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The zero-temperature, classical XY model on an L × L square lattice is studied by exploring the distribution
�L(y) of its centered and normalized magnetization y in the large-L limit. An integral representation of the
cumulant generating function, known from earlier works, is used for the numerical evaluation of �L(y),
and the limit distribution �L→∞(y) = �0(y) is obtained with high precision. The two leading finite-size
corrections �L(y) − �0(y) ≈ a1(L) �1(y) + a2(L) �2(y) are also extracted both from numerics and from
analytic calculations. We find that the amplitude a1(L) scales as ln(L/L0)/L2 and the shape correction function
�1(y) can be expressed through the low-order derivatives of the limit distribution, �1(y) = [ y �0(y) + �′

0(y) ]′.
Thus, �1(y) carries the same universal features as the limit distribution and can be used for consistency checks of
universality claims based on finite-size systems. The second finite-size correction has an amplitude a2(L) ∝ 1/L2

and one finds that a2 �2(y) � a1 �1(y) already for small system size (L > 10). We illustrate the feasibility of
observing the calculated finite-size corrections by performing simulations of the XY model at low temperatures,
including T = 0.
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I. INTRODUCTION

Studies of the scaling properties of fluctuations have played
an important role in developing the theory of equilibrium
critical phenomena, and they also proved to be instrumental in
exploring systems driven far from equilibrium where fluctua-
tions often diverge in the thermodynamic limit. In particular,
finding critical exponents through finite-size (FS) scaling has
become a standard method for establishing universality classes
[1–3] and, furthermore, the shapes of the distribution functions
of fluctuations have also been used as hallmarks of universality
classes for both equilibrium [4–7] and nonequilibrium systems
[8–12].

One of the most studied distributions of critical order-
parameter fluctuations is that of the two-dimensional (2D)
classical XY model. The model is important in itself since it
serves as a prime example of an equilibrium phase transition
with topological order [13,14]. Recent interest comes also
from a suggestion that its critical magnetization distribution,
PL(m), may describe the fluctuations in a remarkable number
of diverse far-from-equilibrium steady states. Examples range
from the energy dissipation in turbulence [9,10] and interface
fluctuations in surface evolution [8,12] to electroconvection
in liquid crystals [15], as well as to river-height fluctuations
[16]. In some of the examples, such as the surface growth
problems described by the Edwards-Wilkinson model [17],
one can establish a rigorous link to the low-temperature limit
(spin-wave approximation) of the XY model. Furthermore, the
non-Gaussian features of PL(m) such as its exponential and
double exponential asymptotes appear to have generic origins
[18,19], thus explaining the observed collapse in a remarkable
set of experimental and simulation data. In the majority of the
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examples, however, the experiments or simulations provide
data of insufficient accuracy to decide unambiguously about
the universality class. Indeed, it is not easy even to observe the
changes occurring in PL(m) if the XY model is considered at
finite temperatures where the spin-wave approximation breaks
down [20–22].

In order to be more confident about universality claims,
one would like to be able to examine the distribution functions
in more details. A well-known and much investigated method
of extracting additional information in critical systems such as
the zero-temperature XY model is the study of the FS behavior
[1–3]. The implication of FS scaling is that the appropriately
scaled distribution function has a well-defined limit when the
system size tends to infinity (L → ∞). A frequently used
scaling variable is the centered and normalized magnetization
y = (m − 〈m〉)/σm, where σ 2

m = 〈m2〉 − 〈m〉2. This choice of
scaling variable eliminates possible divergences in 〈m〉 and,
in general, produces a nondegenerate limit distribution �0(y)
[23]:

lim
L→∞

�L(y) ≡ lim
L→∞

σmPL(〈m〉 + σmy) = �0(y). (1)

The function �L(y) can be expressed in a compact form for the
zero-temperature XY model [24]. Its large-L limit, �0(y), has
been numerically evaluated and compared with simulations
and experiments on a variety of systems (see, e.g., [9,16,18]).

