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Spin-glass phase transitions and minimum energy of the random feedback vertex set problem
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A feedback vertex set (FVS) of an undirected graph contains vertices from every cycle of this graph.
Constructing a FVS of sufficiently small cardinality is very difficult in the worst cases, but for random graphs
this problem can be efficiently solved by converting it into an appropriate spin-glass model [H.-J. Zhou, Eur.
Phys. J. B 86, 455 (2013)]. In the present work we study the spin-glass phase transitions and the minimum energy
density of the random FVS problem by the first-step replica-symmetry-breaking (1RSB) mean-field theory.
For both regular random graphs and Erdös-Rényi graphs, we determine the inverse temperature βl at which
the replica-symmetric mean-field theory loses its local stability, the inverse temperature βd of the dynamical
(clustering) phase transition, and the inverse temperature βs of the static (condensation) phase transition. These
critical inverse temperatures all change with the mean vertex degree in a nonmonotonic way, and βd is distinct
from βs for regular random graphs of vertex degrees K > 60, while βd are identical to βs for Erdös-Rényi graphs
at least up to mean vertex degree c = 512. We then derive the zero-temperature limit of the 1RSB theory and use
it to compute the minimum FVS cardinality.
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I. INTRODUCTION

A undirected graph is formed by a set of vertices and a
set of undirected edges between the vertices. A cycle (or a
loop) of such a graph is a closed path connected by a set
of different edges. A feedback vertex set (FVS) is a subset
of vertices intersecting with every cycle of this graph [1]. If
all the vertices in a FVS are deleted from the graph, then
there will be no cycle in the remaining subgraph. The FVS
problem aims at constructing a FVS of cardinality (size)
not exceeding a certain prespecified value or proving the
nonexistence of such a FVS [1,2]. This problem has wide
practical applications, such as combinatorial circuit design
[1] and deadlock recovery in operating systems [3], network
dynamics analysis [4,5], epidemic spreading [6], and network
targeted attack and optimal percolation [7,8].

The FVS problem is a combinatorial optimization problem
in the nondeterministic polynomial-complete (NP-complete)
complexity class [9]. It is generally believed (yet not rigorously
proven) to be unsolvable by a complete algorithm in time
bounded by a polynomial function of the number of vertices
or edges in the graph, except for some special instances on
which this problem can be solved by polynomial algorithms,
like cubic graphs [10], permutation graphs [11], and interval
graphs [12]. So far, the most efficient complete algorithm
constructs a FVS of global minimum cardinality in time
∝ 1.7548N by solving the equivalent maximum induced
forest problem [13]. Many heuristic algorithms have been
developed to solve the FVS problem approximately. These
algorithms are incomplete as they may fail for some input
graph instances, but they have the merit of reaching a FVS
solution very quickly. One famous heuristic algorithm is the
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FEEDBACK algorithm of Bafna and coauthors [14], which
is guaranteed to return a FVS solution of cardinality at most
2 times the minimum value for any input graph. In a more
recent paper, two of the present authors demonstrated that a
heuristic algorithm based on the idea of simulated annealing
extensively outperforms FEEDBACK on random graphs and
finite-dimensional lattices [15]. The FVS problem has also
been treated by statistical physics methods and the associated
belief propagation-guided decimation (BPD) algorithm [16].
This physics-inspired message-passing algorithm outperforms
simulated annealing to some extent and constructs a FVS
of cardinality being very close to the global minimum
value.

The spin-glass model in Ref. [16] implements the global
cycle constraints as a set of local edge constraints, with each
vertex having only three essentially different states. This spin-
glass model was then studied by mean-field theory at the level
of replica symmetry (RS). At low temperatures (equivalently
high inverse temperatures β), the RS iterative equations could
not reach a self-consistent solution [16], which indicates that
the RS theory is valid only at sufficiently high temperatures
and that the low-temperature property of the FVS spin-glass
model is very complex. In the present paper, we continue to
study this spin-glass model at finite temperatures and at the
zero temperature limit using the first-step replica-symmetry-
breaking (1RSB) mean-field theory [17–19]. We mainly work
on the ensemble of regular random (RR) graphs and in some
cases also consider the ensemble of Erdös-Rényi (ER) random
graphs. The degree of a vertex is defined as the number of
edges attached to this vertex. Each vertex in a RR graph has
the same degree K , but the edges in the graph are connected
completely at random. On the other hand, an ER graph is
created by setting up M = (c/2)N edges completely at random
between N vertices, where c is the mean vertex degree. When
N is sufficiently large, the degree of a randomly chosen vertex
follows the Poisson distribution with mean value c [20].
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After reviewing the spin-glass model and the RS mean-field
theory in Sec. II, we analyze in Sec. III the local stability of
the RS theory analytically for RR graphs and numerically
for ER graphs and then study the dynamical (clustering) and
static (condensation) spin-glass transitions in Sec. IV. We
determine the critical inverse temperature βl for the local
stability of the RS theory, the inverse temperature βd of the
dynamical transition, and the inverse temperature βs of the
static transition. We find that these critical inverse temperatures
change with the (mean) vertex degree in a nonmonotonic way.
The inverse temperature βl coincides with βd when K or c

is relatively small. But βl exceeds βd when K > 35 for RR
graphs or c > 100 for ER graphs and βl may even exceeds βs ,
suggesting that the RS mean-field theory can still be locally
stable even when the system is deep in the spin-glass phase.
For the ER graph ensemble we find that βd is indistinguishable
from βs for all the mean vertex degrees explored (up to
c = 512), but for the RR graph ensemble of K > 60 we find
that βs > βd . The existence of two distinct spin-glass phases
for dense RR graphs is not yet fully understood and needs to
be further investigated.

In Sec. V we derive the β → ∞ limit of the 1RSB mean-
field theory and use the resulting survey propagation (SP)
equation to compute the ensemble-averaged minimum FVS
cardinality. Our zero-temperature 1RSB results improve over
the RS mean-field results, and they are in agreement with some
known rigorous mathematical results [21,22], the mean-field
results of another closely related work [6], and the algorithmic
results of Refs. [15,16]. We point out that the zero-temperature
SP equation can be exploited by message-passing algorithms
to achieve even better FVS solutions for single graph instances
than the BPD algorithm.

Cycles are nonlocal properties of random graphs, and the
cycle constraints in the undirected FVS problem are therefore
global in nature. Phase transitions in globally constrained
spin-glass models and combinatorial optimization problems
are usually very hard to investigate. We believe the results
reported in this paper will also shed light on the energy
landscape properties of other globally constrained problems.

II. MODEL AND REPLICA-SYMMETRIC THEORY

We consider an undirected simple graph G formed by N

vertices and M edges. There is no self-edge from a vertex
to itself, and there is at most one edge between any pair of
vertices. For each vertex i ∈ {1,2, . . . ,N} we denote by ∂i the
set of vertices that are connected to i through an edge. The
degree di of vertex i is then the cardinality of ∂i (di ≡ |∂i|).

A. Local constraints and partition function

We assign a state Ai to each vertex i of graph G. Ai can take
(di + 2) possible non-negative integer values from the union
set {0,i} ∪ ∂i. If Ai = 0, then vertex i is regarded as being
empty, and otherwise it is occupied. In the latter case, if Ai = i,
then we say i is a root vertex, and otherwise Ai = j ∈ ∂i and
we say j is the parent vertex of i.

To represent the global cycle constraints in a distributed
way, we define for each edge (i,j ) between vertices i and j a

counting number C(i,j ) as [16]

C(i,j )(Ai,Aj ) ≡ δ0
Ai

δ0
Aj

+ δ0
Ai

(
1 − δ0

Aj
− δi

Aj

) + δ0
Aj

(
1 − δ0

Ai
− δ

j

Ai

)
+ δ

j

Ai

(
1 − δ0

Aj
− δi

Aj

) + δi
Aj

(
1 − δ0

Ai
− δ

j

Ai

)
,

(1)

where δa
b = 1 if a = b and δa

b = 0 if a �= b. This counting
number is either 0 or 1. We say that edge (i,j ) is satisfied if and
only if Cij (Ai,Aj ) = 1; otherwise this edge is regarded as un-
satisfied. A microscopic configuration A ≡ (A1,A2, . . . ,AN )
is called a legal configuration if and only if it satisfies all the
M edges. A legal configuration A has an important graphical
property: Each connected component of the subgraph induced
by all the occupied vertices of A is either a tree (which has
n � 1 vertices and n − 1 edges) or a so-called cycle-tree
(which contains a single cycle and has n � 2 vertices and
n edges) [16].

