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Stochastically forced dislocation density distribution in plastic deformation
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The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic
factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such
types of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness
in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural
evolution, but none of these models have considered the impact of a finite decay time (all previous models
assumed instantaneous relaxation which is “unphysical”) of the stochastic perturbations in the overall dynamics
of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of
an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck
processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant
Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale
in the problem, but all nonlinear processes, both the Wiener type and Ornstein-Uhlenbeck type, scale as a function
of the noise decay time τ . The results are expected to ramify existing experimental observations and inspire new
numerical and laboratory tests to gain further insight into the competition between deterministic and random
effects in modeling plastically deformed samples.
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I. INTRODUCTION

Inhomogeneities in the evolution of dislocation density and
other nano- and microstructures can be modeled by introduc-
ing elements of stochasticity into the constitutive equations
through a set of internal variables. An interesting approach to
introduce stochastic effects in plastic deformation and model
the randomized contours of the dislocation propagation fronts
was advanced in Ref. [1], followed by related work in Ref. [2],
as well as in Refs. [3,4]. The latter set of stochastic models
considered strong heterogeneity of the real samples, in line
with the well-established gradient models [5–9] that analyzed
the emergence of deterministic spatial ideformation patterns.
In the context of continuum modeling, these gradients can
be mapped on to the equivalent of complete “dynamical
balance laws” for the internal variables, containing both a
rate and a flux term which account for the transport of
microstructures through elementary material volume. The
problem then becomes one of multiple length scales and relates
to the effective description of the dependence of the evolution
dynamics of the dominant microstructure on these length
scales. One such paradigmatic model is the Walgraef-Aifantis
model [10] in which diffusion-like relaxation of the dislocation
dynamics was considered on spatially periodic dislocation
patterns in cyclic plastic deformation.
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A stochastic approach to plastic deformation incorporating
the omnipresent micro-nanostructure heterogeneity is based
on the introduction of an explicit stochastic forcing term in the
set of internal variable constitutive equations. This has recently
been adopted through the introduction of an explicit stochastic
forcing term in the set of internal variable constitutive equa-
tions [1,2]. The underlying statistical mechanics-based ap-
proach, in effect a Langevin formulation [11], of studying het-
erogeneous plastic deformation was pioneered in Ref. [1]; an
extension of this approach was later used in modeling unidirec-
tional plastic deformation in Ref. [2]. The origin of the stochas-
ticity was attributed to “slip lines” or “slip bands” developed
during shearing. Both for white and quenched noise, this leads
to randomness in the slip profile, as also reported in previous
experimental studies [9,12]. In line with this initial work [1],
follow-up studies successfully analyzed dislocation and slip-
channel patterning [13–16], as well as dislocation clustering
in cyclic plastic deformation [17,18], including the impact of
stochastic nanoscale inelastic events in amorphous media [19].

Almost all such models, though, relied on a stationary
state distribution description for the dislocation density profile
and, hence, were not able to exactly analyze the dynamical
evolution of such patterns. Using an exactly solvable real-time-
dependent model, the first major nonstationary state stochastic
model was analyzed by Avlonitis et al. [2]. The authors were
able to completely characterize the evolution of the distribution
function under the assumption of a stochastic white noise,
which excludes the possibility of a finite relaxation time for
the stochastic perturbation to survive. In real dynamical terms,
such effects are often known to be a vital component of the

2470-0045/2016/94(2)/022139(7) 022139-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022139


AMIT K. CHATTOPADHYAY AND ELIAS C. AIFANTIS PHYSICAL REVIEW E 94, 022139 (2016)

dynamics [20], and there is no reason to assume that the same
is not true here as well. A consummate summary of such efforts
can be availed from the wonderful review by Aifantis [21].

