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Open system trajectories specify fluctuating work but not heat
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Based on the explicit knowledge of a Hamiltonian of mean force, the classical statistical mechanics and
equilibrium thermodynamics of open systems in contact with a thermal environment at arbitrary interaction
strength can be formulated. Yet, even though the Hamiltonian of mean force uniquely determines the equilibrium
phase space probability density of a strongly coupled open system, the knowledge of this probability density
alone is insufficient to determine the Hamiltonian of mean force, needed in constructing the underlying statistical
mechanics and thermodynamics. We demonstrate that under the assumption that the Hamiltonian of mean force
is known, an extension of thermodynamic structures from the level of averaged quantities to fluctuating objects
(i.e., a stochastic thermodynamics) is possible. However, such a construction undesirably also involves a vast
ambiguity. This situation is rooted in the eminent lack of a physical guiding principle allowing us to distinguish
a physically meaningful theory out of a multitude of other equally conceivable ones.
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I. INTRODUCTION

Thermodynamics originally evolved from the challenge
of how to understand and optimize steam engines. It soon
transcended its engineering origin and developed into an
abstract phenomenological theory that does not rely on the
specific properties of the systems to which it is applied.
Even more, according to Einstein, “Thermodynamics is the
only physical theory which I am convinced will never be
overthrown, within the framework of applicability of its basic
concepts” [1].

The field of thermodynamics is based on the idea of
thermodynamic equilibrium, describing a steady state that is
characterized by a very small number of relevant macroscopic
variables such as energy, volume, particle numbers, and
order parameters in the case of broken symmetries [2].
Irreversible thermodynamics in turn includes the description
of time-dependent phenomena. It, however, is based on the
assumption of local thermal equilibrium and hence is restricted
to processes close to equilibrium; as such it presents a
phenomenological, often very useful approach [3].

The question whether thermodynamic principles possibly
also rule far-from-equilibrium situations has a long history [4],
although without a generally accepted answer to date. More
recent attempts to impose thermodynamic structures on the
trajectory level of stochastic processes have been put forward
under the names stochastic energetics [5,6] and stochastic
thermodynamics [7,8]. For the implementation of both ap-
proaches an energy-like quantity needs to be defined as a
function on the state space of the considered system. A
Boltzmann-type probability density specified by an ambient
inverse temperature β multiplying this energy expression is
supposed to characterize the distribution of states in thermal
equilibrium. The equilibrium average of the energy expression
is understood as the internal energy of the considered system.

Because in these approaches the state of the system
undergoes a stochastic process due to the interaction between
system and environment, the energy function becomes a time-
dependent fluctuating quantity. It hence is termed a fluctuating

internal energy. A central assumption of stochastic energetics
and stochastic thermodynamics is that the fluctuating internal
energy not only characterizes the system in its equilibrium
state specified by the above mentioned Boltzmann distribution
but also covers a class of nonequilibrium situations. Within this
class the environment consists of a single heat bath at an inverse
temperature β. It contains relaxation processes emanating
from a nonequilibrium initial state of the open system as well
as processes that are driven by a time-dependent variation
of system parameters λ. Typically, the resulting dynamics is
modeled with an overdamped Langevin dynamics [5–9].

The deterministic part of the Langevin dynamics may
depend on externally controllable parameters leading upon
variation to an energy change, which is then interpreted as
work applied to the system. In a first-lawlike fashion the
difference between fluctuating internal energy and fluctuating
work is considered as fluctuating heat, in the framework of
both stochastic energetics and stochastic thermodynamics.
Stochastic thermodynamics proceeds one step further and also
introduces a fluctuating entropy; the latter is essentially given
by the logarithm of the instantaneous probability density of the
system [9]. Even though it was noted by Sekimoto [10] that the
potential landscape in which a stochastic motion takes place
is in fact a constrained free energy, its possible temperature
dependence has been ignored for both stochastic energetics
and stochastic thermodynamics; a notable exception is the
recent work in Ref. [11].

The statistical mechanics and thermodynamics of open
systems that interact at a finite strength with their environ-
ment [12–16] cannot be treated within the usual weak coupling
framework [17]. Instead, the equilibrium statistical mechan-
ics is now governed by a so-called Hamiltonian of mean
force [22–24]. This quantity replaces the bare, microscopic
system Hamiltonian that characterizes the thermodynamics
of the considered system staying in very weak contact to
its environment with an effective Hamiltonian that typically
depends on both the temperature of the environment and the
coupling strength between the system and the environment
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as well as on other properties of the environment. At finite
coupling strengths to the heat bath, the internal energy of the
open system not only is given by the equilibrium average of
the potential of mean force but also contains the average of
the temperature derivative of the Hamiltonian of mean force.
This particular relation has been transferred in Ref. [11] into
the framework of stochastic thermodynamics.

With the present study we investigate the question whether
the principles of thermodynamics are sufficient to construct
a theory of fluctuating thermodynamic potentials. Our main
finding is that there exists a large variety of different families of
fluctuating potentials, all being thermodynamically consistent.
A physical principle, however, which would allow us to reduce
this ambiguity in singling out a unique physically meaningful
theory is lacking.

The paper is organized as follows. In Sec. II we review the
statistical mechanics and thermodynamics of open equilibrium
systems and stress that the potential of mean force in
general cannot be inferred from the mere knowledge of the
reduced probability density of the open system. As additional
information needed to determine the Hamiltonian of mean
force one must know the free energy of the system, being
the difference of the free energies of the total system and of
the bare environment. Based on the assumed knowledge of
the Hamiltonian of mean force we consider in Sec. III the
fluctuating internal energy as it was postulated recently in
Ref. [11]. That specific choice is not unique, however, as there
exist variants thereof, all of which yield the same equilibrium
average coinciding with the equilibrium internal energy of the
open system. Based on the definition of the fluctuating internal
energy the corresponding energy content of the environment
can be quantified. The work applied to the system by a change
of a system parameter can then be expressed as the difference
of the energies of the total system at the beginning and the
end of the forcing of the system by means of a parameter
change following a prescribed protocol, or, equivalently, by
integrating the instantaneous power supplied to the system over
the complete time of the forcing [25]. Assuming the validity
of a first-lawlike balance relation the difference between the
internal energy change and the supplied work is taken as the
energy exchanged with the environment and hence interpreted
as heat exchange. In Sec. IV we review this scenario, as well
as an alternative approach in which the energy balance is
treated in terms of fluxes. This, however, leads to an explicitly
fluctuating expression for the heat flux, which thus is not
accessible on the level of the open system dynamics.