Once the limit distribution is known, one can investigate
the approach to �0(y) as the system size increases. As we
show below, keeping the leading and the next-to-leading terms,
the FS corrections, δ�L(y) = �L(y) − �0(y), to the limit
distribution can be written as

δ�L(y) = a1(L)�1(y) + a2(L)�2(y) + O(ln2L/L4). (2)

We kept two terms since the asymptotic L dependence of
the leading term differs from the next one only by a slowly
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varying logarithmic factor. Indeed, our calculation yields the
amplitudes ai(L) in the following form:

a1(L) = α ln L + γ

L2
= α ln(L/L0)

L2
, a2(L) = γ ′

L2
. (3)

Here the coefficient α of the logarithmic term can be expressed
through the Catalan constant G as α = 3π/4G = 2.572 . . ..
The coefficients of the 1/L2 terms are γ = −2.803 (giving
L0 = 2.973) and γ ′ = 2π/3 (for details, see Sec. III).

A remarkable result about the function �1(y) characterizing
the leading shape correction to the limit distribution is that it
can be expressed through �0(y) as

�1(y) = [ y �0(y) + �′
0(y) ]′, (4)

where the prime denotes the derivative with respect to y.
The second scaling function �2(y) is more complex in the
sense that it cannot be expressed through a finite sum of
the derivatives of the limit distribution. However, it can
be calculated efficiently using integral representations as
explained in Sec. III [see Eq. (24)] and in Appendix B [see
Eq. (B18)].

Evaluating the scaling functions �i(y) numerically, one
observes that a1(L)�1(y) � a2(L)�2(y) already for small
systems (L > 10). As a consequence, the FS corrections to
the limit distribution can be written to an excellent accuracy
in the following form:

δ�L(y) ≈ α
ln(L/L0)

L2
[y�0(y) + �′

0(y) ]′. (5)

The above expression can be easily calculated and compared
with experiments and simulations using both scaling of the
amplitude and checking the shape of the correction.

It is important to note that �1(y) is uniquely determined
by the limit distribution; thus, the leading shape correction
has the same universality attributes as the limit distribution
itself. In renormalization group language, the meaning of the
above result is that the eigenfunction corresponding to the
direction of slowest approach to the fixed point distribution
can be expressed through the limit distribution. A simple and
transparent derivation of an analogous result for the case of
the central limit theorem can be found in [25].

In order to show the workings of the method of FS scaling,
we carried out Monte Carlo (MC) simulations of the XY model
in its low-temperature limit, including its T = 0 limit. We
examined the FS corrections described above for the lattice
of size L = 10, as an illustration, and found close agreement
between theoretical and MC results.

The paper is organized as follows. The XY model and the
zero-temperature magnetization distribution are described in
Sec. II. Next, the FS corrections are calculated in Sec. III,
with the technicalities relegated to two appendixes (the direct
calculations of the needed cumulants are found in Appendix A,
while an integral representation that simplifies the evaluation
of finite-volume sums is presented in Appendix B ). Finally
in Sec. IV, and as an illustration, we have compared the FS
results with the MC simulations for a lattice of size L = 10.

II. PROBABILITY DENSITY OF THE MAGNETIZATION
FOR THE CLASSICAL XY MODEL IN TWO DIMENSIONS

The two-dimensional, classical XY model on a square
lattice is defined by the Hamiltonian

H = −
∑
〈i,j〉

cos(θi − θj ), (6)

where the angle variables θi are located at the lattice sites and
describe the orientation of unit vectors in the plane. The energy
and the length scales in the problem are defined by setting both
the ferromagnetic interaction strength and the lattice spacing
to unity.

The order parameter m whose probability distribution is of
our interest is defined as

m = 1

L2

∑
i

cos(θi − θ̄ ), (7)

where θ̄ is the instantaneous average orientation. The proba-
bility density function (PDF) of the magnetization, PL(m), has
been much studied [9,16,18–22,24]. Its zero-temperature limit
(T → 0) has been first calculated [24] by using the spin-wave
approximation cos(θi − θj ) ≈ 1 − (θi − θj )2/2 and summing
up the moments series for the PDF.

