions inside and outside
the strip across the boundary. Replacing x and p with ε and α,

respectively, we immediately find from the leading-order term

γ = β

2
, M = N

|2 cos(α)|β  N

2β
, (B5)

since the expansion Eq. (B2) is only valid for small α. For the
subleading orders, we match all terms of the same order in ε

and α. In the upper half plane, the matching corresponds to
taking the limit p → +∞ for the solution inside the strip and
again replacing x and p with ε and α, respectively,

P ±
S (

√
2ε cos(α),

√
2ε sin(α))

 N (2ε)
β

2 | cos(α)|β
{

1 + h̃±
1/2(p)

cos(α)
(2ε)−

1
2

+
[

h̃±
1

cos2(α)
− 1

� sin(α) cos(α)

]
(2ε)−1 + O(ε− 3

2 )

}
.

(B6)

This should match the result from outside the strip for α →
0,π . To order ε− 1

2 , we then find

g̃+
1/2 = h̃+

1/2√
2 cos(α)

= h̃+
1/2√
2

, α → 0 + ,

g̃+
1/2 = h̃−

1/2√
2 cos(α)

= − h̃−
1/2√
2

, α → π − . (B7)

The terms of order ε−1 give

−cot(α)

2�
+ g̃+

1

 h̃+
1

2 cos2(α)
− 1

2� sin(α) cos(α)
, α → 0 + ,

−cot(α)

2�
− π

�
β(1 + Dβ) + g̃+

1

 h̃−
1

2 cos2(α)
− 1

2� sin(α) cos(α)
, α → π − . (B8)

Since the cotangent tends to +∞ for α → 0+ and to −∞
for α → π−, the singular terms cancel and the last two
conditions simplify to g̃+

1 = h̃+
1 /2 = −h̃−

1 + πβ(1 + Dβ)/�.
Similarly, we find in the lower half plane, where we take
the limit p → −∞ from inside the strip and the limits α →
2π− [respectively, α → π+] from outside the strip, g̃−

1/2 =
h̃+

1/2/
√

2 = −h̃−
1/2/

√
2 [respectively, g̃−

1 = h̃+
1 /2 = h̃−

1 /2 +
πβ(1 + Dβ)/�]. From the lowest two orders in ε, we thus
find

g̃+
1/2 = g̃−

1/2 = h̃+
1/2/

√
2 = −h̃−

1/2/
√

2 ≡ a1/2,

g̃+
1 = g̃−

1 = h̃+
1 /2 = h̃−

1 /2 + π

�
β(1 + Dβ) ≡ a1. (B9)

We now use the fact that the phase-space probability density
has to be invariant under (x,p) → (−x, − p), or equivalently
α → α + π ; we must have for 0 < α < π outside the strip
P +

P (ε,α) = P −
P (ε,α + π ). To lowest order ε− 1

2 this condition
is trivially fulfilled. However, at order ε−1, we find a condition
on the (as yet unknown) exponent β,

g−
1 (α + π ) − g+

1 (α) = −π

�
β(1 + Dβ) = 0. (B10)
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Since the solution β = 0 is does not decay at large ε, we must
have β = −1/D. The two lowest orders do not provide any

constraint on the value of a1/2 and a1. To find the latter, we
need to use the next order ε− 3

2 , where we find outside the strip

g±
3/2(α) = g̃±

3/2 + a1/2
(2 + D)[(2 + 3D) sin(2α) − 2αD] − 4D cot(α)

8D�
. (B11)

Inside the strip, we have for large p

h±
3/2(p)  − (2 + D)a1/2√

2D
p2 + 3(1 + D)

D�
p + h̃±

3/2 − π (2 + D)

2D�
+ 1 + D − 2Da1

D�
p−1. (B12)

Since this coefficient is multiplied by x−3, the first two terms are of order ε− 1
2 α2 (note that we focus on the expansion around

α = 0 for simplicity; the case α = π can be examined in a similar manner) and have no correspondence outside the strip. The
next two terms are of order ε− 3

2 and should match the constant contribution from g±
3/2(α). Note that we get an extra contribution

of order ε− 3
2 from h±

1 (p) [Eq. (B4)]. Summing up, we have the following conditions:

g̃+
3/2 − a1/2 cot(α)