Next, in Sec. V we find that there exists a large manifold of
families of thermodynamically consistent fluctuating internal
and fluctuating free energies with a matching fluctuating
entropy. Again, a physically motivated guiding principle
providing a unique choice is lacking. Therefore, the existence
of thermodynamically consistent fluctuating potentials may
be looked upon as a curiosity without possessing a profound
physical meaning. Consequently, such approaches hardly can
be put to physical use uncritically. The study closes with a
summary and conclusions, together with several Appendices
on more technical aspects.

With the present work we restrict ourselves to the con-
sideration of classical systems only; quantum systems pose
additional subtleties and challenges [26–28].

II. THERMODYNAMICS OF OPEN SYSTEMS

An open thermal system can be closed by considering
the dynamics of the degrees of freedom of the open system
together with all environmental degrees of freedom interacting
directly or indirectly with those of the former one.

The total system is then described by a phase space �tot =
�S ⊗ �B where �S and �B are the phase spaces of the system
and the environment, respectively. Points in the total phase
space are denoted by z = (x,y) ∈ �tot, where x ∈ �S and y ∈
�B specify the components in the phase spaces of the open
system and the environment, respectively. Accordingly, the
dynamics of the total system is governed by a Hamiltonian
Htot that can be written as

Htot(x,y) = HS(x) + Hi(x,y) + HB(y), (1)

where HS , HB , and Hi are the Hamiltonians of the isolated
system, the isolated environment, and the mutual interaction
of the system and environment, respectively.

We assume that the total system stays in thermal equilibrium
at the inverse temperature β, and consequently it is described
by the canonical probability density function (PDF)

ρβ(z) = Z−1
tot e

−βHtot(z), (2)

where

Ztot =
∫

d�tote
−βHtot(z) (3)

denotes the partition function of the total system. The infinites-
imal phase space volume elements d�S , d�B of the system
and the environment, respectively, yielding d�tot = d�Sd�B

are supposed to be scaled dimensionless. For example, in the
case of a system consisting of N particles with positions q
and momenta p in a d-dimensional configuration space, this is
conveniently achieved by the multiplication of the dimensional
volume element ddNqddN p with the factor h−dN where h

is Planck’s constant. The volume elements may additionally
contain symmetry factors to account properly for the Gibbs
paradox in the limit of a large total particle number. The
equilibrium state of the open system is described by the
reduced PDF pβ(x) given by

pβ(x) =
∫

d�Bρβ(x,y). (4)

In order to characterize the thermodynamics of the open
system we introduce the notion of the “Hamiltonian of mean
force” H ∗. It is defined in terms of the average of e−β(HS+Hi )

with respect to the bare environment [12,13,22–24]:

e−βH ∗(x) = 〈e−β[HS (x)+Hi (x,y)]〉B, (5)

where 〈·〉B = Z−1
B

∫
d�B · e−βHB denotes the equilibrium av-

erage over the environmental degrees of freedom in the absence
of the system. Accordingly,

ZB =
∫

d�Be−βHB (6)

is the partition function of the bare environment. For the
Hamiltonian of mean force we therefore find

H ∗(x) = HS(x) − β−1 ln〈e−βHi (x,y)〉B. (7)

022143-2



OPEN SYSTEM TRAJECTORIES SPECIFY FLUCTUATING . . . PHYSICAL REVIEW E 94, 022143 (2016)

In general H ∗(x) manifestly deviates from the bare system
Hamiltonian HS . A prominent exception is the case of very
weak coupling between system and environment. Then the
renormalization of the system Hamiltonian due to environ-
mental degrees of freedom becomes negligible. The classical
Zwanzig-Caldeira-Leggett system-bath Hamiltonian already
has built in a counterterm such that even at strong coupling
between system and environment the Hamiltonian of mean
force agrees with the bare system Hamiltonian [29–31].
This property is shared by the more general class of total
Hamiltonians for which the interaction between system and
environment can formally be removed by a canonical transfor-
mation of the environmental degrees of freedom.

The difference between the Hamiltonian of mean force
and the bare system Hamiltonian in general depends on
temperature with the exception of harmonic environmental
models for which the correction term −β−1 ln〈e−βHi 〉B is
always independent of temperature, such as for the bilinear
coupling model to a heat bath of harmonic oscillators by
Magalinskiı̆ and Ullersma [32,33]. On the other hand, a
possible external parameter dependence that enters the total
Hamiltonian via HS(x), is contained in H ∗ only through HS(x),
whereas the temperature-dependent part is independent of such
a parameter.

The reduced PDF of the open system as defined in Eq. (4)
can be expressed in terms of the Hamiltonian of mean force as

pβ(x) = Z−1
S e−βH ∗(x), (8)

where

ZS = Ztot

ZB

=
∫

d�se
−βH ∗

. (9)

With this particular form of the partition function ZS one
obtains a consistent thermodynamic description of an open
system independent of the strength of the interaction between
system and environment [15,16]. Applying the standard
statistical mechanical rules we obtain for the free energy FS

of the open system

FS = −β−1 ln ZS. (10)

Accordingly, also the internal energy US and the entropy SS

are defined in their standard thermodynamic form, reading

US = − ∂

∂β
ln ZS, (11)

SS = kB ln ZS − kBβ
∂

∂β
ln ZS. (12)

As a consequence, thermodynamic entropy and free and
internal energy are related by

FS = US − T SS, (13)

further entailing the relations

US = ∂

∂β
(βFS), (14)

SS = kBβ2 ∂

∂β
FS. (15)

The validity of any two of the three relations (13)–(15) implies
the third one. This feature constitutes the thermodynamic

consistency of the potentials FS , US , and SS , describing
the thermodynamic equilibrium of an open system. This
consistency follows from the fact that all these potentials are
implied by the set of Eqs. (10)–(12) in terms of a partition
function. The particular structure of the partition function
ZS as the ratio of two canonical partition functions, one
describing the total system, the other one the bare environment,
implies that all thermodynamic potentials as well as other
thermodynamic quantities X following from these potentials
by linear operations such as specific heats, susceptibilities, etc.
are determined by the difference of the respective quantities
of the total system and the bare environment, in short,

XS = Xtot − XB. (16)

Typical examples for such thermodynamic difference re-
lations occur in the determination of solvation or hydration
energies [24] or also in measuring the specific heat of a
system strongly interacting with its environment (e.g., see
Refs. [15,16]), to name but a few. The latter examples are
taken from quantum mechanics, where the partition function
of the system is determined by the same ratio as in Eq. (9) and
consequently the relations (10)–(16) apply [34].