Another, field-theoretic, approach for obtaining PL(m) is
based on evaluating the Fourier transform of the partition
function of the system in a loop expansion [20]. It turns out that
the n-loops contribution corresponds to the T n−1 contribution,
where T is the system temperature. Correspondingly, the
expansion up to one-loop gives exactly the zero-temperature
limit of PL(m).

Both of the above methods yield an identical result to
leading order. The second method, however, shows explicitly
how to compute the higher-temperature corrections to PL(m)
through an effective, T -dependent lattice propagator, 	 =
(I + ikT

L2 G)−1G, where G is independent of T [26], and is
defined by its Fourier representation as

G(k) = 1/ k̂2. (8)

Here the components of the vector k̂ are k̂i = 2 sin(ki/2),
where ki = 2πni/L, with i = 1,2 and ni ∈ Z such that the
lattice momentum k lies in the first Brillouin zone: −π <

ki � π .
Hence, the PDF at T = 0 can be obtained by the well-known

“1/2 Trace(ln)” expression of the one-loop result [20],

�L(y) =
∫ ∞

−∞

dq

2π

√
g2

2
exp

(
i

√
g2

2
qy

)

× exp

⎛
⎝−1

2

∑
k 
=0

{
ln

[
1 − iq

L2
G(k)

]
+ iq

L2
G(k)

}⎞
⎠,

(9)

where y is the centered and normalized magnetization y =
(m − 〈m〉)/σm, and the coefficient g2 is defined as the
particular n = 2 case of the general expression:

gn ≡ gn(L) =
∑
k 
=0

G(k)n/L2n. (10)
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FIG. 1. The scaled probability density of the magnetization �L(y), computed numerically using Eq. (9), is displayed for various lattice
sizes L. The remarkably fast convergence to the limit distribution �0(y) is demonstrated in the left panel, while, to illustrate the corrections to
the limit distribution, the peak region of the �L(y) is magnified in the right panel.

The PDF in Eq. (9) agrees with the corresponding formula
obtained in [18] [see Eq. (26) therein].

In Fig. 1 we plot �L(y) as a function of y using Eq. (9)
for different L values. On the right panel, we display a mag-
nification into the region close to the peak of the distribution
functions. It can be clearly seen that �L(y) tends towards an
asymptotic distribution �0(y) as L → ∞ and, furthermore,
one observes that the convergence is fast. Nevertheless, in
experiments, the value of L is not known and deviations
from �0(y) are observed. They are often explained away as
finite-size effects and thus leaving the universality claims not
entirely justified. We would like to emphasize that there is
information in the FS corrections (shown on Fig. 1 around the
peak of the PDF) and, by evaluating these corrections, one
may refine the reasoning for or against finding a universality
class.

III. FINITE-SIZE CORRECTIONS TO THE LIMIT
DISTRIBUTION

As explained in Sec. II, the PDF of the magnetization for
the 2D XY model at T = 0 is given by the one-loop analytic
expression of Eq. (9), and the numerical evaluation of the
L → ∞ limit distribution, �0(y), can be carried out with an
excellent precision. The aim of this section is to present the
steps of the calculation of the leading and next-to-leading FS
corrections to the limit distribution.

We start by expanding the logarithm in the exponential
on the right-hand side of Eq. (9), which allows rewriting the
equation in terms of the coefficients gn defined by Eq. (10).
After rescaling the integration variable by

√
g2/2, we obtain

�L(y) as the Fourier integral

�L(y) =
∞∫

−∞

dk

2π
exp

{
iky − 1

2
k2 + FL(k)

}
, (11)

where we have defined

FL(k) =
∑
n�3

gn

2n

(
ik

√
2

g2

)n

. (12)

The L dependence of the above sum is in the coefficients
gn, which have a finite nonzero thermodynamic limit gn(L →
∞) = g∞

n for n � 2. Thus, in order to compute the FS behavior
of �L(y), we have to determine the FS corrections to g∞

n ,

gn = g∞
n + δgn. (13)

Assuming that δgn is known, we can write FL(k) as

FL(k) = F0(k) + δF1(k) + δF2(k), (14)

where F0(k) is the thermodynamic limit of FL(k),

F0(k) =
∑
n�3

g∞
n

2n

(
ik

√
2

g∞
2

)n

(15)

and the FS corrections, due to δg2 and δgn for n � 3, are
written separately:

δF1(k) = − δg2

2g∞
2

∑
n�3

g∞
n

2

(
ik

√
2

g∞
2

)n

, (16)

δF2(k) =
∑
n�3

δgn

2n

(
ik

√
2

g∞
2

)n

. (17)

The separation of the δg2 and the δgn�3 contributions is
partly motivated by their L → ∞ asymptotic behaviors. It is
shown in the appendixes that δg2 ∼ ln L/L2, while for n � 3,
δgn ∼ 1/L2. Thus, the leading correction comes from δF1(k)
and the sum in Eq. (16) determines the shape (the functional
form) of the leading correction. As it turns out, the same shape
correction can be easily separated from the δgn contributions
for n � 3. Indeed, for large n, one has δgn ∼ ng∞

n , and one
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can write [cf. Eqs. (A6), (B4), and (B15)]

δgn = π2

3L2
ng∞

n + 2π

3L2
cn, (18)

where the second term is suppressed relative to the first one by
a factor 4−n. Substituting the above split of δgn into Eq. (17),
one can see the emergence of the same sum as in Eq. (16), and
it allows us to write

δF1(k) + δF2(k) = a1(L)
1(k) + a2(L)
2(k), (19)

where the L-dependent amplitudes are given by

a1(L) = δg2(L)

2g∞
2

− π2

3L2
, a2(L) = 2π

3L2
, (20)

while the corresponding L-independent functions by


1(k) = −
∑
n�3

g∞
n

2

(
ik

√
2

g∞
2

)n

= −k
d

dk
F0(k),

(21)


2(k) =
∑
n�3

cn

2n

(
ik

√
2

g∞
2

)n

.

Integral representations for F0(k) and 
2(k) are given in
Eqs. (B5) and (B18), respectively, in Appendix B.

Inserting Eq. (19) into Eq. (11), we obtain the PDF of the
2D XY model at zero temperature, including its leading FS
corrections:

�L(y) = �0(y) + a1(L) �1(y) + a2(L) �2(y). (22)

Here

�0(y) =
∞∫

−∞

dk

2π
exp

{
iky − k2

2
+ F0(k)

}
, (23)

and

�1,2(y) =
∞∫

−∞

dk

2π
exp

{
iky − k2

2
+ F0(k)

}

1,2(k). (24)

Since 
1(k) = −kF ′
0(k), one can evaluate �1(y) through

�0(y) by carrying out the appropriate integrations by part on
the right-hand side of Eq. (24). The outcome is the leading
shape correction expressed in terms of the limit distribution
[as quoted in Eq. (4)]:

�1(y) = [ y �0(y) + �′
0(y)]′. (25)

The second shape correction �2(y) cannot be related to �0(y)
in such a simple manner but can be readily evaluated using
Eqs. (24) and (B18) of the Appendix B.

The functions �1(y) and �2(y) are displayed in Fig. 2.
A general property of these functions is that their zeroth,
first, and second moments are zero. This follows from their
definition as being corrections to a centered and normalized
probability distribution and can be explicitly verified using
their definitions, e.g., Eq. (24).

In order to determine the amplitudes in front of the
shape corrections, we have to calculate the FS behavior of
δgn for n � 2. This problem is addressed in detail, using
two distinct methods, in Appendixes A and B. It is found
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FIG. 2. Behavior of the scale-independent shape-correction func-
tions �1(y) and �2(y).

there that the asymptotic L-dependence of δg2 has the form
(C1 ln L + C2)/L2 [cf. Eq. (A3)], while δgn behaves as ∝ 1/L2

for n > 2 [cf. Eqs. (A8), (B4), and (B15)]. The result of these
calculations is the amplitude of �1(y) given by

a1(L) = α ln L + γ

L2
= α

L2
ln

L

L0
, (26)

where the coefficient α is obtained analytically α =
3π/(4G) = 2.572 361 347 6, with G being the Catalan con-
stant, while γ = −2.802 563 265 3 and L0 = 2.972 759 081
are determined numerically.