This article propounds a complementary approach to
incorporate finite time relaxation due to inhomogeneous
perturbations through the incorporation of a finite decay
time τ . This finite relaxation time of stochastic perturbation
is introduced through an Ornstein-Uhlenbeck noise. The
emphasis here is on studying the qualitative and quantitative
changes that such a nontrivial τ will bring on the Avlonitis-
Zaiser-Aifantis (AZA) model [2]. Section II will be a general
review of the AZA model, leading to the formulation of the
Langevin dynamics, that now will be driven by a stochastic
Ornstein-Uhlenbeck noise. Section III will derive a Fokker-
Planck model [11], starting from the Langevin description in
Sec. 2. This Fokker-Planck model will then be solved for all
times t exactly and studied for the dependence of the decay
time τ in its dynamics. Section III has been subdivided into
four subsections, each discussing and comparing the Wiener
process (Sec. III A), Ornstein-Uhlenbeck process (Sec. III B),
generalized Ornstein-Uhlenbeck process (Sec. III C), and
generalized exponential process (Sec. III D), as was previously
done in Ref. [2] for instantaneous relaxation but now studied
in presence of a nontrivial Ornstein-Uhlenbeck time scale
τ . The conclusion (Sec. IV) will summarize the impact of
a time-dependent colored noise in the temporal dynamical
patterning of plastic deformation based on comparison with
the previously discussed (in Secs. III A–III D) four subclasses.

II. LANGEVIN DYNAMICS OF INTERNAL VARIABLES
DURING PLASTIC DEFORMATION

In line with Ref. [2], our starting premise will be a set
of evolving internal variables {φi} whose time evolution
will define the course of plastic deformation to be governed
by plastic straining only. Any other process that influences
the microstructural evolution (diffusional processes, static or
dynamic recovery, etc.) may be neglected. In this case, all
terms in the evolution equations scale as the strain rate

∂tφi = Fi({φi},{qk}) γ̇ → ∂γ φi = Fi({φi},{qk}), (1)

where {qk} denote a set of external control parameters and
γ represents the equivalent plastic shear strain. The detailed
study of these class of constitutive models can be found in
Ref. [2]; we reiterate portions of this representation for the
sake of continuity. The above equation can be reconsidered
as a stochastic equation of evolution by taking into account
fluctuations of the shear strain rate around its mean value

γ̇ = 〈γ̇ 〉 + δγ̇ . (2)

In the above formulation, the quantity “〈 〉” represents an
“ensemble average” over all noise realization, details of which
will be shortly presented. The amplitude of these fluctuations
can be related to the average strain rate 〈γ̇ 〉, the mean internal
(back) stress fint experienced by the ensemble of moving
dislocations, and the strain-rate sensitivity S of the material
as

δγ̇ 2

〈δγ̇ 〉2 = 〈δv2〉
〈v〉2 = 〈fint〉

S
. (3)

In the above equation, v represents the dislocation velocity
through the relation γ̇ = ρm b v, with ρm being the density of
mobile dislocations and b their Burgers vector. This leads to the
perturbative description v = 〈v〉 + δv, where 〈v〉 is the mean
component of the dislocation velocity and δv is the fluctuation
part (〈δv〉 = 0) of v, which increases closer to the sheared
layers. The fluctuation correlation time tcorr that defines the
mean collective dislocation time is associated with the mean
activity time of the slip line and can be quantified as

tcorr = �corr

〈γ̇ 〉 = ρmbL

〈γ̇ 〉 = L

〈v〉 , (4)

where � is the mean macroscopic shear strain and L is a typical
slip-line length.

Without any loss of generality, we generalize the remit of
Eq. (1) for all variables (the suffix “i” is removed henceforth)
to describe the microstructural evolution in terms of a single
variable φ as

∂tφ = F (φ) γ̇ → ∂tφ = F (φ)〈γ̇ 〉 + F (φ) δγ̇ . (5)

Introducing the average macroscopic strain � as the
equivalent of the time variable and with further rescaling, we
have d� = 〈γ̇ 〉 dt , leading to

∂�φ = F (φ) + F (φ)
δγ̇

〈γ̇ 〉 . (6)

In line with the AZA approach [2], the strain-rate fluctu-
ations δγ̇

〈γ̇ 〉 are idealized by a standard correlated stochastic
process driven by a noise Qη(�) whose amplitude (squared)
is given by

Q2 = 〈δγ̇ 2〉
〈γ̇ 〉2 �corr = Q0

2 H 2(φ), (7a)

〈η(�)η(�′)〉 =
(

D0

τ

)
exp

(
−|� − �′|

τ

)
. (7b)

In the above, we have introduced an Ornstein-Uhlenbeck
noise η(�) [22], that decays at the rate τ to account for a second
finite time scale in the problem. This time scale represents
the competition between the stochastic and deterministic
components of the dynamics, that, for all practical purposes,
could be estimated as a number comparable to the relaxation
time τon of the system. For τ > τon, the decay time will assume
prominence and renormalize the effective relaxation rate of the
system. Equation (5) then becomes