With Eqs. (8) and (9) the Hamiltonian of mean force
determines both the statistical and the thermodynamical
properties of an open system. The statistical properties, at least
in principle, could be obtained from a large set of observations
of the considered open system [35] yielding an estimate for the
open system PDF pβ(x). But even if pβ(x) were known exactly
it would generally not be possible to infer the thermodynamics
of the open system. This is so because from pβ(x) only the
linear combination of the Hamiltonian of mean force and of
the free energy follows in the form

−β−1 ln pβ = H ∗ − FS. (17)

An unambiguous separation of the left-hand side into the
Hamiltonian of mean force and the free energy can be achieved
only if the Hamiltonian of mean force is independent of
temperature and, additionally, if the reduced PDF is known
for different temperatures. In Appendix A we demonstrate
that the requirement of the above mentioned thermodynamic
consistency does not help in finding a unique splitting of the
logarithm of the reduced PDF into the Hamiltonian of mean
force and the free energy.

Finally we note that, as a consequence of (9) and (11), the
internal energy can be written as

US =
〈

∂

∂β
βH ∗

〉
S

, (18)

where 〈·〉S = ∫
d�S · pβ(x) is the equilibrium average with

respect to the open system. We emphasize that in general
the average of H ∗ fails to fully characterize the internal
energy of the system. An additional contribution is present
if the Hamiltonian of mean force depends on temperature.
As a second note we mention that, even though the average
on the right-hand side of (18) solely refers to the open
system, the Hamiltonian of mean force carries information
that, as explained above, cannot merely be retrieved from sole
observations of the open system stochastics.
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Therefore, the thermodynamics of a strongly coupled open
system does generally still involve the combined total system-
bath system as well as the bare environment.

III. FLUCTUATING INTERNAL ENERGY

The existence of a fluctuating internal energy E(x; λ) is
a central postulate of stochastic energetics [5,6] as well as
of stochastic thermodynamics [7–9]. In these theories the
fluctuating internal energy is supposed to assign to each
point x of the system phase space a local value of the
fluctuating energy. The second argument of E(x; λ) denotes
one or more generally time-dependent parameters λ which
only enter the system Hamiltonian and are supposed to be
externally controllable. Moreover, it is assumed that E(x; λ)
is universal with respect to the statistical properties of the
system, i.e., it is independent of the PDF characterizing the
system under consideration. By construction, fluctuations of
the deterministic function E(x; λ) solely emerge in time as a
consequence of the assumed stochastic motion of the state x.
A more general scenario of a random internal energy field has
not been considered in these theories [5–9].

The concept of a fluctuating internal energy recently has
been generalized to the situation of an open system at strong
coupling [11]. This generalization is based on two assumptions
requiring (1) that the Hamiltonian of mean force, H ∗(x; λ), is
explicitly known and (2) that the fluctuating internal energy
E(x; λ) is functionally related to H ∗(x; λ) in a similar way as
its thermodynamic average in Eq. (18). In fact, the fluctuating
internal energy is defined as

E(x; λ) = ∂

∂β
[βH ∗(x; λ)]. (19)

The first assumption, though, runs counter to the general idea
of stochastic thermodynamics, postulating that a complete
description of all processes related to the open system under
consideration can be achieved from an intrinsic point of view
in the sense that the functional form of the fluctuating internal
energy can be retrieved from observations of the system
without further recourse to properties of the environment. In
the previous section we demonstrated that a reconstruction of
H ∗(x; λ) on the basis of (experimental) data from the open
system is possible in specific cases only.

Yet in the sequel we shall assume the Hamiltonian of mean
force H ∗(x; λ) to be given and further exploit this assumption.
By construction, the fluctuating internal energy defined by (19)
correctly yields the internal thermodynamic energy as the
average with respect to pβ(x):

US = 〈E(x; λ)〉S. (20)

Note that one would obtain the same result for the equilibrium
average from any other function Ẽ(x; λ), which is defined by

Ẽ(x; λ) = E(x; λ) + hE(x; λ), (21)

where hE(x; λ) ∈ Nβ with

Nβ ≡ {h(x; λ)|
∫

d�sh(x; λ)pβ(x) = 0} (22)

has a vanishing average in thermal equilibrium. The require-
ment that the fluctuating internal energy averaged with respect

to the equilibrium PDF pβ(x) yields the internal energy US

leaves room for a large ambiguity in defining such a function.
In a first step we will concentrate on the choice made in
Eq. (19). Below we shall revert to the objective as to which
additional arguments must be invoked towards the goal to
obtain a uniquely defined fluctuating internal energy. Here we
note that E(x,λ) can be given the following alternative form
(see Appendix B for details):

E(x; λ) = 〈Htot|x〉 − 〈HB〉B, (23)

where 〈·|x〉 = ∫
d�B · w(y|x) denotes a conditional average

over the environmental degrees of freedom. The according
conditional PDF w(y|x) is obtained from the total equilibrium
PDF ρβ(x,y) by means of the Bayesian rule, yielding

w(y|x) = ρβ(x,y)∫
d�Bρβ(x,y)

= e−β[Hi (x,y)+HB (y)]∫
d�Be−β[Hi (x,y)+HB (y)]

= Z−1
B e−β[Htot(x,y)−H ∗(x)]. (24)

In passing, we mention that w(y|x) describes a constrained
equilibrium of the environment. It specifies the so-called
“stationary” preparation class [36], which is defined as the set
of all possible initial preparations of system and environment
of the type

ρ(x,y) = w(y|x)p0(x), (25)

where p0(x) may be an arbitrary initial PDF of the open system.
The difference between the total energy Htot(x,y; λ) =

HS(x) + Hi(x,y) + HB(y) and E(x; λ) can then be presented
as

G(x,y) ≡ Htot(x,y; λ) − E(x; λ)

= δHi(x,y) + δHB(x,y) + UB, (26)

where UB = 〈HB〉B denotes the internal energy of the bare
bath and δHi(x,y) and δHB(x,y) denote the deviations of
the interaction Hamiltonian and the bare bath Hamiltonian,
respectively, from their conditional averages:

δHi(x,y) ≡ Hi(x,y) − 〈Hi(x,y)|x〉
δHB(x,y) ≡ HB(y) − 〈HB(y)|x〉. (27)

The total averages of these deviations vanish if they are
performed with respect to any distribution w(y|x)p0(x) from
the stationary preparation class. Note that the system-specific
part p0(x) may deviate from the equilibrium distribution pβ (x).

Following the spirit of stochastic energetics and stochastic
thermodynamics one is led to interpret G(x,y) as the fluctu-
ating energy content of the environment. However, one also
can argue that the contribution from the interaction, δHi(x,y),
instead of being fully accounted to the environment should, at
least partially, be allocated to the fluctuating internal energy.
This reasoning then implies that the internal fluctuating energy
reads

e(x,y; λ) = E(x; λ) + α(x)δHi(x,y) + hE(x; λ). (28)

As done with Eq. (21), we allowed for a function hE(x,λ) ∈
Nβ . The weight α(x) determines which fraction of the fluctu-
ating part of the interaction energy counts for the fluctuating
internal energy. Any nonvanishing choice of α(x) renders the
fluctuating internal energy a random field due to its resulting
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dependence on the environmental state y, which is sampled
from the conditional PDF w(x|y) of the stationary preparation
class.