The amplitude a1(L) is the second main result of our work
since the FS corrections are dominated by the a1(L)�1(y)
term. Indeed, a2(L)/a1(L) is small, 0.67, already for L = 10
and it decreases with increasing L. Furthermore, evaluating
�2(y) numerically, one finds that apart from the neighbor-
hood of the zeros of �1(y), the inequality a1(L)�1(y) �
a2(L)�2(y) holds for L > 10, as seen in Fig. 3.
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FIG. 3. Comparison of the two leading correction terms
a1(L)�1(y) and a2(L)�2(y) for L = 10, 16, 32, and 128.
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FIG. 4. Comparison of the exact FS correction �L(y) − �0(y)
with the leading term a1(L)�1(L) given by (25) and (26). Apart from
the regions close to the maxima and minima, good agreement can be
observed already for small system sizes.

It should be mentioned that there is some freedom in
separating the two contributions a1(L)�1(y) and a2(L)�2(y)
in Eq. (2). One can replace �2(y) with �2(y) + c�1(y),
changing simultaneously γ to γ − cγ ′ in a1(L) [Eq. (20)].
Our choice of separating the leading large-n asymptote of δgn

in Eqs. (18) and (21) leads naturally to a function proportional
to �1(y) and also results in a remnant that is small already for
small values of L. This choice is convenient, since it allows to
write the FS correction in a compact form [see Eq. (5)] with a
very good accuracy as demonstrated in Fig. 4.

It is remarkable that the dominant correction term
a1(L)�1(y) also emerges from a simple assumption about the
PDF written in its original variable. Namely, if we assume that
one can write PL(m) = P0(m) + ε(L)P ′′

0 (m), with ε → 0 for
L → ∞, we find that ε(L) = a1(L) σ 2

m. Using then the scaled
variable y, the expression ε(L)P ′′

0 (m) becomes a1(L)�1(y).
As discussed above, there are other choices for separating a

contribution proportional to �1(y). It should be clear, however,
that the freedom is irrelevant when the sum of the two
contributions a1(L)�1(y) + a2(L)�2(y) is used. As expected,
and as can be seen in Fig. 5, the convergence is fastest when
the sum of both corrections are used.

IV. MONTE CARLO SIMULATIONS

Here we briefly demonstrate that the calculated FS correc-
tions can be observed in simulations. It is clear that increasing
the system size and improving the statistics by increasing the
number of Monte Carlo samples, the leading FS corrections,
as seen in Fig. 5, will emerge from the analysis. The question
is whether the leading corrections we calculated could be seen
already in small systems with reasonable simulation effort.

We have thus performed MC simulations on a 2D XY model
of size L = 10 and computed �L(y). Since our analytic results
Eqs. (22)–(24) pertain to the T = 0 limit of the system, we
made simulations deep in the low-T region (T = 0.04 and
0.02) using the overrelaxation Metropolis (ORM) algorithm
[27]. In addition, simulations of the T = 0 limit itself could
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FIG. 5. Comparison of the exact FS correction �L(y) − �0(y)
with the leading terms a1(L)�1(L) + a2(L)�2(y) for lattice sizes
L = 10, 32, 64, and 128.

also be carried out since there the spin-wave approximation
applies, which yields independent modes with Gaussian action
whose simulation is straightforward [28].

In the simulation using ORM, we typically measured
observables using 100 × 109 sweeps, and the errors were
estimated by using a binning method. In Fig. 6, the red line
shows the FS corrections to �0(y) displayed as the difference
�L=10(y) − �0(y) computed from the integral representation
of Eq. (9). It is compared with data obtained by ORM at
very low temperatures T = 0.04 (green circles) and T = 0.02
(asterisk markers). The magenta points represent the results
from the simulation of the Gaussian action at T = 0. The
statistical errors on all the data points displayed are smaller
than the point size, which is not surprising for the quoted large
number of MC sweeps. From the actual statistical error ∼
5 × 10−5 one can find that a relatively small number, 3 × 108

sweeps are enough to reach an accuracy 10−3, one-tenth of the
maximal FS correction.