∂�φ = F (φ) + Q0 [F (φ)H (φ)] η. (8)

Using G(φ) = F (φ) H (φ), the above equation reduces to

∂�φ = F (φ) + Q0 G(φ) η. (9)

As in Ref. [2], we now resort to a nonlinear transformation
of variables abiding the definition

u(φ,φ′) =
∫ φ

φ′

dφ̃

G(φ̃)
. (10)

In terms of the new variable u, we can now rewrite Eq. (8)
to arrive at our Langevin model as

∂u

∂�
= F (u)

G(u)
+ Q0η. (11)
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Equation (11) is the Ornstein-Uhlenbeck noise-driven
Langevin dynamics for the dislocation pattern evolution and
our starting model equation. The model has two time scales, an
inherent relaxation rate defined by the deterministic dynamics
which now competes against the relaxation rate of noise,
represented by the decay time τ . In the following section, we
derive the Fokker-Planck version of the Langevin dynamics
starting from our ground model.

III. FOKKER-PLANCK DYNAMICS OF PLASTIC
DEFORMATION VARIABLES

To arrive at a form for the time variation of the prob-
ability density function (PDF) of the Langevin dynamics
represented by the variable u(�) in Eq. (11), we follow the
Fox module [22]. For a Langevin model represented as Ẋ(t) =
W (X) + g(X)η(t), one can show, following some algebra, that
the corresponding Fokker-Planck model representing the time
evolution of the PDF P (X,t) of the variable X(t) is given by

∂P

∂t
= − ∂

∂X
[W (X)P ] + 1

2

∂

∂X
g(X)

× ∂

∂X

{
g(X)

1 − τW ′(X)
− τW (X)g′(X)

[1 − τW ′(X)]2

}
P, (12)

where 〈η(t)η(t ′)〉 = 1
τ

exp (−|t−t ′|
τ

). Expanding the τ -
dependent denominator to the first leading order in τ , we obtain

∂P

∂t
= − ∂

∂X
[W (X)P ] + 1

2

∂

∂X
g(X)

× ∂

∂X
[g(X) + τg(X)W ′(X) − τW (X)g′(X)]P. (13)

For our purpose, W (u) = F (u)
G(u) and g(u) = Q0. This ap-

proach can be further generalized to study the full Ornstein-
Uhlenbeck colored noise spectrum as could be defined through
a u-dependent Q0(u). For simplicity, we will assume Q0 =
constant. Defining the PDF as P (u,t) = 〈δ(u − u(t))〉η, where
δ is the Dirac-delta function and the average “〈 〉” is overall
noise realization η, the Fokker-Planck version of our Langevin
model can be derived using the approach detailed in Ref. [22],
which then is given by

∂P

∂�
= − ∂

∂u

[
F (u)

G(u)
P

]

+ Q0
2

2

∂2

∂u2

{
1 + τ

∂

∂u

[
F (u)

G(u)

]}
P. (14)

In what follows, we will separately consider the following
four cases:

(1) F (u)
G(u) = 1; this is the Wiener process

(2) F (u)
G(u) = u; this is the Ornstein-Uhlenbeck process

(3) F (u)
G(u) = un, where n > 1; this is the generalized

Ornstein-Uhlenbeck process
(4) F (u)

G(u) = exp(αu) (α < 0), where − 1
α

is any decay
constant characterizing the dynamical process; this is the
generalized exponential process.

A. Wiener process

This process will be trivial for the case of a colored
Ornstein-Uhlenbeck noise. This is because, since F (u)

G(u) = 1, the
τ -dependent term in Eq. (14) will vanish, resulting in an un-
changed Wiener process as was previously reported in Ref. [2].
In other words, we start from the Fokker-Planck equation

∂P

∂�
= −∂P

∂u
+ Q0

2

2

∂2P

∂u2
, (15)

which then leads to a Gaussian solution P (u,�) =
1√

2πQ0
2�

exp [− (u−�)2

2Q0
2�

] for the initial condition

P (u,0) = δ(u).