Given a legal configuration A of graph G, we can easily
construct a feedback vertex set � as follows: (1) Add all the
empty vertices of A to �, and (2) if the subgraph induced by the
occupied vertices of A has one or more cycle-tree components,
then for each cycle-tree component we add a randomly chosen
vertex on the unique cycle to � to break this cycle [16]. On
the other hand, given a feedback vertex set �, we can easily
construct many legal configurations A as follows: (1) Assign
all the vertices i ∈ � the empty state Ai = 0, and (2) for each
tree component (say, τ ) of the subgraph induced by all the
vertices outside �, randomly choose one vertex j ∈ τ as the
root (Aj = j ) and then determine the states of all the other
vertices in τ recursively: A nearest neighbor k of j has state
Ak = j and a nearest neighbor l �= j of k has state Al = k,
and so on.

We define the energy of a microscopic configuration A as

E(A) =
N∑

i=1

δ0
Ai

, (2)

which just counts the total number of empty vertices. Because
of the mapping between legal configurations and feedback ver-
tex sets, the energy function E(A) under the edge constraints
(1) serves as a very good proxy to the energy landscape of the
undirected FVS problem (see also Sec. II C). The minimum
value of E(A) over all legal configurations is referred to as the
ground-state energy and is denoted as E0 (and the ground-state
energy density is e0 ≡ E0/N). The corresponding configu-
rations are the ground-state configurations and the number
of all ground-state configurations is denoted as �0. Due to
the effect of cycle-trees the ground-state energy E0 might be
slightly lower than the cardinality of a minimum FVS, but the
difference is negligible for N sufficiently large [16].

The partition function of our spin-glass model is

Z(β) =
∑
A

exp[−βE(A)]
∏

(i,j )∈G
C(i,j )(Ai,Aj ), (3)

where β is the inverse temperature. Notice that if a configura-
tion is not legal, it has no contribution to Z(β), therefore Z(β)
is the sum of the statistical weights e−βE(A) of all the legal
configurations A. The equilibrium probability of observing a
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legal configuration A is then

μ(A) = 1

Z(β)
exp[−βE(A)]

∏
(i,j )∈G

C(i,j )(Ai,Aj ). (4)

The total free energy of the system is related to the partition
function through

F (β) = − 1

β
ln Z(β). (5)

The free energy has the limiting expression of F = E0 −
1
β

ln �0 as β approaches infinity.

B. Belief-propagation equation

The RS mean-field theory assumes that all the equilibrium
configurations of the spin-glass model (3) form a single
macroscopic state [19]. The states of two or more distantly
separated vertices are then regarded as uncorrelated and their
joint distribution is expressed as the product of individual
vertices’ marginal distributions. Let us denote by q

Ai

i the
marginal probability of vertex i’s state being Ai . The state
Ai is strongly affected by its nearest neighbors, and the states
of the vertices in ∂i are also strongly correlated since all of
them interact with i. Due to the local treelike structure of
random graphs, if vertex i is removed, then the vertices in set
∂i will become distantly separated and their states may then be
assumed as uncorrelated. For two vertices i and j connected
by an edge (i,j ), let us denote by q

Aj

j→i the marginal probability
of j being in state Aj in the absence of i (such a probability is
referred to as a cavity probability in the literature).

After considering the interactions of i with all the vertices
in ∂i, the RS theory then predicts that [16]

q0
i = e−β

zi

, (6a)

qi
i = 1

zi

∏
j∈∂i

[
q0

j→i + q
j

j→i

]
, (6b)

q
j

i = 1

zi

(1 − q0
j→i)

∏
k∈∂i\j

[
q0

k→i + qk
k→i

]
, (j ∈ ∂i), (6c)

where ∂i\j means the set obtained by deleting vertex j from
the set ∂i, and the normalization factor zi is

zi ≡ e−β +
[

1 +
∑
k∈∂i

1 − q0
k→i

q0
k→i + qk

k→i

] ∏
j∈∂i

[
q0

j→i + q
j

j→i

]
.

(7)
Similarly, the probabilities q

Ai

i→j and q
Aj

j→i on all the edges
(i,j ) can be self-consistently determined by a set of belief-
propagation (BP) equations [16]:

q0
i→j = e−β

zi→j

, (8a)

qi
i→j = 1

zi→j

∏
k∈∂i\j

[
q0

k→i + qk
k→i

]
, (8b)

ql
i→j = 1

zi→j

(
1 − q0

l→i

) ∏
k∈∂i\j,l

[
q0

k→i + qk
k→i

]
, (8c)

where l ∈ ∂i\j in Eq. (8c) and ∂i\j,l means the set obtained
by deleting vertices j and l from ∂i, and the normalization
factor zi→j is

zi→j ≡ e−β+
⎡
⎣1 +

∑
k∈∂i\j

1 − q0
k→i

q0
k→i + qk

k→i

⎤
⎦ ∏

l∈∂i\j

[
q0

l→i+ql
l→i

]
.

(9)
In our later discussions, Eq. (8) will be abbreviated as qi→j =
b({qk→i}).

At a fixed point of the BP equation (8), we can evaluate
the total free energy (5) as the sum of contributions from all
vertices minus that from all edges [16]:

F =
N∑

i=1

fi −
∑

(i,j )∈G
fij . (10)

The free-energy contributions fi and fij of a vertex i and an
edge (i,j ) are computed through

fi = − 1

β
ln[zi], (11)

fij = − 1

β
ln

[
q0

i→j q
0
j→i + (

1 − q0
i→j

)(
q0

j→i + q
j

j→i

)
+ (

1 − q0
j→i

)(
q0

i→j + qi
i→j

)]
. (12)

The expression for the mean total energy 〈E〉 is

〈E〉 =
N∑

i=1

q0
i = e−β

N∑
i=1

1

zi

. (13)

The RS mean-field equations (6), (8), and (10) are applica-
ble to single graph instances. We can also use these equations to
obtain the ensemble-averaged results. At the thermodynamic
limit of N → ∞, a random graph is characterized by its degree
distribution P (d), which is the probability of a randomly
chosen vertex having d nearest neighbors. As there is no degree
correlation in a random graph, the probability Q(d) that the
degree of the vertex at the end of a randomly chosen edge
being d is related to P (d) through

Q(d) = d P (d)∑
d ′�1 d ′ P (d ′)

(d � 1). (14)

In the literature Q(d) is often referred to as the excess degree
distribution. For the RR ensemble P (d) = Q(d) = δK

d ; for
the ER ensemble P (d) = e−ccd

d! and Q(d) = e−ccd−1

(d−1)! (both are
Poisson distributions).

Let us denote by P[qi→j ] the probability functional of the
cavity distributions qi→j , which gives the probability that
a randomly picked edge (i,j ) of the graph has the cavity
probability distribution qi→j . This probability functional is
governed by the following self-consistent equation:

P[q] =
∞∑

d=1

Q(d)
∫ d−1∏

j=1

DqjP[qj ]δ[q − b({qj })], (15)

where the Dirac δ functional δ[q − b({qj })] ensures that
the output cavity distribution q and the set of input cavity
distributions {qj } are related by the BP equation (8).
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For the RR graph ensemble, if we assume that the proba-
bility functional P[q] is a Dirac delta functional, then the RS
mean-field theory can be further simplified (see Appendix A).
At the limit of degree K → ∞, this simplified theory predicts
the ground-state energy density to be e0 ≈ 1 − 2 ln K

K
, which

agrees with the rigorous results of Ref. [23].

C. Some additional remarks

The described model (3) is essentially a three-state spin
glass with each vertex i being empty (Ai = 0), being a root
(Ai = i), or being a child (Ai ∈ ∂i), and we need only to update
the probabilities q0

i→j and qi
i→j through Eq. (8). Because of

this convenience and the local nature of the edge constraints,
the associated BPD algorithm is very efficient in solving the
FVS problem and also the closely related network optimal
attack problem for single graph instances [7,16].

On the theoretical side, as mentioned in Sec. II A, the
model does not achieve a one-to-one mapping between legal
configurations A and FVS solutions. The model allows a
connected component of occupied vertices to be a cycle-tree.
This will cause a tiny change to the energy, since one vertex
from each cycle-tree has to be deleted to bring it back to a tree.
For sparse random graphs, after very few finite-length cycles
are cut, the shortest cycle length in the remaining graph is of
order ln N , so the total number of cycle-trees will at most be
of order N/ ln N and the energy density change will at most
be of order 1/ ln N . So even in these worst cases the energetic
effect of cycle-trees can be safely neglected when N is
sufficiently large.

For each tree component formed by n occupied vertices
there are n different ways of choosing the root vertex.
Therefore, each forest of occupied vertices is associated with
an entropic weight

∏
m nm, where nm is the size of the mth

tree component in this forest [16]. But in the case of sparse
random graphs this spurious entropic effect will not cause an
extensive ground-state entropy. The simplest argument goes
as follows: Since the length of shortest cycles in the giant
connected component of the graph is of order ln N , each tree
component of the ground-state forest must contain at least
O(ln N ) vertices and the total number of such trees will at most
be of order N/ ln N ; consequently, the ground-state entropy
will at most be of order N

ln N
ln ln N which is not extensive. If

there are only a few minimum FVS solutions for the random
graph, then the ground-state entropy density of model (3) will
also approach zero (for N → ∞).