As one can see, the simulation temperatures used are
small enough for the temperature corrections to be small
compared to the FS corrections at L = 10. It can also be
seen that the sum of the two leading FS correction terms,
a1(L)�1(y) + a2(L)�2(y) (blue dashed line), is quite close to
the exact result. Of course, L = 10 is a rather small system to
expect full agreement of the calculated leading FS corrections
with the full FS correction. Looking at Fig. 5, however, one
notes that increasing the size of the system by only a factor
three would yield a complete domination of the leading FS
corrections over the higher-order FS corrections.

Thus, we conclude that observing the leading FS corrections
is feasible in relatively small systems at relatively small
computational coast. Based on this observation, we expect
that a meaningful analysis of FS corrections in experimental
XY systems is also possible.

V. CONCLUSIONS

We have computed the leading FS corrections to the PDF
of the magnetization of the 2D XY model at zero temperature.
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FIG. 6. Comparison of the exact FS correction �L(y) − �0(y) (red line) and the leading terms a1(L)�1(L) + a2(L)�2(y) (blue dashed
line) with the MC simulations for lattice size L = 10. The region close to the minimum is magnified in the right panel. It shows that the ORM
results approach �L(y) − �0(y) as T → 0.

Two scale-independent functions �1(y) and �2(y) were found
with their amplitudes behaving with system size as a1(L) ∼
α ln(L/L0)/L2 and a2(L) ∼ 1/L2. The function �1(y) can be
expressed through the limit distribution �0(y) and its low-
order derivatives. This makes it a candidate for identifying
universality features hidden in FS corrections.

The leading and next-to-leading corrections were found to
describe the FS behavior very accurately already for small
system size. Thus, as our MC simulations demonstrated, the
observation of the calculated FS corrections is possible in
model systems. We expect that their experimental observation
may also be feasible.
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APPENDIX A: FINITE-SIZE CORRECTIONS TO δgn

We begin by deriving the large-L asymptotic expansion for
g2 defined in Eq. (10). It is convenient to write this equation
in the form

g2 = 1

(2π )4

∑
l,m

′
[
l2 + m2 − 1

12

(
2π

L

)2

(l4 + m4) + · · ·
]−2

,

= g∞
2 + δg2, (A1)

where the sum goes from l,m = −L/2 + 1, to L/2 and prime
means that the l = m = 0 term is left out. The asymptotic

value g∞
2 is given by

g∞
2 = 1

(2π )4

∞∑
l,m=−∞

′ 1

(l2 + m2)2
= G/(24π2)

≈ 0.003 866 9, (A2)

where G is Catalan’s constant.
In the FS correction δg2, the sum giving the coefficient of

1/L2 diverges logarithmically with L. This leading term is
obtained as

δg2 ∼ 1

6(2π )2L2

∑
l2+m2<L2/4

′ l4 + m4

(l2 + m2)3
+ · · ·

= 1

6(2π )2L2

1/2∫
1/L

dr

r

2π∫
0

dφ(sin4 φ + cos4 φ) + · · ·

= 1

16π

ln L

L2
+ O(L−2). (A3)

It is worthwhile mentioning that the ln L/L2 decay of δg2 is
consistent with the logarithmic FS corrections of some related
quantities reported in [29].

The above expression for δg2 can be generalized to perform
a high-precision fit of the form

g2(L) = g∞
2 + 1

L2

(
1

16π
ln L + γ2

)
(A4)

to g2(L) computed numerically using Eq. (10) for a large range
of L values [30].

In Fig. 7 we have plotted the numerically computed g2(L),
as well as the FS scaling expression given by Eq. (A4). The
value of the parameter γ2 = 0.003 768 763 799 was obtained
from a high-precision fit over system sizes up to L = 109. In
Appendix B we use a more sophisticated method to obtain an
integral representation for γ2 and found a complete agreement
with the value cited above.
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FIG. 7. Behavior of g2(L) as a function of lattice size L up to
L = 109 in logarithmic scale. The red dots correspond to the direct
numerical evaluation of Eq. (10) and the blue line corresponds to the
analytic expression of Eq. (A4) for γ2 = 0.003 768 763 799.