The average of the fluctuating internal energy e(x,y; λ) with
respect to a PDF from the stationary preparation class (SPC)
turns out to be independent of α(x) and is hence given by

〈e(x,y; λ)〉spc = 〈E(x; λ) + hE(x; λ)〉p, (29)

where 〈·〉spc = ∫
d�S d�B · w(y|x)p(x) and 〈·〉p = ∫

d�S ·
p(x). In particular, the thermal equilibrium average of e(x,y; λ)
coincides with the internal energy US .

The most general form of the fluctuating internal en-
ergy (28) leads to a modified energy of the environment
following from the requirement that the energy of the total
system is the sum of the fluctuating internal energy and the
environmental energy. The latter then becomes

g(x,y) = Htot(x,y) − e(x,y; λ)

= [1 − α(x)]δHi(x,y) + δHB(x,y) + UB − hE(x; λ).

(30)

For the average of the environmental energy with respect to a
PDF from the stationary preparation class one obtains

〈g(x,y)〉spc = UB − 〈hE(x,λ)〉p, (31)

which reduces to UB in thermal equilibrium.
On the basis of the general forms of the expressions for

the fluctuating internal energy and of the energy content of the
environment one may identify two additional requirements that
lead to a unique form of the internal energy and consequently
also of the environmental energy content.

First, if one demands that the fluctuating internal energy is
a function of the system state x but is not allowed to depend on
the environmental state y the only choice left is α(x) ≡ 0. Yet a
possible contribution of a function hE(x) ∈ Nβ [see Eq. (22)]
still leaves an ambiguity in the definition of the fluctuating
internal energy.

Also hE(x; λ) must vanish if one further requires that
the bath energy must not contain solely x-dependent terms
other than those entering G(x,y) via the deviations of Hi(x,y)
and HB(y) from their respective conditional averages. Hence,
under these additional assumptions the internal fluctuating
energy is defined by Eq. (19). Both these requirements possess
structural appeal, but a deeper physical foundation is missing.

Furthermore, we note that the systems that are typically
considered within the frameworks of stochastic energetics and
stochastic thermodynamics are characterized by a position-like
quantity q which undergoes a stochastic motion in a potential
energy landscape V (q) on the system’s configuration space
governed by an overdamped Langevin equation, where q
denotes the configurational component of the phase space
point x = (q,p). The phase space PDF pβ(x) is related
to the stationary PDF pconf

β (q) = Z−1
confe

−βV (q) by pβ(x) =
Z−1

kine
−βT (p)pconf(q) provided that H ∗(x) = T (p) + V (q). This

structure follows from a total Hamiltonian of the form
Htot = T (p) + TB(yp) + Vtot(q,yq). Here T (p) and TB(yp)
denote the kinetic energies of the open system and the envi-
ronment, respectively, while Vtot(q,yq) = Vs(q) + Vi(q,yq) +
VB(yq) is the total potential energy including system,

environment, and their mutual interaction. Further V (q) =
−β−1 ln

∫
dyqe−βVtot(q,yq )/

∫
dyqe−βV (yq ) is the so-called po-

tential of mean force; accordingly Zconf = ∫
dqe−βV (q) and

Zkin = ∫
dpe−βT (p) denote the configurational and kinetic

partition functions, respectively. In Ref. [6] the potential
energy entering the Langevin equation is defined as V S(q) =
−β−1 ln

∫
dyqe−βVtot(q,yq ); it hence differs from the potential of

mean force by the configurational part of the partition function
of the bare environment. This difference is unimportant for the
dynamics because it is constant with respect to the position q
and also drops out when energy differences between different
configurations at the same temperature are considered. Due
to the remaining temperature dependence of the potential of
mean force, however, it must be distinguished from the con-
figurational part of the fluctuating internal energy. In analogy
to (19) this fluctuating internal configuration energy is given by
Econf(q) = ∂βV (q)/∂β. Upon omitting the β∂V (q)/∂β term
one disregards thermodynamic consistency.

IV. FLUCTUATING NONEQUILIBRIUM WORK AND HEAT

As already mentioned, λ is a system parameter that is
supposed to be externally controllable. It enters into the
Hamiltonian of the system, HS(x; λ), while the interaction
with the environment as well as the Hamiltonian of the bare
environment are considered as being independent of λ. When
the parameter λ is changed in time, such as between the times
t = 0 until t = τ , the nonequilibrium work w applied to the
system coincides with the change of the total Hamiltonian [37]
and, hence, is given by

w = Htot[Z(τ,z); λ(τ )] − Htot[z; λ(0)], (32)

provided that the total system initially stays in the microstate
z = (x,y). From there the total system deterministically
evolves according to the Hamiltonian equations of motion
to the final state Z(τ,z) = (X(τ,z),Y(τ,z)). We note that the
definition of work (32) allows for fluctuations which result
from the particular choice of the environmental part y of the
initial state z. Its value is taken from the conditional probability
w(y|x) of the stationary preparation class. Obviously, the work
defined by (32) cannot be directly inferred from knowing only
the system states x and X(τ,x,y) at the beginning and the end
of the force protocol. However, when the trajectory X(t,x,y)
is known for the whole protocol, i.e., for all t ∈ [0,τ ], the
work can be obtained as the integral over the supplied power,
reading [25]

w =
∫ τ

0
dt

∂

∂λ
HS[X(t,x,y); λ(t)]λ̇(t), (33)

where λ̇ denotes the time derivative of λ. Here we used the
Hamiltonian relation that dHtot/dt = ∂Htot/∂t = ∂HS/∂t .

The definition of fluctuating heat can be based on the
assumption of a particular form for the fluctuating internal
energy e(z; λ), which is supposed to satisfy a first-lawlike
balance equation according to which any change of the internal
energy can be split into the sum of work and heat, reading


e = w + q. (34)

Because, according to (32), the work w is determined by
the difference of the total Hamiltonians at the end and the
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beginning of the force protocol the fluctuating system heat
q can be expressed as the negative difference of the bath
energies defined in (30). With the particular choice α(x) ≡ 0
and hE(x,λ) ≡ 0 one has

q(z) = G(z) − G[Z(τ,z)]

= −δHi[Z(τ,z)] − δHB[Z(τ,z)] + δHi(z) + δHB(z).