It is easy to map the FVS problem into a more conventional
spin-glass model by defining on each vertex i a height state
0 � hi � D and then requiring that if hi > 0 then vertex i

should have no neighbor of the same height and should have
at most one neighbor j with height hj > hi (see, e.g., the last
section of Ref. [16] and Refs. [6,24]). If the height limit D is
set to be equal to N , then this latter model achieves a faithful
representation of the FVS problem, but the computational cost
is extremely huge. In numerical and theoretical computations
[6,8], the maximum height D is always set to be much smaller
than N and limN→∞ D/N = 0. As a consequence, the lengths
of the typical cycles are all greatly exceeding the height limit D
and the cycle constraints become completely irrelevant for the
model. In contrast, the spin-glass model (3) does not introduce

any external height limit and all its constraints are directly
related to cycles. We therefore believe that model (3) is a
better model for the FVS problem on the conceptual level, in
addition to its practical advantage.

III. LOCAL STABILITY OF REPLICA-SYMMETRIC
THEORY

Before treating the spin-glass model (3) by the 1RSB
mean-field theory, let us first check the local stability of
the RS theory. Assume that a BP fixed-point solution, say,
{q̃i→j , q̃j→i : (i,j ) ∈ G}, has been reached. We perform a
perturbation to this fixed point,

q0
i→j = q̃0

i→j + ε0
i→j , qi

i→j = q̃i
i→j + εi

i→j , (16)

with ε0
i→j ,ε

i
i→j being sufficiently small. If the amplitudes of

all these quantities ε0
i→j and εi

i→j shrink during the iteration
of Eqs. (8a) and (8b), q0

i→j and qi
i→j will relax back to q̃0

i→j

and q̃i
i→j . We then say that the BP fixed point is locally stable;

otherwise, it is locally unstable [25–29].

A. Regular random graphs

For RR graphs the BP fixed point is easy to determine,
namely all q̃0

i→j = 1 − a and q̃i
i→j = b, with a and b computed

according to Eq. (A1) of Appendix A. We can then write an
iterative equation of perturbation as[

ε0
i→j

εi
i→j

]
= J

[∑
k∈∂i\j ε0

k→i∑
k∈∂i\j εk

k→i

]
, (17)

where

J =
⎡
⎣ ∂q0

i→j

∂q0
k→i

∂q0
i→j

∂qk
k→i

∂qi
i→j

∂q0
k→i

∂qi
i→j

∂qk
k→i

⎤
⎦ (18)

is a 2 × 2 matrix evaluated at the BP fixed point, whose
largest absolute eigenvalue is denoted as λ. It is reasonable
to assume that the perturbations ε0

i→j and εi
i→j follow the

distributions with mean value 0 and variance σ 2
0 and σ 2

r ,
respectively. Then the mean values of

∑
k∈∂i\j ε0

k→i and∑
k∈∂i\j εR

k→i are still 0 and their variances are (K − 1)σ 2
0 and

(K − 1)σ 2
r , respectively. After one iteration with Eq. (17) the

variance of ε0
i→j and εi

i→j must not exceed λ2(K − 1)σ 2
0 and

λ2(K − 1)σ 2
r . Considering that the perturbation should shrink

to 0 in the case of local stability, we have the local stability
criterion that (K − 1)λ2 < 1.

We have checked that the results obtained by such a stability
analysis are identical to those obtained by the alternative
method of the next subsection.

B. Erdös-Rényi random graphs

Because of the degree dispersion in the ER graph ensemble,
the analytical method of the preceding subsection is not
applicable here. Therefore, we can only measure the amplitude
of the perturbations during the BP iteration and then figure
out the region where the RS mean-field theory is locally
stable. Following Ref. [28], this numerical procedure starts
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FIG. 1. The critical inverse temperature βl of local stability of
the RS mean-field theory, the inverse temperature β∗ at which the RS
entropy density approaches zero, and the dynamical transition inverse
temperature βd . (a) The RR graph ensemble with vertex degree K;
(b) the ER graph ensemble with mean vertex degree c.

from running the RS population dynamics sufficiently long to
reach a steady state. Then a replica of the whole population
is created to get two identical populations, and one of them is
then perturbed slightly. Finally, we continue to perform the RS
population dynamics simulations starting from these two initial
populations using the same sequence of random numbers. In
case the two populations converge to each other, we regard the
RS mean-field theory to be locally stable, and otherwise it is
regarded as locally unstable.

C. Local stability results

The critical inverse temperature βl of local stability is
shown in Fig. 1 for the RR and ER network ensembles. To
make comparison easier, we plot in this figure also the inverse
temperature β∗, at which the RS entropy density reaches zero,
and the critical inverse temperature βd , at which the dynamical
spin-glass transitions occurs (see Sec. IV).

The inverse temperature βl is not a monotonic function of
the degree K (for RR graphs) or the mean degree c (for ER

graphs); it first decreases with K or c and then slowly increases
as K goes beyond 16 or c goes beyond 57. When K < 35 or
c < 100, βl coincides with the dynamical transition point βd ,
but βl > βd for larger values of K or c.

We also find that βl > β∗ at sufficiently large K or c values,
which means that the RS mean-field theory is still locally stable
even if it predicts a negative entropy. This observation clearly
demonstrates that βl should only be treated as an upper bound
of the inverse temperatures β at which the RS mean-field
theory is physically plausible. Indeed, the property that the
RS mean-field theory is locally stable at certain β < βl does
not mean the iteration of the BP equation (8) on single graph
instances will necessarily converge to a fixed point.

IV. DYNAMICAL AND STATIC PHASE TRANSITIONS

We now investigate spin-glass phase transitions in the
model (3). The 1RSB mean-field theory described here is
applicable to different random graph ensembles, but we carry
out numerical computations mainly on the RR ensemble.

A. First-step replica-symmetry-breaking theory

We first give a brief review of the 1RSB mean-field theory of
spin glasses [18,19]. According to this theory, at sufficiently
high inverse temperatures the space of legal configurations
may break into exponentially many subspaces, each of which
corresponds to a macroscopic state of the system and contains a
set of relatively similar legal configurations. In this subsection
we discuss the system at the level of macroscopic states. The
partition function of macroscopic state α is defined as

Zα(β) ≡ e−βFα =
∑
A∈α

exp[−βE(A)], (19)

where the sum runs over all the legal configurations in α, and
Fα is the free energy of α [18,19].

We can define a Boltzmann distribution at the level of
macroscopic states as

μα ≡ e−yFα

�(y; β)
. (20)

The parameter y is the inverse temperature at the macroscopic
level, which may be different from the inverse temperature β

at the level of microscopic configurations. The ratio between y

and β is referred to as the Parisi parameter [19]. The quantity
μα as defined in Eq. (20) determines the weight of state
α among all the macroscopic states, and the normalization
constant �(y; β) ≡ ∑

α e−yFα is the partition function at the
level of macroscopic states, which can also be calculated by
the integral

�(y; β) =
∫

df eN[−yf +
(f )], (21)

where f is the free-energy density of a macroscopic state, and

(f ), the complexity, is the entropy density of macroscopic
states with free-energy density f . A nonzero complexity value
is taken as a signature that the system is in a spin-glass phase
[30]. We can define the grand free energy G(y; β) of the system
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as

G(y; β) ≡ − 1

y
ln �(y; β). (22)

The mean free energy among different macroscopic states
is defined as 〈F 〉 ≡ ∑

α μαFα . In the thermodynamic limit
N → ∞, the macroscopic states with the free-energy density
f ∗ = argmaxf [−yf + 
(f )] dominate the partition func-
tion �(y; β), and then G(y; β) = N [f ∗ − 
(f ∗)/y] and
〈F 〉 = Nf ∗. Therefore the complexity is obtained through


 = y

N
[〈F 〉 − G]. (23)

For a given edge (i,j ), when there are many macroscopic
states, the cavity message qi→j from vertex i to vertex j

may differ in different macroscopic states. The distribution
of this message among all the macroscopic states is denoted
as Qi→j [qi→j ]. Under the distribution of Eq. (20) and for
random graphs, we have the following self-consistent equation
for Qi→j [qi→j ], which is referred to as the survey propagation
(SP) equation [18,31]:

Qi→j [qi→j ] = 1

�i→j

∫ ∏
k∈∂i\j

Dqk→i Qk→i[qk→i] e−yfi→j

× δ[qi→j − b({qk→i})], (24)

where fi→j is the free-energy change associated with the
interactions of vertex i with the vertices in the set ∂i\j ,

fi→j = − 1

β
ln zi→j (25)

with zi→j computed through Eq. (9); and the normalization
constant �i→j is

�i→j =
∫ ∏

k∈∂i\j
Dqk→i Qk→i[qk→i] e−yfi→j . (26)

After a fixed-point solution of Eq. (24) is obtained, the
grand free energy G and the mean free energy 〈F 〉 can be
computed, respectively, through

G =
N∑

i=1

gi −
∑

(i,j )∈G
gij , (27)

〈F 〉 =
N∑

i=1

〈fi〉 −
∑

(i,j )∈G
〈fij 〉. (28)

In these equations gi and 〈fi〉 are the grand free energy and
mean free energy contributions from vertex i, while gij and
〈fij 〉 are the corresponding contributions from edge (i,j ).
Their explicit expressions are

gi = − 1

y
log

⎡
⎣∫ ∏

j∈∂i

Dqj→iQj→i[qj→i]e
−yfi

⎤
⎦, (29)

gij = − 1

y
log

[ ∫
Dqj→iDqi→jQj→i[qj→i]

×Qi→j [qi→j ]e−yfij

]
, (30)

〈fi〉 =
∫ ∏

j∈∂i Dqj→iQj→i[qj→i]fie
−yfi∫ ∏

j∈∂i Dqj→iQj→i[qj→i]e−yfi
, (31)

〈fij 〉 =
∫
Dqj→iDqi→jQj→i[qj→i]Qi→j [qi→j ]fij e

−yfij∫
Dqj→iDqi→jQj→i[qj→i]Qi→j [qi→j ]e−yfij

.