Similarly to Eq. (A2), the asymptotic value g∞
n is given by

g∞
n = 1

(2π )2n

∞∑
l,m=−∞

′ 1

(l2 + m2)n

= 4

(2π )2n
ζ (n)β(n), (A5)

where ζ (n) and β(n) are Riemann’s ζ function and Dirichlet’s
β function, respectively [31].

For n � 3 the sum appearing in the 1/L2 correction
term δgn converges for L → ∞; hence, one can extend the
summation to ±∞ (up to an error decreasing faster than 1/L2).
One has then

δgn

ng∞
n

= (2π )2

12L2

∑
l,m
′ (l4 + m4)(l2 + m2)−(n+1)∑

l,m
′ (l2 + m2)−n

= π2

3L2

(
1 + Un

Vn

)
, (A6)

where

Un =
∑
l,m

′ l4 − l2 + m4 − m2

(l2 + m2)n+1
,

Vn =
∑
l,m

′ (l2 + m2)−n = 4ζ (n)β(n). (A7)

For large n the dominant terms in these sums come from small-
est |l|, |m| with nonvanishing contributions. The numerator in
Un vanishes for the two shells (l = ±1, m = 0), (l = 0, m =
±1), and (l = ±1, m = ±1). The leading term for large n is
coming from (l = ±2, m = 0) and (l = 0, m = ±2) and is
given by 12 × 4−n. Since Vn = 4(1 + 2−n + · · · ) one finds
that Un/Vn ∼ 3 × 4−n. This is a small correction; even for
n = 3 it is just ≈ 0.047. Hence, we have, as stated in Eq. (18),

δgn

ng∞
n

= π2

3L2
+ 1

L2
O(4−n), n � 3. (A8)

APPENDIX B: INTEGRAL REPRESENTATION FOR
LEADING FINITE-SIZE CORRECTIONS

For calculating finite-volume sums for a cubic box of size
L in d dimensions in the continuum, like

∑′
k 1/(k2)n, where

k2 = ∑d
i=1(2πni/L)2, it is useful to introduce the function

S(x) (see, e.g., [32]) (related to Jacobi’s θ function), defined
as

S(x) =
∞∑

n=−∞
exp(−πxn2). (B1)

It satisfies the relation

S(x) = 1√
x

S

(
1

x

)
, (B2)

which makes it possible to calculate S(x) very precisely by
taking only a few terms in the sum, for both x < 1 and x > 1.
Note that S(x) = x−1/2[1 + 2 exp(−π/x) + · · · ] for x → 0,
while S(x) = 1 + 2 exp(−πx) + · · · for large x.

As an illustration, it is easy to show that g∞
n given by

Eq. (A5) has an integral representation:

g∞
n = 1

(4π )n	(n)

∞∫
0

dxxn−1[S2(x) − 1]. (B3)

The leading term for n → ∞ is given by the large-x behavior
of the integrand. Separating it, one obtains an expression,

g∞
n = 4

(2π )2n
+ 1

(4π )n	(n)

×
∞∫

0

dxxn−1[S2(x) − 1 − 4e−πx], (B4)

which can be evaluated and shown to be in agreement with
Eq. (A5). With the help of this one can perform the summation
in Eq. (15), yielding

F0(k) =
∫ ∞

0

du

2u
[S2(uw) − 1]

×
{
eiku −

(
1 + iku − 1

2
k2u2

)}
, (B5)

where w = 4π
√

g∞
2 /2. The Fourier transformation appearing

here can be performed efficiently by a fast Fourier transform
(FFT).