B. Ornstein-Uhlenbeck process

In this case, the relevant Fokker-Planck equation has the
representation

∂P

∂�
= − ∂

∂u
(uP ) + Q0

2

2

∂2

∂u2
[(1 + τ )P ]. (16)

This leads to the following exact time-dependent solution
for the PDF:

P (u,�) =
exp

[ − u2

Q0
2(1+τ )(1−e−2� )

]
√

2πQ0
2(1 + τ )(1 − e−2�)

. (17)

This can be simplified as

P (u,�) =
exp

[ − u2

Qint
2(�)

]
√

2π Qint
2(�)

. (18)

Compared to Ref. [2], we find that the presence of an Ornstein-
Uhlenbeck noise instead of a white noise results in a scaling of
the Qint terms as

√
τ , a distinct dependence of the dynamics

on the decay time.

C. Generalized Ornstein-Uhlenbeck (GOU) process

The representation of this process is F (u)
G(u) = un; n > 1. As

a typical case, we will consider n = 2, which will be defined
as the next higher-ordered term to the standard Ornstein-
Uhlenbeck F (u)

G(u) = u case considered in case 2 above.
In this case, the relevant Fokker-Planck equation can be

shown to be

∂P

∂�
= − ∂

∂u
(u2P ) + Q0

2

2

[
(1 + 2τu)

∂2P

∂u2
+ 4τ

∂P

∂u

]
. (19)

The steady-state form of Eq. (19), defined through the
identity ∂P

∂�
= 0, admits of the following solution:

P (u,� → ∞) = e
− (1−uτ )u

2τ2Q0
2 (1 + 2τu)

−1+ 1
4τ3Q0

2

×
{
−1 − 2τe

− 1
16τ3

√
πτ

[
Erfi

(
1

4τ 3/2

)

+ Erfi

(−1 + 2τ

4τ 3/2

)]}
, (20)
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FIG. 1. Plots of GOU PDFs versus the variable u, solved from
Eq. (19), for large � (steady-state limit) and for different values of
the decay time τ .

where Erfi(z) = 2√
π

∫ ∞
z

e−t2
dt . In the asymptotic limit of fast

relaxation, that is τ → 0, up to leading order:

P (u,� → ∞)|τ→0 ∼ τ 3. (21)

Clearly, the order of the polynomial has a strong influence
on the relaxation rate of the system; in other words, higher or-
dered Ornstein-Uhlenbeck processes get increasingly affected
by the noise relaxation rate. Generally, if un represents the
form of the Ornstein-Uhlenbeck process, the τ dependence of
the steady-state PDF scales as τ 2n+1.

In order to obtain more detailed insights in to the probability
distribution dynamics, we resorted to a numerical solution
of Eq. (19). The results were tested independently using an
Euler discretization scheme as well as a Runge-Kutta (order
4) with both numerical schemes providing identical results.
In order to conform and compare with the general Gaussian
noise case as studied in Ref. [2], we used Q0 = 2 (high noise
level) and � values within the same range as in Ref. [2].
The results plotted below were for simulations that ran over
1000 space points and over 10 000 time steps. We have

FIG. 2. Plots of GOU PDFs versus the variable u, solved from
Eq. (19), for different time regimes represented by varying � for the
decay time τ = 0.1.

FIG. 3. Plots of GOU PDFs versus the variable u, solved from
Eq. (19), for different time regimes represented by varying � for the
decay time τ = 0.5.

also studied larger spatiotemporal domains, but apart from
numerical difference (and numerical time cost), all conclusions
remained unchanged.

Figure 1 shows the steady state variation of the generalized
Ornstein-Uhlenbeck (GOU) PDF against the variable u, for
a range of decay times. The plots clearly show that larger
the decay time, greater is the probability of “localization” of
the internal variables around the maximally probable value
of u. This can be easily comprehended from Eq. (7), which
suggests a proximity to a normal distribution for large values
of τ . The importance of the Ornstein-Uhlenbeck decay time
assumes further prominence for non-steady-state properties,
as is evident from Figs. 2 and 3. As the decay time increases
from τ = 0.1 to τ = 0.5, thereby approaching the equilibrium
steady state limit, the probability of the small-� (equivalent to
short time regimes) modes are seen to sharply decrease as can
be seen from a comparison of Figs. 2 and 3.

The plots above show the importance of the noise distri-
bution in that they show time dynamics that have hitherto
remained inaccessible within the Gaussian noise regime.
While large vales of � showed almost a solitonic dynamics
in Ref. [2], our results allay such simplistic conclusions in
favor of a far more involved dynamics involving both τ and
�, with a clear signature of “crossover dynamics” for varying
τ in the u-� phase space. Generally, most of the plots show
oscillatory profiles that is simply an artefact of the finite time
discretization used; for all practical purposes, the envelopes of
the corresponding trajectories indicate the actual profile.