(32)

B. Special case of y = β

We now consider the most natural value of y = β (the
inverse temperature at the level of macroscopic states being
equal to that at the level of microscopic configurations) and
investigate spin-glass phase transitions. In order to simplify
the 1RSB mean-field theory at y = β, we introduce a coarse-
grained probability as

qX
i→j ≡

∑
l∈∂i\j

ql
i→j , (33)

where the superscript “X” indicates that the state Ai of vertex
i is neither i nor 0. The quantity qX

i→j is the probability that,
in the absence of vertex j , vertex i is occupied (Ai > 0) but it
is not a root (Ai �= i).

Following the work of Mézard and Montanari [32] we
define qi→j ≡ (q0

i→j ,q
i
i→j ,q

X
i→j ) as the mean value of qi→j

among all the macroscopic states:

q0
i→j =

∫
Dqi→j Qi→j [qi→j ] q0

i→j , (34a)

qi
i→j =

∫
Dqi→j Qi→j [qi→j ] qi

i→j , (34b)

qX
i→j =

∫
Dqi→j Qi→j [qi→j ] qX

i→j . (34c)

q0
i→j and qi

i→j are the mean cavity probabilities of vertex i

being in state Ai = 0 and Ai = i, while qX
i→j is the mean cavity

probability of taking states different from Ai = 0 and Ai = i.
In addition, we define three auxiliary conditional probability
functionals as

Q0
i→j [qi→j ] ≡ q0

i→j Qi→j [qi→j ]

q0
i→j

, (35a)

Qi
i→j [qi→j ] ≡ qi

i→j Qi→j [qi→j ]

qi
i→j

, (35b)

QX
i→j [qi→j ] ≡ qX

i→j Qi→j [qi→j ]

qX
i→j

. (35c)

Q0
i→j [qi→j ], Qi

i→j [qi→j ], and QX
i→j [qi→j ] are the distri-

bution functionals for the cavity message qi→j under the
condition of Ai = 0, Ai = i, and Ai /∈ {0,i}, respectively. It is
easy to verify the identity that

Qi→j [qi→j ] = q0
i→j Q0

i→j [qi→j ] + qi
i→j Qi

i→j [qi→j ]

+ qX
i→j QX

i→j [qi→j ]. (36)

At the special case of y = β, by inserting the SP equation
(24) into Eq. (34), we obtain that the mean cavity probability
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qi→j also obeys the BP equation (8),

qi→j = b
({qk→i : k ∈ ∂i\j}). (37)

In other words, the mean cavity probabilities {qi→j } can
be computed without the need of computing the probability
functionals {Qi→j [qi→j ]}. We now exploit this nice property
in combination with Eq. (35) to greatly simplify the numer-
ical difficulty of implementing the 1RSB mean-field theory
[32,33].

After inserting Eq. (24) into Eq. (35), we find that the
three auxiliary probability functionals obey the following self-
consistent equations:

Q0
i→j [qi→j ] =

∏
k∈∂i\j

∫
Dqk→i

[
q0

k→i Q
0
k→i[qk→i]

+ qk
k→i Q

k
k→i[qk→i] + qX

k→i Q
X
k→i[qk→i]

]
× δ[qi→j − b({qk→i})], (38a)

Qi
i→j [qi→j ] =

∏
k∈∂i\j

∫
Dqk→i

[
q0

k→i

q0
k→i + qk

k→i

Q0
k→i[qk→i]

+ qk
k→i

q0
k→i + qk

k→i

Qk
k→i[qk→i]

]
× δ[qi→j − b({qk→i})], (38b)

QX
i→j [qi→j ] =

∑
k∈∂i\j

ωk→i

∫
Dqk→i

[
qk

k→i

qk
k→i + qX

k→i

×Qk
k→i[qk→i] + qX

k→i

qk
k→i + qX

k→i

QX
k→i[qk→i]

]

×
∏

l∈∂i\j,k

∫
Dql→i

[
q0

l→i

q0
l→i + ql

l→i

Q0
l→i[ql→i]

+ ql
l→i

q0
l→i + ql

l→i

Ql
l→i[ql→i]

]
× δ[qi→j − b({qk→i})]. (38c)

In Eq. (38c) the probability wk→i is determined as

ωk→i =
(
1 − q0

k→i

)∏
l∈∂i\j,k

[
q0

l→i + ql
l→i

]
∑

m∈∂i\j
(
1 − q0

m→i

) ∏
l∈∂i\j,m

[
q0

l→i + q0
l→i

] ,

(39)

and it can be understood as the probability of choosing vertex
k among all the vertices in the set ∂i\j . The iterative equation
(38) avoids the difficulty of reweighted sampling in the original
SP equation (24).

For a given graph instance G, we describe the statistical
property of vertex i in the absence of the neighboring vertex
j by the mean cavity probability function qi→j and the three
conditional probability functionals Q0

i→j [q], Qi
i→j [q], and

QX
i→j [q], each of which is represented by a set of sampled

cavity probabilities qi→j . We first iterate the BP equation
(37) a number of rounds to bring the set of mean cavity
probabilities {qi→j } to the fixed point (or at least close to the
fixed point). Then Eq. (38) is iterated to drive all the conditional

probability functionals to their steady states. For example, to
update QX

i→j [qi→j ] using Eq. (38c), we (i) choose a vertex
k ∈ ∂i\j with probability ωk→i , and then (ii) draw a cavity

probability qk→i from Qk
k→i[q] with probability qk

k→i

qk
k→i+qX

k→i

or

from QX
k→i[q] with the remaining probability qX

k→i

qk
k→i+qX

k→i

, and

(iii) for each of the other vertices l ∈ ∂i\j,k select a cavity

probability ql→i from Q0
l→i[ql→i] with probability q0

l→i

q0
l→i+qi

l→i

or from Ql
l→i[ql→i] with the remaining probability ql

l→i

q0
l→i+ql

l→i

,

and finally (iv) generate a new cavity probability qi→j using
the BP equation (8) and replace a randomly chosen old cavity
probability of the set representing QX

i→j [qi→j ] by this new one.
The other two conditional probability functionals Q0

i→j [qi→j ]
and Qi

i→j [qi→j ] are updated through the same numerical
procedure.

At y = β the computation of the grand free energy density
g ≡ G/N and the mean free energy density 〈f 〉 ≡ 〈F 〉/N can
also be carried out without reweighting among the different
macroscopic states. We list in Appendix B the explicit mean-
field expressions for computing g and 〈f 〉.

The initial condition for the iterative equation (38) is
chosen to be the following set of Dirac δ-formed probability
functionals:

Q0
i→j [qi→j ] = δ

(
q0

i→j − 1
)
δ
(
qi

i→j

)
δ
(
qX

i→j

)
, (40a)

Qi
i→j [qi→j ] = δ

(
q0

i→j

)
δ
(
qi

i→j − 1
)
δ
(
qX

i→j

)
, (40b)

QX
i→j [qi→j ] = δ

(
q0

i→j

)
δ
(
qi

i→j

)
δ
(
qX

i→j − 1
)
. (40c)

According to the theoretical analysis in Ref. [32], if the
conditional probability functionals (35) starting from this
initial condition converge to the trivial fixed point

Q0
i→j [qi→j ] = Qi

i→j [qi→j ] = QX
i→j [qi→j ]

= δ
(
q0

i→j − q0
i→j

)
δ
(
qi

i→j − qi
i→j

)
× δ

(
qX

i→j − qX
i→j

)
, (41)

the system is then in the ergodic phase with a unique
equilibrium macroscopic state (complexity 
 = 0). If the
conditional probability functionals (35) converges to a fixed
point that differs from Eq. (41), the system is then in the
ergodicity-breaking spin-glass phase with exponentially many
equilibrium macroscopic states (complexity 
 �= 0). The crit-
ical inverse temperature βd , at which the complexity 
 starts
to deviate from zero, marks the onset of the spin-glass phase.
In the literature βd is referred to as the dynamical or clustering
transition point [19]. The critical inverse temperature βs , at
which the complexity 
 starts to be negative, is referred to as
the static or condensation transition point [19].