(35)

In particular one assumes here that the form of the
fluctuating internal energy remains unchanged even if the
system is driven out of equilibrium by the application
of a possibly fast and violent action of an external
force.

For a system initially staying in thermal equilibrium, the
average heat supplied to the system up to time t becomes
〈q〉β = UB − 〈G[Z(t,z)]〉, where we used that the average
initial energy content of the environment is given by UB

because of 〈G(z)〉β = 〈Htot(z)〉β − 〈E(x; λ)〉β together with
〈Htot(z)〉β = US + UB and 〈E(x; λ)〉β = US . Considering a
protocol consisting of a cyclic parameter change of du-
ration τc and a subsequent relaxation phase up to the
time τ � τc the system has returned to its initial equilib-
rium state and hence the environmental energy becomes
〈G[Z(τ,z)]〉 = 〈Htot[Z(τ,z),λ(0)]〉 − US , yielding that 〈q〉β =
Utot − 〈Htot[Z(τ,z),λ(0)]〉 = −w. This is the expected result:
the complete energy supplied to the open system is finally
dumped into the environment. It is interesting to note that
this implies that in such a process even the final PDF of the
total system must deviate from the form of the initial stationary
preparation class. Otherwise the resulting heat would vanish on
average [38]. Derivations of second-law-like relations which
are based on the assumption that, during the relaxation process,
the PDF of the total system stays within the initial stationary
preparation class [11] are therefore to be questioned.

In principle, an alternative approach may be based on
the control of individual energy fluxes rather than balancing
the total amount of supplied and exchanged energy. Using
the power, the flux corresponding to the supplied work is
given as a function of the system state alone. This property,
however, is not shared by the flux of the fluctuating internal
energy which is given by the time derivative of the fluctuating
energy. As a result it depends on the instantaneous state of the
environment. Consequently, also the heat flux defined as the
difference between the internal energy flux and the power is
explicitly dependent on the state of the environment. Thus, the
fluxes of internal energy and of heat are generally inaccessible
in an experiment. For more details we refer the reader to
Appendix C.

V. FLUCTUATING ENTROPY AND FREE ENERGY

We next ask whether one may require thermodynamic
consistency not only for the averaged quantities, i.e., the ther-
modynamic potentials, but as well also for their hypothetical
fluctuating counterparts like the fluctuating internal energy
E(x; β), fluctuating entropy s(x; β), and the fluctuating free
energy f (x; β). For a reason that will become clear soon we
here explicitly display the dependence of these fluctuating

quantities on the inverse temperature β rather than on the
parameter λ. Stochastic energetics does not consider other
fluctuating potentials than internal energy, but the notion
of fluctuating entropy is a central element of stochastic
thermodynamics. One would assume that then the free energy
should also be allowed to fluctuate.

It will turn out that, in general, both the fluctuating free
energy and the fluctuating entropy will depend on the state
of the reduced system in terms of the momentary PDF p(x).
The latter may differ from the equilibrium PDF pβ(x) caused
by a nonequilibrium initial state of the open system, by a
time-dependent forcing λ(t) of the open system, or as the
result of a combination of initial nonstationarity and driving.
In order to be able to assign a Hamiltonian of mean force
to the open system the initial state of the environment must
be given by the constrained equilibrium w(y|x) characterizing
the stationary preparation class. This excludes other initial
states taken from different preparation classes [36] of the total
system, such as uncorrelated initial states described by a PDF
factorizing into a system and an environmental part, or systems
in contact with heat baths at different temperatures.

Before considering admissible nonequilibrium situations
we will first consider the full equilibrium situation in which
system and environment stay in their common thermodynamic
equilibrium state given by the PDF ρβ(x,y) defined in
Eq. (2).

A. Fluctuating entropy and free energy: Equilibrium

Assuming that the hypothetical fluctuating entropy and free
energy do not depend on the microscopic state of the environ-
ment and hence are functions of the system variable x alone
we demand that they yield the corresponding thermodynamic
functions upon the average with respect to the equilibrium
PDF pβ(x) of the open system:

SS = 〈s(x; β)〉S =
∫

d�Ss(x; β)pβ(x), (36)

FS = 〈f (x; β)〉S =
∫

d�Sf (x; β)pβ(x). (37)

Thermodynamic consistency requires the relations (14) and
(15) between U and F as well as between S and F , respectively.
They can be expressed in terms of the fluctuating quantities,
reading

∫
d�Spβ(x)

{
E(x; β) − f (x; β)

−β

[
∂

∂β
f (x; β) + f (x; β)

∂

∂β
ln pβ(x)

]}
= 0, (38)

∫
d�Spβ(x)

{
s(x; β)

− kBβ2

[
∂

∂β
f (x; β) + f (x; β)

∂

∂β
ln pβ(x)

]}
= 0. (39)

Here the presence of the logarithmic derivatives of the
equilibrium PDF pβ(x) resulted when the β differentiations of
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the free energy were taken within the average. Consequently
we find that

E(x; β) − f (x; β) − β

[
∂

∂β
f (x; β) + f (x; β)

∂

∂β
ln pβ(x)

]

= hF (x; β), (40)

s(x; β) − kBβ2

[
∂

∂β
f (x; β) + f (x; β)

∂

∂β
ln pβ(x)

]

= hS(x; β), (41)

where hF (x; β) and hS(x; β) are elements from the null-
space Nβ defined in Eq. (22). Equation (40) equally holds
with Ẽ(x; β) replacing E(x; β) with an accordingly modified
inhomogeneity hF (x; β) ∈ Nβ .

It follows from Eqs. (40) and (41) in agreement with (13)
that the fluctuating thermodynamic potentials are related by

s(x; β) = kBβ[E(x; β) − f (x; β)] + hS(x; β)

− kBβhF (x; β). (42)

As a first example we consider the case hS(x; β) =
kBβhF (x; β) = 0 for which we find the free energy f 0(x; β)
as a solution of the differential Eq. (40) to become

f 0(x; β) = β0pβ0 (x)

βpβ(x)
f 0(x; β0)

+ 1

βpβ(x)

∫ β

β0

dβ ′pβ ′(x)
∂

∂β ′ β
′H ∗(x; β ′) (43)

where β0 is an initial inverse temperature and f 0(x; β0) a
reference fluctuating free energy at this inverse temperature.
The equilibrium average of this reference free energy must
agree with the thermodynamic free energy FS at the inverse
temperature β0 but otherwise f 0(x; β0) is arbitrary. The corre-
sponding fluctuating entropy s0(x; β) follows from Eq. (42) as

s0(x; β) = kBβ[E(x; β) − f 0(x; β)]. (44)