2�
 1

[
√

2 cos(α)]3

[
h̃+

3/2 − π (2 + D)

2D�

]
− a1/2

2� cos2(α) sin(α)
, α → 0 + ,

g̃+
3/2 − a1/2 cot(α)

2�
− a1/2π

4�
 1

[
√

2 cos(α)]3

[
h̃−

3/2 − π (2 + D)

2D�

]
+ a1/2

2� cos2(α) sin(α)
, α → π − ,

(B13)

g̃−
3/2 − a1/2 cot(α)

2�
− a1/2π

4�
 1

[
√

2 cos(α)]3

[
h̃−

3/2 − π (2 + D)

2D�

]
+ a1/2

2� cos2(α) sin(α)
, α → π + ,

g̃−
3/2 − a1/2 cot(α)

2�
− a1/2π

2�
 1

[
√

2 cos(α)]3

[
h̃+

3/2 − π (2 + D)

2D�

]
− a1/2

2� cos2(α) sin(α)
, α → 2π − .

The divergent terms once again cancel in the respective limits.
The remaining system of equations,

g̃+
3/2  1

2
√

2

[
h̃+

3/2 − π (2 + D)

2D�

]
, α → 0 + ,

g̃+
3/2 − a1/2π

4�
 − 1

2
√

2

[
h̃−

3/2 − π (2 + D)

2D�

]
, α → π − ,

g̃−
3/2 − a1/2π

4�
 − 1

2
√

2

[
h̃−

3/2 − π (2 + D)

2D�

]
, α → π + ,

g̃−
3/2 − a1/2π

2�
 1

2
√

2

[
h̃+

3/2 − π (2 + D)

2D�

]
, α → 2π − ,

(B14)

is solvable only for a1/2 = −√
2/D. Comparing this to the

large-frequency expansion Eq. (56), this precisely recovers
the first correction to the leading-order power law. The
corresponding solution for the remaining coefficients reads

g̃+
3/2 ≡ a3/2,

g̃−
3/2 = a3/2 −

√
2π (2 + D)

4D�
,

(B15)

h̃+
3/2 = 2

√
2a3/2 + π (2 + D)

2D�
,

h̃−
3/2 = −2

√
2a3/2 − π (2 + D)

2D�
.

A similar but lengthy argument for the order ε−2 terms fixes
the value of a1 = 1/D2, in agreement with Eq. (56).

APPENDIX C: MOMENTUM-DEPENDENT DIFFUSION
COEFFICIENT—SMALL D

In the presence of a the momentum-dependent diffusion co-
efficient Dp = D0 + D1/(1 + p2/p2

c ), the rescaled Kramers-
Fokker-Planck equation (13) reads{

�(−u∂z + z∂u) + ∂u

[
u

1 + Du2
+
(

1 + D

1 + Du2

)
∂u

]}
×PD(z,u) = 0, (C1)

where we defined D = D0/D1 (see Sec. IX). In the limit D →
0 with D fixed, the solution is a slightly modified Boltzmann-
Gibbs form:

PBG(z,u) = 1

2π (1 + D)
e
− z2+u2

2(1+D) . (C2)

In complete analogy to Sec. V, we define an auxiliary function
g(z,u) via

PD(z,u) = PBG(z,u)g(z,u), (C3)

which yields an equation for g(z,u) similar to Eq. (17),

[L0 + DL1 + D2L2]g(z,u) = 0,

L0 = κ2
[
�(z∂u − u∂z) − u∂u + κ∂2

u

]
,

L1 = 2�κ2(zu2∂u − u3∂z) − 3κu2 + u4 − (2κ + κ2)u3∂u

+ (κ2 + κ3)u2∂2
u + 2(κ2 − κ3)u∂u,

L2 = �κ2(zu4∂u − u5∂z) − κu4 + u6 − 2κu5∂u+κ2u4∂2
u,

(C4)
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where we defined κ = 1 + D. The structure of the individual
operators is the same as for D = 0, so that we can still expect
an expansion of the form

g(z,u) = 1 +
M∑

n=1

Dn

4n∑
k=0

4n−k∑
l=0

a
(n)
k,l z

kul, (C5)

for the solution. However, since the individual operators are
now proportional to powers of κ = 1 + D, the expansion will
only work for D of, at most, order 1. Plugging the expansion
(C5) into Eq. (C4) and solving for the coefficients, we find up
to first order in D