C. Critical inverse temperatures βd and βs

At y = β, we can determine the ensemble-averaged
complexity value 
 as a function of the inverse tempera-
ture β by iterating Eq. (38) through population dynamics
[18,28,31,33,34]. The technical details are given in Appendix
C, and here we describe the numerical results for RR and ER
graph ensembles.
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The inverse temperature βd of dynamical transition is
compared with the critical inverse temperature βl of RS local
stability in Fig. 1. Similar to βl , we see that βd is not a
monotonic function of the (mean) vertex mean degree. For
the RR ensemble, βd first decreases with the degree K and
reaches the minimum value of βd ≈ 3.64 at K = 16, then βd

increases slowly with K . For K < 35 the values of βd and βl
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FIG. 2. Complexity 
 as a function of inverse temperature β in
the vicinity of the dynamical transition point βd , with �β ≡ (β − βd ).
Results are obtained by population dynamics at y = β for the RR
graph ensemble. (a) Degree K = 10 (βd ≈ 4.02) and K = 20 (βd ≈
3.71). (b) K = 30 (βd ≈ 4.07) and K = 40 (βd ≈ 4.49). (c) K = 64
(βd ≈ 5.03) and K = 128 (βd ≈ 5.63).

5
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8
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β
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FIG. 3. The dynamical transition inverse temperature βd (star
symbols) and the static transition inverse temperature βs (diamond
symbols) for the RR graph ensemble of vertex degree K .

are indistinguishable, while βd becomes noticeably lower than
βl at K > 35. For the ER ensemble, βd reaches the minimum
value at mean degree c ≈ 57, and it becomes noticeably lower
than βl as c exceeds 100.

The complexity 
 computed at y = β in the vicinity of
the dynamical transition point βd is shown in Fig. 2 for the
RR graph ensemble. When the vertex degree K is sufficiently
small (K < 60), 
 changes from 
 = 0 to 
 < 0 as β exceeds
βd , indicating that in the spin-glass phase the equilibrium
configuration space is dominated by only a few macroscopic
states [17,33]. The critical inverse temperature βs of static
spin-glass transition therefore coincides with βd . However,
when K > 60, the complexity 
 jumps from zero to a positive
value at β = βd [see Fig. 2(c)], suggesting that the equilibrium
configuration space breaks into an exponential number of
subspaces (macroscopic states) at βd [30,33]. The complexity
then gradually decreases with β and becomes negative as β

exceeds the critical value βs of static transition. As shown in

-0.0868

-0.0866

-0.0864

5.60 5.65 5.70 5.75 5.80

<
f>

, g

β

g
<f>

FIG. 4. The mean free energy density 〈f 〉 and the grand free
energy density g for the RR graph ensemble of vertex degree K =
128. For this system βd ≈ 5.64 and βs ≈ 5.81.
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Fig. 3, the gap between βd and βs enlarges with the vertex
degree K for K > 60. We notice that βs may be lower than
the critical value βl of the RS local stability (for example at
K = 64, βs ≈ 5.055 while βl ≈ 5.5).

At β < βd the system has only a unique equilibrium
macroscopic state, therefore the complexity 
 is exactly zero
and the mean free energy density 〈f 〉 is identical to the grand
free energy density g (see Fig. 4 for the particular case of
K = 128). At each inverse temperature of β ∈ (βd,βs) the
system has an exponential number (≈eN
) of equilibrium
macroscopic states. The mean free energy density 〈f 〉 of a
macroscopic state is larger than the grand free energy density
g, with g = 〈f 〉 − 1

β

. Notice that the grand free energy

density g changes smoothly at βd while 〈f 〉 has a discontinuity
(Fig. 4). 
 = 0 and the mean free energy density 〈f 〉 is
identical to the grand free energy density g (see Fig. 4 for
the case of K = 128). At β = βd the complexity 
 jumps
to a positive value and the equilibrium configuration space
breaks into O(eN
) clusters (macroscopic states) with mean
free energy density 〈f 〉 larger than the grand free energy
density g. Notice that the grand free energy density g changes
smoothly at βd while 〈f 〉 has a discontinuity (Fig. 4). In the
interval of βd < β < βs , the mean free energy density 〈f 〉
of a macroscopic state decreases with β while the grand free
energy density g of the whole system increases with β. At
β = βs , 〈f 〉 becomes equal to g and the complexity 
 reaches
zero. In the whole region of β > βs the system is dominated
by a few macroscopic states.

We have also investigated the ER graph ensemble by the
same method. For this ensemble we find that the complexity 


(at y = β) becomes negative as β increases from βd for all the
considered mean vertex degrees up to c = 512, indicating that
βs = βd . It is still unclear to us whether the static transition
point βs will be distinct from the dynamical transition point
βd at larger values of mean degree c.

V. ZERO-TEMPERATURE (β → ∞) LIMIT

At inverse temperature β > βs , only very few macroscopic
states (those with the lowest free-energy density) are important
for the equilibrium property of the system. In this section we
consider the limiting case of β → ∞ which corresponds to
the minimum FVS problem. At this limit the 1RSB mean-field
theory can be simplified to a considerable extent [31,35–37].
The corresponding infinite-β SP equation but with finite value
of y is referred to as SP(y).

Before deriving the SP(y) equation, we first need to obtain
the zero-temperature limit of the BP equation (8). This limit is
very closely related to the max-product or min-sum algorithm
[18,36,38]. It is convenient for us to rewrite the cavity messages
as

q0
i→j ≡ e−βγi→j , (42a)

q0
i→j + qi

i→j ≡ e−βρi→j , (42b)

1 − q0
i→j

q0
i→j + qi

i→j

≡ e−βηi→j . (42c)

At β → ∞, we obtain from Eq. (8) the following iterative
equations for γi→j , ρi→j , and ηi→j :

γi→j = 1 − min

⎛
⎝1,

∑
k∈∂i\j

ρk→i + min(0,{ηk→i}k∈∂i\j )

⎞
⎠,

(43a)

ρi→j = min

⎛
⎝1,

∑
k∈∂i\j

ρk→i

⎞
⎠ + γi→j − 1, (43b)

ηi→j = min
(
0,{ηk→i}k∈∂i\j

) − min

⎛
⎝0,1 −

∑
k∈∂i\j

ρk→i

⎞
⎠.

(43c)

Notice that 0 � γi→j � 1 and 0 � ρi→j � 1. To simplify the
notation we denote by χi→j ≡ {γi→j ,ρi→j ,ηi→j }. The min-
sum BP equation (43) is then denoted as χi→j = b∞({χk→i :
k ∈ ∂i \ j}).

At β → ∞ the free-energy contributions fi and fij of a
vertex i and an edge have the corresponding limiting value
f ∞

i and f ∞
ij :

f ∞
i = min (1,

∑
k∈∂i

ρk→i + min(0,{ηk→i}k∈∂i)), (44a)

f ∞
ij = min(γi→j + γj→i ,ρi→j + ρj→i + min(ηi→j ,ηj→i)).

(44b)

At β → ∞ the probability functional Qi→j [qi→j ] of
Eq. (24) corresponds to the limiting probability functional
Q∞

i→j [χi→j ], and the self-consistent equation for this func-
tional is

Q∞
i→j [χ ] ∝

∫ ∏
k∈∂i\j

Dχk→iQ
∞
k→i[χk→i]e

−yf ∞
i→j

× δ[χi→j − b∞({χk→i})], (45)

where f ∞
i→j = 1 − γi→j . At β → ∞ the grand free energy

density g and the mean free energy density 〈f 〉 can be
computed accordingly, and we can then determine the zero-
temperature complexity 
 by


 = y(〈f 〉 − g). (46)

The infinite-β 1RSB mean-field theory is applicable on
single graph instances. To obtain ensemble-averaged results,
we can carry out 1RSB population dynamics simulations on
a given random graph ensemble. We refer to this population
dynamics approach as the 1RSB-P method and describe some
essential simulation details in the first part of Appendix D.

Figure 5(a) shows how the infinite-β complexity 
 changes
with the reweighting parameter y for the RR graph ensemble
of degree K . We see that 
 reaches a maximum value at y ≈ 3
and then decreases with y and becomes negative as y exceeds
certain threshold value y∗. Since 
 = 0 at y = y∗, we take the
mean free energy density 〈f 〉 computed at y∗ as the minimum
energy density e0 of the system. For example, at K = 15,
we have y∗ ≈ 4.32 and the FVS minimum energy density
is predicted to be e0 = 0.636296. The predicted minimum
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FIG. 5. The β → ∞ complexity 
 of the RR graph ensemble as
a function of the reweighting parameter y. The vertex degrees are
K = 10, 15, and 30. Results in (a) are obtained using the 1RSB-P
method (without using the integer-field assumption), while results in
(b) are obtained by the 1RSB-A method (adopting the integer-field
assumption).

energy density e0 for the RR graph ensemble of K ∈ [10,40]
are listed in the sixth column of Table I. These predictions are
slightly larger than the predictions (the third column) of the RS
mean-field theory [16], and they are very close to the results
(the ninth column) obtained by the BPD algorithm on single
RR graph instances [16].