We note that this form of fluctuating entropy differs from the
fluctuating entropy ssth(x; β) introduced in Ref. [11]; the latter
reads instead

ssth(x; β) = s0(β) − kB ln pβ(x) + kBβ2 ∂

∂β
H ∗(x; β), (45)

where s0(β) is an unspecified constant that may only depend
on the inverse temperature but not on the phase space variable
x [39]. Using Eq. (17) we express ln pβ(x) in terms of H ∗(x; β)
and FS , yielding

ssth(x; β) = kBβ[E(x; β) − FS(β)] + s0(β). (46)

Now, as a necessary condition for thermodynamic consistency
the entropy constant s0(β) must vanish. Furthermore, a
comparison of the two fluctuating entropy expressions (42)
and (46) implies that the fluctuating free energy f sth(x; β)
must coincide with the (non-fluctuating) thermodynamic free
energy FS(β):

f sth(x; β) = FS(β). (47)

Yet the choice (19), (45), or (47) is thermodynamically
consistent if one chooses

hF (x; β) = E(x; β) − ∂

∂β
βFS(β) + βFS(β)

∂

∂β
ln pβ(x)

(48)

and

hS(x; β) = −kBβhF (x; β). (49)

Using (14), (20), and 〈∂ ln pβ(x)/∂β〉S = 0, we confirm that
the average of hF (x; β) with respect to equilibrium PDF pβ(x)
vanishes and hence hF (x; β) ∈ Nβ .

The choices hF (x; β) = hS(x; β) = 0 and (48) and (49)
are just two examples from a continuum of thermody-
namically consistent families of fluctuating internal and
free energies and fluctuating entropy labeled by functions
hE(x; β),hF (x; β),hS(x; β), each of which must be an element
of Nβ , but otherwise can be arbitrary.

The fact that the particular form (45) of the fluctuating
entropy in Ref. [11] implies, via thermodynamic consistency, a
fluctuating free energy that coincides with the thermodynamic
free energy might be considered as a curiosity, which went
unnoticed in Ref. [11].

B. Fluctuating entropy and free energy: Nonequilibrium

The kind of nonequilibrium situations considered here is
restricted to systems interacting with a single heat bath. The
total system must initially stay within the stationary prepa-
ration class specified by the conditional environmental PDF
w(y|x) given by Eq. (24). As indicated above, a nonequilibrium
situation may result from a nonstationary initial state or a
time-dependent variation of the external control parameter
λ. Within the equilibrium preparation class, the system may
initially assume any PDF p0(x) leading to the initial PDF at
time t = 0, ρ ini(x,y) = w(y|x)p0(x); see (25). Starting from
there it evolves according to the Hamiltonian dynamics of the
total system and, at a later time t , yields the reduced PDF pt (x)
given by

pt (x) =
∫

d�Bp0[X(−t,z)]w[Y(−t,z)|X(−t,z)], (50)

where as in Eq. (32) Z(t,z) = (X(t,z),Y(t,z)) denotes the time
evolution in the phase space of the total system starting at
z = (x,y) under the Hamiltonian dynamics of the total system.
The fact that w(y|x) depends on temperature also renders pt (x)
temperature dependent for all times t > 0, even if p0(x) was
independent of temperature. In passing we note that the joint
PDF ρt (x,y), which is given by the integrand of (50) in general
does not have the form pt (x)w(y|x) for times t > 0.

Because in the sequel we will consider the open system
only at a fixed time t we suppress the time dependence of
the system PDF for the sake of simplifying our notation, and
instead emphasize the β dependence in writing

p(x; β) ≡ pt (x). (51)

The extension of the structure of thermodynamics as it
applies to equilibrium systems to nonequilibrium situations
requires us to postulate the existence of nonequilibrium
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thermodynamic potentials U neq(β), F neq(β), and Sneq(β) sat-
isfying the thermodynamic relations (11)–(13), guaranteeing a
corresponding thermodynamic consistency. In stochastic ther-
modynamics the nonequilibrium internal energy is determined
by the average of the same fluctuating internal energy as in
thermal equilibrium; however, the average being taken now
with respect to the actual reduced PDF p(x; β) given by (51).
Hence,

U
neq
S =

∫
d�SE(x; β)p(x; β) (52)

with E(x; β) = ∂βH ∗(x; β)/∂β. Also expressing F neq(β) and
Sneq(β) as averages of yet undetermined respective fluctuating
quantities f neq(x; β) and sneq(x; β) taken with respect to
p(x; β) we deduce from the requirement of thermodynamic
consistency the following two equations:

E(x; β) − f neq(x; β)

−β

[
∂

∂β
f neq(x; β) + f neq(x; β)

∂

∂β
ln p(x; β)

]

= hF (x; β), (53)

sneq(x; β) − kBβ2

[
∂

∂β
f neq(x; β) + f neq(x; β)

∂

∂β
ln p(x; β)

]

= hS(x; β), (54)

where the averages of the functions hF (x; β) and hS(x; β) with
respect to p(x; β) vanish; otherwise these functions may be
chosen arbitrarily, i.e., hF (x; β),hS(x; β) ∈ N neq with N neq =
{h(x)| ∫ d�Sh(x)p(x; β) = 0}.

For any particular choice of hF (x; β) and hS(x; β) the
first equation determines a fluctuating free energy and the
second one a fluctuating entropy in analogy to the equilibrium
situation described by Eqs. (40) and (41). Accordingly,
Eq. (42) also holds for the nonequilibrium potentials:

sneq(x; β) = kBβ[E(x; β) − f neq(x; β)] + hS(x; β)

− kBβhE(x; β). (55)

Choosing hS(x; β) = kBβhF (x; β) = 0 we find for the fluc-
tuating free energy and entropy the same expressions (43)
and (44), respectively, with the reduced equilibrium PDF
pβ(x; β) replaced by the actual PDF p(x; β). In general,
one may obtain a thermodynamically consistent theory by
prescribing any form of either the free fluctuating energy or of
the fluctuating entropy. The other fluctuating potential together
with the auxiliary functions can then be determined by any
two of Eqs. (53), (54), and (42). For the technical details see
Appendix D.

VI. SUMMARY AND CONCLUSIONS

We investigated the problem whether a classical open
system may be described in terms of fluctuating thermo-
dynamic potentials. Provided that the open system is in
equilibrium with its environment at an inverse temperature
β these fluctuating thermodynamic potentials are required
to yield the standard thermodynamic potential on average.
We thus first recapitulated the thermodynamics and statistical
mechanics of systems interacting with an environment at any
coupling strength. In this context, of central importance is

an effective system Hamiltonian which is renormalized by
the presence of the environment and which is referred to as
Hamiltonian of mean force, H ∗. It determines the equilibrium
distribution of the system in its phase space being proportional
to e−βH ∗

with a normalizing proportionality factor yielding the
partition function of the open system.