P
(1)
D (z,u) = e− z2+u2

2κ

2πκ

{
1 + D

4(3 + 4�2)

[
3u4

κ2
+ 18z2

κ
− 27

+
(

4u3z

κ2
− 12uz

κ

)
�

+
(

3(u2 + z2)2

κ2
− 24

)
�2

]}
, (C6)

which for D = 0 (κ = 1) reduces to the previous result,
Eq. (21). We can continue this expansion to higher orders, in
particular, to second order in D, we find for the equipartition
ratio Eq. (25)

χ (2) = 1 + 6κ

3 + 4�2
D2. (C7)

Since this expression increases linearly with κ = 1 + D1
D0

,
this shows that a nonzero D1 enhances the deviations from
equipartition.

APPENDIX D: MOMENTUM-DEPENDENT DIFFUSION
COEFFICIENT—LARGE �

Just like for the small-D expansion, we can also repeat the
large-� expansion of Sec. VI in the presence of a nonzero D1.
Employing the notation of Appendix C, the equivalent to the
Kramers-Fokker-Planck equation (14) including D1 reads

[�∂α + L̃ε,α] PP (ε,α) = 0,

with L̃ε,α = ∂α

sin(α) cos(α)

1 + 2ε sin2(α)
+ ∂ε

2ε sin2(α)

1 + 2ε sin2(α)

+D

{
2∂α sin(α) cos(α)∂ε + 1

2ε
∂α cos2(α)∂α + [sin2(α) − cos2(α)]∂ε + 2 sin2(α)∂εε∂ε

}

+DD

[
∂ε

2ε sin2(α)

1 + 2ε sin2(α)
∂ε + ∂ε

sin(α) cos(α)

1 + 2ε sin2(α)
∂α + ∂α

sin(α) cos(α)

1 + 2ε sin2(α)
∂ε + 1

2ε
∂α

2ε cos2(α)

1 + 2ε sin2(α)
∂α

]
. (D1)

As discussed in Sec. VI, for � � 1 we have to leading order ∂αPP (ε,α) = 0. Then we can average the above equation over α to
obtain an equation for the energy probability density, similar to Eq. (36),

∂ε

{
1 − 1√

1 + 2ε
+ D

[
ε + D

(
1 − 1√

1 + 2ε

)]
∂ε

}
Pε(ε) = 0. (D2)

The solution to this equation reads

Pε(ε) = 1

Zε

[2D + (1 + 2ε + √
1 + 2ε)]−

1
D exp

⎡
⎣ 2

D

artanh
( 1+2

√
1+2ε√

1−8D

)− artanh
(

3√
1−8D

)
√

1 − 8D

⎤
⎦ (D3)

for D �= 1/8 and

Pε(ε) = 1

Zε

(1 + 2
√

1 + 2ε)−
2
D exp

[
− 2

1 + 2
√

1 + 2ε

]
(D4)

for the special case D = 1/8. In particular, we see that the asymptotic behavior Pε(ε) ∼ ε− 1
D is not changed by the introduction

of D1 (respectively, D). Repeating the derivation of Sec. VIII for the quantity φ follows the same lines as outlined there; we find
that Eq. (82) is modified slightly due to the momentum-dependent diffusion coefficient,

φ = ∂p

p

1 + p2
+ ∂p

[
D

(
1 + D

1 + p2

)
∂p ln(P0(x,p))

]
, (D5)

with P0(x,p) = Pε[(x2 + p2)/2]/(2π ). In particular, this expression now depends explicitly on D and vanishes in the limit
D → 0 with D1 = γp2

cDD finite:

φ  −
1 + p4 − x2 − 1+x2√

1+p2+x2
+ p2

[
2 − 1√

1+x2+p2
+ x2

(
1 + 1√

1+x2+p2

)]
2(1 + p2)2

γp2
c

D1
D + O(D2). (D6)
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