Generally speaking, the quantities γi→j , ρi→j , and ηi→j

of the SP(y) equation (43) are all real-valued. However
we notice that if initially all these quantities are assigned
integer values, their values will keep to be integer under the
iteration of Eq. (43). The 1RSB population dynamics can
be much simplified under such an integer-field assumption
[31,39,40]. For the RR graph ensemble, besides this integer-
field assumption, in addition we can assume that the infinite-β
1RSB message χi→j is independent of the vertex indices i and
j . Under these two additional assumptions the infinite-β 1RSB
mean-field theory can be solved analytically (see the second
part of Appendix D). We refer to this analytical approach
as the 1RSB-A method. Some representative curves of the
complexity 
 obtained by this method are shown in Fig. 5(b).

Comparing Fig. 5(b) with Fig. 5(a), we notice that at a given
degree K the predicted peak value of the complexity 
 by the
1RSB-A method is much larger. This apparent discrepancy
very likely is caused by the splitting of a macroscopic state into
many tiny substates. When the integer-field assumption is not
used (as in the 1RSB-P method), most vertices i may be in an
unfrozen situation within a macroscopic state and they can take
different states Ai , and the internal entropy of a macroscopic
state is relatively large. When the integer-field assumption is
applied, the states Ai of most vertices i will have to be frozen
within a macroscopic state and the internal entropy of the
macroscopic state will be quite small [31,39,40]. A highly
frozen macroscopic state under the integer-field assumption
is actually only a substate of the original (largely unfrozen)
macroscopic state. Consistent with this physical picture, we
notice that the integer-field assumption does not lead to a shift
in the ground-state energy density (see the seventh column
of Table I). Therefore it is safe to estimate the ground-state
energy density of the spin-glass system using the integer-field
assumption, which reduces considerably the computational
complication of the 1RSB mean-field theory.

Our 1RSB numerical results on the ground-state energy
densities e0 of the RR graph ensembles are consistent with the
rigorous lower bounds obtained in Ref. [22] and the mean-
field results obtained in Ref. [6] through a different spin-glass
model (see Table I). For K = 3 and K = 4, the RS and 1RSB
mean-field theories give identical predictions on the ground-
state energy density e0. For K � 5 the value of e0 predicted
by the 1RSB mean-field theory is slightly higher than the
value predicted by the RS mean-field theory. The relative sizes
of FVS solutions obtained by the heuristic BPD algorithm
are very close to the predicted e0 values by the 1RSB mean-
field theory, indicating that this message-passing algorithm
is capable of constructing close-to-minimum feedback vertex
sets for single RR graph instances [16].

Based on the iterative SP(y) equation (43) we can easily
implement a survey propagation-guided decimation (SPD)
algorithm as a solver for the minimum FVS problem. As
argued above, we can restrict the 1RSB cavity messages γi→j ,
ρi→j , ηi→j to be integer-valued, and then the implementation
details of the SPD algorithm are largely the same as those of the
BPD algorithm [16]. Given that the BPD algorithm is already
excellent for RR and ER random graphs, the improvement of
SPD over BPD is expected to be insignificant for these two
graph ensembles. But for some real-world network instances
with complicated structural correlations SPD might achieve
better performance than BPD.

VI. CONCLUSION

In this paper we studied the low-temperature energy
landscape property of a spin-glass model for the undirected
feedback vertex set problem. Through the first-step replica-
symmetry-breaking mean-field theory of spin glasses, we
determined the dynamical (clustering) phase transition inverse
temperature βd and the static (condensation) phase transition
inverse temperature βs for this spin-glass model, and we
also considered the zero-temperature limit of the 1RSB
mean-field theory and computed the minimum FVS size for
the regular random graph ensemble. Our zero-temperature
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TABLE I. Theoretical and simulation results on the minimum energy density (i.e., the relative size of minimum FVS) of the RR graph
ensemble. K is the vertex degree. The mathematical lower-bound (LB) was obtained in Ref. [22] through probabilistic reasoning. The RS
mean-field results are obtained by three different ways: by the RS population dynamics (RS-P [16]), by the analytical formula of Appendix
A (RS-A), and by the height-based spin-glass model (RS-H [6]). The 1RSB mean-field results are also obtained by three different ways: by
the 1RSB population dynamics (1RSB-P), by the analytical formula of Appendix D under the integer-field assumption (1RSB-A), and by the
height-based spin-glass model (1RSB-H [6]). The BPD simulation results were from Ref. [16], with each data point being an average over a
single running of the BPD algorithm with fixed parameter β = 7.0 on 98 graph instances of size N = 105.

K LB [22] RS 1RSB BPD [16]

RS-P [16] RS-A RS-H [6] 1RSB-P 1RSB-A 1RSB-H [6]

3 1
4

1
4

1
4

1
4

1
4

1
4 0.2546(1)

4 1
3

1
3

1
3

1
3

1
3

1
3 0.33383(5)

5 0.3784 0.3784 0.3784 0.3784 0.3785 0.3785 0.38223(7)
6 0.4225 0.4230 0.4219 0.4226 0.4234 0.4227 0.42608(8)
7 0.4597 0.4615 0.4589 0.4600 0.4620 0.4602 0.4647(1)
10 0.5430 0.5467 0.542 0.5486 0.5482 0.5503(1)
15 0.6305 0.6344 0.629 0.6363 0.6370 0.6384(1)
20 0.6866 0.6898 0.686 0.6920 0.6929 0.6941(1)
25 0.725 0.7311 0.7320
30 0.755 0.7605 0.7613
35 0.778 0.7836 0.7841
40 0.797 0.8020 0.8025

survey-propagation equation (43), especially the simplified
version under the additional integer-field assumption (see
Appendix D), should be useful for constructing nearly optimal
FVS solutions for single graph instances.

One of our major theoretical results is that, for the RR graph
ensemble with vertex degree K > 60, the undirected FVS
problem has two distinct phase transitions, one is dynamical
in nature and occurs at inverse temperature β = βd , the other
one is static in nature and occurs at a higher β = βs . The
existence of two separate spin-glass transitions is a common
feature for many-body interaction models (like the random
K-satisfiability problem with K � 4 [34] and the p-spin-glass
model with p � 3 [41,42]) and many-states systems (like the
q-coloring problem with q � 4 [38]). Such a feature has also
been predicted to occur in the random vertex cover problem
[29,43].

For the Erdös-Rényi graph ensemble up to mean vertex
degree c = 512 our 1RSB mean-field theory predicts that βs =
βd . It is indeed surprising to observe such a difference between
the ER and the RR graph ensemble, we need further evidence
to confirm the validity of this observation. Maybe c needs to be
very large for βs to be distinct from βd . One way of checking
this possibility is to study the 1RSB mean-field theory at the
large c limit [44,45], but we have not yet carried out such an
effort in this paper.
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APPENDIX A: REPLICA-SYMMETRIC MEAN-FIELD
THEORY UNDER AN ADDITIONAL ASSUMPTION

In this Appendix we analytically solve the RS mean-field
theory for the ensemble of regular random (RR) graphs. Since
every vertex in such a graph has the same number K of
nearest neighbors and there is no structural correlations in
the connectivity pattern, for analytic tractability we make an
additional assumption here, namely the cavity probability dis-
tributions q

Ai

i→j are identical for different pairs of neighboring
vertices i and j . Then, according to the BP equation (8), we
have q0

i→j = 1 − a and qi
i→j = b, with the constants a and b

satisfying

a = (1 − a + b)K−1 + (K − 1)a(1 − a + b)K−2

e−β + (1 − a + b)K−1 + (K − 1)a(1 − a + b)K−2
,

(A1a)

b = (1 − a + b)K−1

e−β + (1 − a + b)K−1 + (K − 1)a(1 − a + b)K−2
.

(A1b)

The energy density ρ is

ρ = e−β

e−β + (1 − a + b)K + Ka(1 − a + b)K−1
, (A2)

and the free-energy density f is obtained from Eq. (10) as

f = − 1

β
ln[e−β + (1 − a + b)K + Ka(1 − a + b)K−1]

+ K

2β
ln[(1 − a)2 + 2a(1 − a + b)]. (A3)
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The minimum energy densities as obtained by this analytic
theory are shown in the fourth column (RS-A) of Table I.
Compared with the RS mean-field results in the third column
obtained by population dynamics simulations (RS-P), we see
that when K � 6 the RS-A results are slightly lower than
the RS-P results. We also observe that the RS-A results are
less than the rigorous lower bounds in the second column
of Table I [22], while the RS-P results are slightly higher
than the rigorous lower bounds. The discrepancy between
the RS-A and RS-P results must be due to the fact that the
RS mean-field theory with all cavity probability distributions
being identical is locally unstable at sufficiently high inverse
temperature values [see Fig. 1(a)].