This technique can be generalized to finite-volume lattice
sums by introducing [33]

QL(z) = 1

L

L−1∑
l=0

exp
( − zk̂2

l

)

= φ0(z) + 2
∞∑

m=1

φmL(z), (B6)

where k̂2
l = 2[1 − cos(2πl/L)], l = 0, . . . ,L − 1, and

φn(z) = e−2zIn(2z), (B7)

with In(z) being the modified Bessel function. For large z one
has φ0(z) ∼ 1/

√
4πz.
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For fixed z with increasing L the function QL(z) approaches
φ0(z) exponentially fast. The convergence becomes slower
with increasing z, but even when the argument increases slower
than L2 one still has

lim
L→∞

[QL(cLα) − φ0(cLα)] = 0 for α < 2, (B8)

with the difference decreasing faster than any inverse power
of L. This is not true for z ∝ L2, and for this case one obtains
another scaling function. Rescaling QL(z), we introduce the
lattice counterpart [33] of S(x) by

SL(x) = LQL

(
xL2

4π

)
. (B9)

By expanding Eq. (B6) for large L one finds the asymptotic
expansion

SL(x) = S(x) + π

3L2
xS ′′(x) + O

(
1

x2L4

)
. (B10)

As the error term indicates, the approach to L = ∞ is not
uniform in x.

Using SL(x) one has for gn = gn(L) two integral represen-
tations:

gn = L−2n+2

	(n)

∫ ∞

0
dzzn−1

[
Q2

L(z) − 1

L2

]

= 1

(4π )n	(n)

∫ ∞

0
dxxn−1[S2

L(x) − 1
]
. (B11)

We outline below the calculation of δg2 to O(1/L2). Due to
the nonuniform convergence for L → ∞ it is useful to split
the integration region and write

g2(L) = 1

L2

∫ z0

0
dzz

[
Q2

L(z) − 1

L2

]

+ 1

(4π )2

∫ ∞

x0

dxx
[
S2

L(x) − 1
]
, (B12)

where x0 = 4πz0/L
2. Choosing z0 = z0(L) = cL2−ε with

some fixed small ε > 0 in the first term, one could replace
QL(z) with φ0(z) up to exponentially small corrections.
Similarly, in the second integral one can use the expansion
Eq. (B10). Note that z0(L) → ∞ and x0(L) → 0 for L → ∞.
Using Eq. (B10) and neglecting terms vanishing faster than

1/L2, one obtains

δg2 = 1

L2

∫ z0

0
dzzφ2

0(z) + 2π

3L2(4π )2

∫ ∞

x0

dxx2S(x)S ′′(x).

(B13)

Separating the asymptotic behavior of the integrands for large z

and small x, respectively, one obtains the logarithmic contribu-
tion 1/(32π ) ln(z0/x0) = 1/(16π ) ln L, and in the remaining
terms one can make the substitutions z0 = ∞ and x0 = 0.
Evaluating the corresponding integrals, one reproduces the fit
result Eq. (A4) to all digits (cf. Fig. 7).

The leading correction of δgn for n > 2 is simpler and given
by the convergent integral

δgn = 2π

3L2

1

(4π )n	(n)

∫ ∞

0
dxxnS(x)S ′′(x), n � 3.

(B14)
Separating the large-x term of the integrand, one obtains

δgn = π2

3L2

4n

(2π )2n
+ 2π

3L2

1

(4π )n	(n)

×
∫ ∞

0
dxxn[S(x)S ′′(x) − 2π2e−πx], (B15)

where n � 3. The leading term has the same form as for ng∞
n

[cf. Eq. (B4)]. Subtracting this way the leading term, one can
define cn by

δgn = π2

3L2
ng∞

n + 2π

3L2
cn, (B16)

where for n � 3:

cn = 1

(4π )n	(n)

∞∫
0

dxxnS(x)[S ′′(x) + πS ′(x)]. (B17)

For large n one has cn ∼ 6πn(4π )−2n; i.e., it is suppressed
by a factor of 4−n compared to ng∞

n .
Inserting Eq. (B17) into Eq. (21) we obtain an integral

representation for 
2(k):


2(k) = w

2

∞∫
0

duS(uw){S ′′(uw) + πS ′(uw)}

×
[
eiku −

(
1 + iku − 1

2
k2u2

)]
. (B18)

Using FFT one can evaluate this and finally the corresponding
correction �2(y) to the PDF.
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[8] G. Foltin, K. Oerding, Z. Rácz, R. L. Workman, and R. K. P.
Zia, Phys. Rev. E 50, R639 (1994); Z. Rácz and M. Plischke,
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