In general, the average over the environmental degrees of
freedom entails a temperature dependence of the Hamiltonian
of mean force. This temperature dependence makes it impos-
sible to infer the Hamiltonian of mean force from the sole
knowledge of the normalized equilibrium distribution, which
in principle is accessible from measuring the stochastic system
trajectories experimentally. Put differently, the Hamiltonian of
mean force cannot be determined by solely monitoring the
open system dynamics.

The internal energy of the open system is related to the
equilibrium average of the Hamiltonian of mean force and its
β derivative; see Eq. (18). Starting from this expression one
may hypothesize the form of the corresponding fluctuating
internal energy, which in general contains a large amount
of arbitrariness. One obtains the defined functional form of
the fluctuating internal energy in agreement with Ref. [11]
if one requires (1) that this fluctuating internal energy only
depends on system variables but not on the environmental
degrees of freedom and (2) that the energy assigned to the
environment must not contain an additive contribution that
only depends on system variables other than deviations of the
interaction Hamiltonian and environmental Hamiltonian from
their conditional expectation values. The first requirement
implies that the weight α(x) in (30) vanishes and the second
one that hE(x,λ) = 0. The resulting form is denoted by E(x,λ)
and given by Eq. (19). One must keep in mind, however, that
it cannot be determined from a purely system intrinsic point
of view as it carries information that does not follow from the
distribution of system phase space points in equilibrium; see
Appendix C and in particular Eq. (C6).

The work that is supplied to the system by means of a
variation of externally controlled parameters is well defined. It
is a fluctuating quantity that can be determined on the basis of a
stochastic trajectory of the system extending over the duration
of the force protocol. If one adopts E(x,λ) as the definition of a
fluctuating internal energy and postulates further a first-lawlike
relation also a fluctuating heat can be assigned to stochastic
trajectories of the open system. In this approach work and
heat refer to the finite changes of the respective energies
over some protocol of finite duration. An alternative approach
based on the balance of instant individual energy fluxes is
not feasible because the fluxes of the fluctuating internal
energy and of the heat explicitly depend on the environmental
degrees of freedom and hence are inaccessible from a system
intrinsic point of view. Hence, the open-system-intrinsic point
of view proves to be insufficient to identify internal energy and
heat independent of whether finite changes or fluxes of these
quantities are considered.

The example of a protocol consisting of a short cyclic
parameter variation followed by a long relaxation period
demonstrates that even at large times the environment does
not return to the initial state described by the stationary
preparation class. It is therefore quite questionable to assume
that the PDF of the total system driven by a parameter change
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will permanently stay in the stationary preparation class. The
microscopic analysis of the total system leads one to the same
conclusion. The derivation of a second-lawlike relation in
Ref. [11] is, however, based on this doubtful assumption.

We further studied whether the requirement of thermody-
namic consistency allows one to specify fluctuating thermody-
namic potentials other than a fluctuating internal energy such
as a fluctuating free energy and a fluctuating entropy. The latter
plays a central role in stochastic thermodynamics. It turns out
that thermodynamic consistency is not particularly restrictive
and leaves open the possibility to prescribe the fluctuating
entropy or the fluctuating free energy in a virtually arbitrary
way.

In summary, we note that the specific relations between
thermodynamic potentials can be extended to corresponding
fluctuating quantities, and, in this way, a consistent stochastic
thermodynamics can be constructed for open systems in
contact with a single heat bath at a prescribed temperature. This
framework comprises nonequilibrium situations caused by
initial system states differing from equilibrium or by external,
time-dependent forcing.

For other nonequilibrium situations [36,40] which, for ex-
ample, are caused by initially uncorrelated states of the system
and the environment, or by the coupling to two heat baths at
different temperatures a Hamiltonian of mean force cannot be
defined. Therefore, these situations cannot be described within
the framework of stochastic thermodynamics [41].

Yet in those situations that can be characterized by the
stationary preparation class, the lack of further physical
principles leaves one with an enormous ambiguity. The virtual
arbitrariness in defining fluctuating entropies or fluctuating
free energies raises serious doubts concerning the physical
relevance of such theories.
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APPENDIX A: HAMILTONIAN OF MEAN FORCE
AND THERMODYNAMIC CONSISTENCY

We demonstrate that thermodynamic consistency does not
suffice to construct the Hamiltonian of mean force H ∗ and
the corresponding free energy FS from a given equilibrium
PDF (8) which may be written as pβ(x) = e−βH ∗

0 (x). This
holds because any separation H ∗

0 (x) = H ∗
x (x) − Fx implies a

partition function Zx = ∫
d�Se

−βH ∗
x (x) = e−βFx , which entails

thermodynamically consistent potentials Fx , Ux , and Sx . Also
Eq. (18), which connects the Hamiltonian of mean force and
thermodynamics, does not provide extra information about a
proper separation of H ∗

0 .
To understand this we substitute H ∗(x) = H ∗

0 (x) + FS

in (18) and obtain

US =
〈

∂

∂β
βH ∗

0

〉
S

+ ∂

∂β
(βFS) = US. (A1)

The second line follows because of ∂(βFS)/∂β = US

[see (14)] and 〈∂βH ∗
0 /∂β〉S = − ∂

∂β

∫
d�Se

−βH ∗
0 (x) = − ∂

∂β
1 =

0. In conclusion, we find that (18) reduces to an identity and
hence does not provide a unique identification of H ∗.

Put differently, thermodynamic consistency does not im-
pose a condition on a proper separation of H ∗

0 . For any
given free energy FS the relations (14) and (15) define the
internal energy and the entropy, respectively. As a consequence
Eq. (13) follows.

APPENDIX B: DERIVATION OF EQ. (23)

Starting from the definition (19) of E(x; λ), and combining
with the expression (7) we obtain

E(x) = HS(x) − ∂

∂β
ln〈e−βHi (x,y)〉B. (B1)

The second part on the right-hand side can be further evaluated
to yield

∂

∂β
ln〈e−βHi 〉B = ∂〈e−βHi 〉B/∂β

〈e−βHi 〉B

= −
∫

d�B[Hi(x,y) + Hb(y)]e−β(Hi+HB )∫
d�Be−β(Hi+HB )

+
∫

d�BHB(y)e−βHB (y)∫
d�Be−βHB (y)

= −〈[Hi(x,y) + HB(y)]|x〉 + UB, (B2)

where the conditional average 〈·|x〉 is performed with respect
to the conditional probability w(y|x) defined in (24). Combin-
ing (B1) and (B2) one obtains (23).