However, Fig. 1(a) also indicates that for K → ∞ the RS
analytic theory will still be locally stable at β = β∗ where the
RS entropy density approaches zero. To work out the infinite-K
limit of the RS analytic theory, we notice that the parameters
a and b of Eq. (A1) obey the following relationship

b = a

1 + (K−1)a
1−a+b

. (A4)

At K → ∞ we have a → 0 and b → 0, and then

b = a

1 + (K − 1)a
, (A5a)

β = ln b − ln(1 − a) − (K − 1) ln(1 − a + b). (A5b)

The free-energy density f at K → ∞ is expressed as

f = 1 + 1

β
ln(1 − a) + K

2β
ln(1 − a2 + 2ab). (A6)

The minimum energy density is determined by the condition
of zero entropy density. Therefore we obtain

aβ = − ln(1 − a) − K

2
ln(1 − a2 + 2ab). (A7)

By determining the values of a, b, and β using Eqs. (A5)
and (A7) at each value of degree K , we find that the minimum
energy density ρ0 has the following asymptotic form:

ρ0 = 1 − 2 ln K + c

K
+ o(K−1) (K → ∞), (A8)

with parameter c ≈ 2.05. This mean-field prediction agrees
with the rigorous mathematical result of Haxell and coauthors
[23], which states that c � (4 − 2 ln 2) ≈ 2.614.

APPENDIX B: COMPUTING THERMODYNAMICAL
QUANTITIES AT y = β

According to the 1RSB mean-field theory, the grand free
energy density g for a given graph instance G is

g = 1

N

⎛
⎝ N∑

i=1

gi −
∑

(i,j )∈G
gij

⎞
⎠. (B1)

At y = β, the grand free energy contributions of a vertex
i and an edge (i,j ) are evaluated by the following simplified
expressions:

gi = − 1

β
ln

[
e−β +

∏
j∈∂i

[
q0

j→i + q
j

j→i

]

+
∑
j∈∂i

(
1 − q0

j→i

) ∏
k∈∂i\j

[
q0

k→i + qk
k→i

]]
, (B2a)

gij = − 1

β
ln

[
q0

i→j q
0
j→i + (1 − q0

i→j )
(
q0

j→i + q
j

j→i

)
+ (

1 − q0
j→i

)(
q0

i→j + qi
i→j

)]
. (B2b)

Similar to Eq. (B1), the mean free energy density 〈f 〉 of a
macroscopic state is computed through

〈f 〉 = 1

N

⎛
⎝ N∑

i=1

〈fi〉 −
∑

(i,j )∈G
〈fij 〉

⎞
⎠. (B3)

The complexity 
 of the system at fixed values of β and y is
simply 
 = y(〈f 〉 − g).

At y = β, the mean free energy contribution 〈fi〉 of a vertex
i can be computed through

〈fi〉 = q0
i

〈
f 0

i

〉 + qi
i

〈
f i

i

〉 + qX
i

〈
f X

i

〉
. (B4)

In the above expression q0
i , qi

i , and qX
i are the mean value of

q0
i , qi

i , and qX
i over all the macroscopic states:

q0
i = e−β

e−β + ∏
j∈∂i

[
q0

j→i + q
j

j→i

] + ∑
k∈∂i

(
1 − q0

k→i

) ∏
j∈∂i\k

[
q0

j→i + q
j

j→i

] , (B5a)

qi
i =

∏
j∈∂i

[
q0

j→i + q
j

j→i

]
e−β + ∏

j∈∂i

[
q0

j→i + q
j

j→i

] + ∑
k∈∂i(1 − q0

k→i)
∏

j∈∂i\k
[
q0

j→i + q
j

j→i

] , (B5b)

qX
i =

∑
k∈∂i

(
1 − q0

k→i

) ∏
j∈∂i\k

[
q0

j→i + q
j

j→i

]
e−β + ∏

j∈∂i

[
q0

j→i + q
j

j→i

] + ∑
k∈∂i

(
1 − q0

k→i

) ∏
j∈∂i\k

[
q0

j→i + q
j

j→i

] , (B5c)

while the explicit expressions for 〈f 0
i 〉, 〈f i

i 〉, and 〈f X
i 〉 are

〈
f 0

i

〉 =
∏
j∈∂i

∫
Dqj→i

[
q0

j→i Q
0
j→i[qj→i] + q

j

j→i Q
j

j→i[qj→i] + qX
j→i Q

X
j→i[qk→i]

]
fi({qm→i : m ∈ ∂i}), (B6a)
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〈
f i

i

〉 =
∏
j∈∂i

∫
Dqj→i

[
q0

j→i

q0
j→i + q

j

j→i

Q0
j→i[qj→i] + q

j

j→i

q0
j→i + q

j

j→i

Q
j

j→i[qk→i]

]
fi({qm→i : m ∈ ∂i}), (B6b)

〈
f X

i

〉 =
∑
j∈∂i

ωj

∫
Dqj→i

[
q

j

j→i

q
j

j→i + qX
j→i

Q
j

j→i[qj→i] + qX
j→i

q
j

j→i + qX
j→i

QX
j→i[qj→i]

]

×
∏

k∈∂i\j

∫
Dqk→i

[
q0

k→i

q0
k→i + qk

k→i

Q0
k→i[qk→i] + qk

k→i

q0
k→i + qk

k→i

Qk
k→i[qk→i]

]
fi({qm→i : m ∈ ∂i}), (B6c)

with

ωj =
(
1 − q0

j→i

) ∏
k∈∂i\j

[
q0

k→i + qk
k→i

]
∑

l∈∂i

(
1 − q0

l→i

) ∏
k∈∂i\l

[
q0

k→i + qk
k→i

] . (B7)

The mean free energy contribution 〈fij 〉 of an edge (i,j ) can be computed through

〈fij 〉 = ω0
ij

〈
f 0

ij

〉 + ωi
ij

〈
f i

ij

〉 + ω
j

ij

〈
f

j

ij

〉
, (B8)

Algorithm 1 1RSB population dynamics at y = β

Construct a population of N elements. The j -th element of this population a set of four cavity probability distributions {Aj ,Bj ,Cj ,Dj }
with the specific initial condition Bj = (1,0,0), Cj = (0,1,0), and Dj = (0,0,1).
for t = 1,2, . . . ,Tmax do

for r = 1,2, . . . ,N do
Generate a degree d according to the excess degree distribution Q(d).
Generate an integer set ∂i\i ′ = {j1,j2, . . . ,j(d−1)} of size (d − 1), each element of which is sampled uniformly at random and with
replacement from the set {1,2, . . . ,N }, and then set the mean cavity probability distributions qjm→i = Ajm

for each jm ∈ ∂i.
Obtain a new mean cavity probability distribution Ai→i′ according to the BP equation: Ai→i′ = b({qjm→i}}).
for jm ∈ ∂i\i ′ do

Set cavity probability distribution qjm→i = Bjm
(with probability q0

jm→i) or qjm→i = Cjm

(with probability q
jm

jm→i) or qjm→i = Djm
(with probability qX

jm→i).
end for
Obtain a new cavity probability distribution according to the BP equation: Bi→i′ = b(qjm→i}}).
forjm ∈ ∂i\i ′ do

Set cavity probability distribution qjm→i = Bjm
(with probability q0

jm→i/(q0
jm→i + q

jm

jm→i))
or qjm→i = Cjm

(with probability q
jm

jm→i/(q0
jm→i + q

jm

jm→i)).
end for
Obtain a new cavity probability distribution according to the BP equation: Ci→i′ = b(qjm→i}}).
Select one element jm from set ∂i\i ′ according to the probability ωjm→i of Eq. (39).
for each element jm′ ∈ ∂i\i ′ do

if jm′ is equal to jm then
Set cavity probability distribution qjm→i = Cjm

(with probability
q

jm

jm→i/(qjm

jm→i + qX
jm→i)) or qjm→i = Djm

(with probability qX
jm→i/(qjm

jm→i + qX
jm→i)).

else
Set cavity probability distribution qjm′ →i = Bjm′ (with probability

q0
jm′ →i/(q0

jm′ →i + q
jm′
jm′ →i)) or qjm′ →i = Cjm′ (with probability q

jm′
jm′ →i/(q0

jm′ →i + q
jm′
jm′ →i)).

end if
end for
Obtain a new cavity probability distribution according to the BP equation: Di→i′ = b(qjm→i}}).
Sample an index k uniformly at random from the set {1,2, . . . ,N }, and then replace the
k-th element of the population by the assembled element (Ai→i′ ,Bi→i′ ,Ci→i′ ,Di→i′ ).
end for

end for
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where

ω0
ij = q0

i→j q
0
j→i

q0
i→j q

0
j→i + (

1 − q0
i→j

)(
q0

j→i + q
j

j→i

) + (
1 − q0

j→i

)(
q0

i→j + qi
i→j

) , (B9a)

ωi
ij =

(
1 − q0

i→j

)(
q0

j→i + q
j

j→i

)
q0

i→j q
0
j→i + (

1 − q0
i→j

)(
q0

j→i + q
j

j→i

) + (
1 − q0

j→i

)(
q0

i→j + qi
i→j

) , (B9b)

ω
j

ij =
(
1 − q0

j→i

)(
q0

i→j + qi
i→j

)
q0

i→j q
0
j→i + (

1 − q0
i→j

)(
q0

j→i + q
j

j→i

) + (
1 − q0

j→i

)(
q0

i→j + qi
i→j

) , (B9c)

and

〈
f 0

ij

〉 =
∫

Dqj→i Q
0
j→i[qj→i]

∫
Dqi→j Q0

i→j [qi→j ] fij (qi→j ,qj→i), (B10a)

〈
f i

ij

〉 =
∫

Dqi→j

[
qi

i→j

qi
i→j + qX

i→j

Qi
i→j [qi→j ] + qX

i→j

qi
i→j + qX

i→j

QX
i→j [qi→j ]

]

×
∫

Dqj→i

[
q0

j→i

q0
j→i + q

j

j→i

Q0
j→j [qj→i] + q

j

j→i

q0
j→i + q

j

j→i

Q
j

j→i[qj→i]

]
fij (qi→j ,qj→i), (B10b)

〈
f

j

ij

〉 =
∫

Dqi→j

[
q0

i→j

q0
i→j + qi

i→j

Q0
i→j [qi→j ] + qi

i→j

q0
i→j + qi

i→j

Qi
i→j [qi→j ]

]

×
∫

Dqj→i

[
q

j

j→i

q
j

j→i + qX
j→i

Q
j

j→j [qj→i] + qX
j→i

q
j

j→i + qX
j→i

QX
j→i[qj→i]

]
fij (qi→j ,qj→i). (B10c)

APPENDIX C: 1RSB POPULATION DYNAMICS
SIMULATIONS AT y = β

To perform the 1RSB population dynamics simulation at
y = β for the ER or RR graph ensemble, a population of
N � 1 elements is first constructed, with the j th element
of this population being a set of four cavity probability
distributions: {Aj ,Bj ,Cj ,Dj }. The cavity probability dis-
tribution Aj ≡ (A0

j ,A
j

j ,A
X
j ) is the mean cavity probability

distribution qj→i ≡ (q0
j→i ,qj→i ,q

X
j→i) on an edge (i,j ), Bj ≡

(B0
j ,B

j

j ,BX
j ) is a sampled cavity probability distribution from

the probability functional Q0
j→i[qj→i], Cj ≡ (C0

j ,C
j

j ,CX
j ) is

a sampled cavity probability distribution from the probability
functional Q

j

j→i[qj→i], and Dj ≡ (D0
j ,D

j

j ,D
X
j ) is a sampled

cavity probability distribution from the probability functional
QX

j→i[qj→i].
The elements of the population are updated according to

Eq. (38), see Algorithm 1 for more implementation details.
In our actual simulations we set the population size as N =
128 000 and total simulation steps as Tmax = 144 000. The
first 16 000 simulation steps are used to drive the population
to a steady state, and the remaining 128 000 steps are used
for population further updating and for computing the grand
free energy density g, the mean free energy density 〈f 〉, and
the complexity 
. Figure 2 shows some of the simulation
results for the RR graph ensemble. To evaluate and minimize
the errors of our computation, each data point in Fig. 2 is
the mean value of 16 independent running of the simulation
algorithm with different random number seeds, and the error
bar of each data point is the standard error of the mean.

APPENDIX D: SOLVING THE INFINITE-β 1RSB
MEAN-FIELD THEORY

Here we first describe the 1RSB population dynamics
(1RSB-P) method to solve the iterative equation (45) at
the graph ensemble level. First a population of size N is
constructed, with the mth member of which being itself a
subpopulation (denoted as Qm[χ ]) of M infinite-β cavity
messages of the form χ ≡ (γi→j ,ρi→j ,ηi→j ). The subpop-
ulation Qm[χ ] represents the cavity probability functional
Qi→j [χi→j ] of a randomly chosen edge (i,j ) in the graph
ensemble.

In our simulations for the RR graph ensemble we take
N = 104 and M = 104 (we have checked that the simulation
results are quite insensitive to the precise values of N and
M). The 1RSB-P steps of updating the N elements of the
population are described in Algorithm 2. The total number
Tmax of simulation steps is set to be Tmax ≈ 104.

We follow the method used in Ref. [28] for updating
a single subpopulation Qm[χ ], see Algorithm 3. In this
reweighted sampling method, we first generate Np × M
cavity messages χ (s) ≡ (γ (s),ρ(s),η(s) (s = 1,2, . . .) and
assign each of these messages a weight w(s) = e−y(1−γ (s)).
Then we sample M elements from these cavity messages
(with replacement) according to their assigned weights. The
integer parameter Np control the level of sample abundance. A
larger value of Np will lead to more precise numerical results
but the computational cost also be proportional to Np. In our
simulations we typically let 1 � Np � 10 (we allow Np to
increase slightly with the parameter y of the 1RSB population
dynamics).
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Algorithm 2 The infinite-β 1RSB population dynamics (1RSB-P)
simulation process

Initial the population with N subpopulations, each subpopulation
containing M elements of the form χ = (γi→j ,ρi→j ,ηi→j ).
for t = 1,2, . . . ,Tmax

for r = 1,2, . . . ,N
Generate a degree d according the excess degree distribution
Q(d).
Generate an integer set ∂i\i ′ = {j1,j2, . . . ,j(d−1)} of size
(d − 1) uniformly at random
and with replacement from the index set {1,2, . . . ,N }.
for s = 1,2, . . . ,Np × M do

for j ∈ ∂i\i ′ do
Sample an element χj→i uniformly at random from the
subpopulation Qj [χ ].

end for
Generate a new cavity message according to the SP(y)
equation: χ

(s)
i→i′ ≡ (γ (s)

i→i′ ,ρ
(s)
i→i′ ,η

(s)
i→i′ ) = b∞({χj→i}); and

assign a weight W (s) = exp[−y(1 − γ
(s)
i→i′ )] to this message.

end for
Replace the rth subpopulation of the population by the new
subpopulationQr [χ ] = REWEIGHT({χ (s)

i→i′ ,W
(s)}).

end for
end for

In the remaining part of this appendix we consider the
integer-field approximation of the infinite-β 1RSB mean-field
theory. Under the integer-field restriction, then the cavity
quantities γi→j ∈ {0,1}, ρi→j ∈ {0,1}, and ηi→j ∈ {−1,0,1}.
Because of the iterative equation (43), the cavity message
χi→j ≡ {γi→j ,ρi→j ,ηi→j ) will be one of the following three
possible types:

χ001 = {0,0,1} ,χ100 = {1,0,0} ,χ111̄ = {1,1, − 1} . (D1)

Algorithm 3 REWEIGHT ({χ (s),W (s)})
for s = 1,2, · · · ,NpM

Set Ps ≡ W (s)/
∑NpM

r=1 W (s).
end for
for s = 1,2, . . . ,M do

Generate r ∈ {1,2, . . . ,NpM} with probability Pr .
Set χ (s)

new = χ (r).
end for
return {χ (1)

new,χ (2)
new, . . . ,χ (M)

new }.

Because of this nice property, the 1RSB probability functional
Qi→j [χi→j ] can be parameterized by three non-negative
values m001

i→j , m100
i→j , and m111̄

i→j which sum up to unity. The
quantity m001

i→j is just the probability that the cavity message
χi→j is of type χ001 among all the macroscopic states.
The other two parameters m100

i→j and m111̄
i→j can be similarly

interpreted. Based on the SP(y) equation (43), we can get a set
of self-consistent equations for these parameters. For the RR
graph ensemble, if we in addition assume that m001

i→j = m1,

m100
i→j = m2 and m111̄

i→j = m3, then the three constants m1, m2,
m3 are self-consistently determined through

m1 = e−y(1−(1−m3)K−1−(K−1)(1−m3)K−2m3)

e−y+(1−e−y)[(1−m3)K−1 + (K−1)(1−m3)K−2m3]
,

(D2a)

m2 = (1 − m3)K−1

e−y+(1 − e−y)[(1−m3)K−1+(K − 1)(1−m3)K−2m3]
,

(D2b)

m3 = (K−1)(1 − m3)K−2m3

e−y+(1 − e−y)[(1−m3)K−1+(K−1)(1−m3)K−2m3]
.

(D2c)
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