APPENDIX C: HEAT RATE

For the sake of simplicity we here use E(x,λ) =
∂(βH ∗(x; λ))/∂β as an expression for the fluctuating internal
energy. We further assume that λ is a function of time
and consider the time rate of change of E(x; λ). According
to the underlying Hamiltonian motion of the total system
dE(x; λ)/dt is given by the Hamiltonian equations of motion
reading in this case

d

dt
E(x; λ) = {Htot(x,y),E(x; λ)} + ∂

∂λ
E(x; λ) λ̇, (C1)

where

{f (x,y),g(x)} =
∑

i

∂f

∂x
p

i

∂g

∂x
q

i

− ∂f

∂x
q

i

∂g

∂x
p

i

(C2)

denotes the Poisson bracket of two phase space function f (x,y)
and g(x); further, xq

i and x
p

i denote the position and momentum
components, respectively, of the ith degree of freedom of the
open system. Derivatives with respect to the environmental
positions and momenta are absent because the fluctuating
internal energy E(x; λ) depends only on x by assumption. In
the second term on the right-hand side of (C1) λ̇ denotes the
time derivative of the parameter λ. This second term may be
transformed as follows:

∂

∂λ
E(x; λ) = ∂

∂λ

∂

∂β
βH ∗(x; λ) = ∂

∂β
β

∂H ∗(x; λ)

∂λ

= ∂HS(x; λ)

∂λ
. (C3)
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Hence, the second term on the right-hand side of Eq. (C1)
agrees with the time rate of change of the work done on the
open system by the changing external parameter λ and hence
coincides with the power supplied to the system, which is given
by

ẇ = ∂HS(x; λ)

∂λ
λ̇. (C4)

According to the first-lawlike Eq. (34), now written in the time
local form ė = ẇ + q̇, the first term on the right-hand side of
Eq. (C1) gives the time rate of change of the heat q̇ that is
exchanged between system and environment. This heat flux
hence becomes

q̇(x,y) = {Htot(x,y; λ),〈Htot(x,y)|x〉}, (C5)

where we expressed the fluctuating internal energy with the
help of Eq. (23) in terms of the conditional average of Htot(x,y).
Using Eq. (24) one may write the heat flux as

q̇(x,y) = {Htot(x,y; λ),H ∗(x; λ)}β〈Htot(x,y; λ)|x〉
+

∫
d�′

B{Htot(x,y; λ),Htot(x,y′; λ)}

× [1 − βHtot(x,y′; λ)]w(y′|x). (C6)

Here the d�′
B integration refers to the environmental y′ phase

space variables.
In contrast to the power which, apart from its λ dependence,

is only a function of the system variable x, the heat flow also
depends on the microscopic state y of the environment and
therefore is an explicitly stochastic object, not only due to the
randomness of the system trajectory. Therefore the heat flux
cannot be inferred upon exclusively observing the stochastic
open system dynamics.

APPENDIX D: CONSTRUCTION OF FAMILIES
OF THERMODYNAMICALLY CONSISTENT

FLUCTUATING POTENTIALS

The fluctuating potentials E(x; β), sneq(x; β), as well
as f neq(x; β) are thermodynamically consistent if functions
hF (x; β), hS(x; β) ∈ Np exist such that Eqs. (53) and (42) are
fulfilled. We assume that the internal energy E(x; β) is given
and moreover that the fluctuating entropy is specified up to
an additive contribution c(β). The latter is independent of the
phase space coordinate x and hence does not fluctuate. In
other words, we assume that the functional form of fluctuating
entropy difference between two phase space points is known.
Hence, we can write

sneq(x; β) = s
neq
0 (x; β) + c(β). (D1)

The null functions hF (x,β) and hS(x,β) can formally be ab-
sorbed into redefined fluctuating internal energy and entropy,
defined as

s̃neq(x; β) = sneq(x; β) − hS(x; β), (D2)

Ẽ(x; β) = E(x; β) − hF (x; β), (D3)

and consequently we can write (53) and (42) as

Ẽ(x; β) = ∂

∂β
βf neq(ξ ; β) + βf neq(x; β)

∂

∂β
ln p(x; β), (D4)

s̃neq(x; β) = kBβ[Ẽ(x; β) − f neq(x; β)]. (D5)

Expressing the fluctuating free energy with the help of (D5)
in terms of Ẽ(x; β) and s̃neq(x; β) and putting the result in
Eq. (D4) we obtain after some algebra

kBβ
∂

∂β
p(x; β)Ẽ(x; β) = ∂

∂β
p(x; β)s̃neq(x; β). (D6)

Integrating over the system phase space �S we may express the
yet unknown nonfluctuating entropy constant c(β) in terms of
the averages U neq(β) = ∫

d�sp(x; β)E(x; β) and S
neq
0 (β) =∫

d�Sp(x; β)sneq
0 (x; β) reading

c0(β) = c0 − S
neq
0 + kB

∫ β

β0

dβ ′β ′ ∂

∂β ′ U
neq(β ′). (D7)

Because E(x; β) and s
neq
0 (x; β) are assumed to be known

their averages with respect to the also supposed to be given
nonequilibrium PDF p(x; β) can be calculated. We used
that their averages coincide by definition with those of the
respective auxiliary quantities carrying a tilde. Equation (D6)
is tantamount to

kBβ
∂

∂β
p(x; β)E(x; β) − ∂

∂β
p(x; β)sneq(x; β)

= −kBβ
∂

∂β
p(x; β)hF (x; β) + ∂

∂β
p(x; β)hS(x; β). (D8)

We are now free to choose

hS(x; β) = kBβhF (x; β). (D9)

The right-hand side of (D8) then simplifies to yield

β
∂

∂β
p(x; β)E(x; β) − k−1

B

∂

∂β
sneq(x; β) = p(x; β)hF (x; β).

(D10)

This determines hF (x; β) in line with the requirement hF ∈
N neq. Hence, any pair of fluctuating internal energy and
fluctuating entropy can be complemented by a fluctuating free
energy in a thermodynamically consistent way.

One may also prescribe the fluctuating internal energy to-
gether with a fluctuating free energy f neq(x; β) = f

neq
0 (x; β) −

g(β), which still contains a yet unspecified additive contribu-
tion g(β) that is independent of the phase space variable x.
The form of this additive contribution can be found from the
requirement that the nonequilibrium averages of E(x; β) and
f neq(x; β) satisfy the relation (14). Putting the resulting known
fluctuating free energy into (53) one obtains the adequate
function hF (x; β). Finally, the relation (42) yields a whole
family of fluctuating entropies whose members differ in the
choice of hS(x; β). By construction, the obtained fluctuating
potentials are thermodynamically consistent.
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