D. Generalized exponential (GE) process

The representation of this process is F (u)
G(u) = exp(αu)

(α < 0), where 1/α represents the noise decay rate. The
quantity α is intrinsically negative and could represent a wide
variety of mesoscopic material properties ranging from strain
hardening, to plastic straining, to slip-channel formation [2],
thereby adding a second length of time scale to the existing
structure. In this case, the relevant Fokker-Planck equation is
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FIG. 4. Plots of GE PDFs versus the variable u, solved from
Eq. (22), for large � (steady-state limit) and for different values of the
decay time τ , for a slowly decaying exponential function represented
by the value α = −0.1.

given by

∂P

∂�
= Q0

2

2
(1 + 2τeαu)

∂2P

∂u2
+ (Q0

2α2τ − 1)eαu ∂P

∂u

+
(

Q0
2

2
α2τ − 1

)
αeαuP . (22)

Abiding by the same numerical scheme as detailed in the
section above, we obtained a numerical solution of Eq. (22).
The primary difference between Figs. 4 and 5 is the marginally
lower probability for larger τ values with a decrease in
the value of α from −0.1 to −0.3. This is not difficult to
perceive either; as decay time increases, a slower (exponential)
relaxation rate will only decrease the probability of capturing
the dislocation within the same time range. This will also lead
to slower approach towards a steady state.

In this case, the steady-state solution abides a hypergeo-
metric form, but more importantly, for this case, the universal

FIG. 5. Plots of GE- PDFs versus the variable u, solved from
Eq. (22), for large � (steady-state limit) and for different values of the
decay time τ , for a slowly decaying exponential function represented
by the value α = −0.3.

FIG. 6. Plots of GE PDFs versus the variable u, solved from
Eq. (22), for different time regimes represented by varying � for the
decay time τ = 0.1 and the exponential decay rate α = −0.1.

scaling property is lost and the steady-state PDF grows as

P (u,� → ∞)|τ→0 ∼ τeαu. (23)

A comparison of the respective plots clearly show that the
generalized exponential process “localizes” at much smaller
u values compared to the generalized Ornstein-Uhlenbeck
process. A further comparison of Figs. 6 and 7 also suggests
an approach towards a symmetric steady state with increasing
values of the decay time τ for the same value of α = −0.1.
This is reminiscent of similar findings in Ref. [2], which is
reassuring. To avoid repetition, we refrain from adding similar
plots for other values of α as the results have been found to
remain qualitatively unchanged.

The results presented here are expected to have vital experi-
mental ramifications. While detailed quantitative implications
of Ornstein-Uhlenbeck type decay-modified stochastic forcing
on experimental designs of dislocation patterning, modified by
long-ranged spatial correlations, will be discussed in detail in a
companion publication, the qualitative imprints can be easily
found on bimodal dislocation distributions observed during

FIG. 7. Plots of GE PDFs versus the variable u, solved from
Eq. (22), for different time regimes represented by varying � for the
decay time τ = 0.5 and the exponential decay rate α = −0.1.
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cyclic deformations, as discussed in Refs. [23–25]. In this
connection, it is also noted that the nonlinear function F (φ) in
Eq. (6) models dislocation annihilation processes as discussed
within a more general framework in Refs. [26] and [10,27].

IV. CONCLUSION

While the AZA model [2] made the first important
incision in the study of the role of stochastic perturbation
in plastic deformation, the implication remained quantita-
tively inconclusive in the absence of an appropriate noise
distribution function. In choosing Ornstein-Uhlenbeck noise
as our noise distribution, we have simultaneously addressed
three key issues to the understanding of stochastically forced
plastic deformation: (1) how the presence of a finite decay
time affects the approach to equilibrium, while remaining
subjective about the choice of the dynamics concerned (i.e.,
whether the process chosen is Wiener, Ornstein-Uhlenbeck,
etc.); (2) interaction of an Ornstein-Uhlenbeck noise with
an inherently Ornstein-Uhlenbeck statistical process, where
the results, as shown in the figures above, go far beyond
simple amplification of the noisy regime, even indicating a
somewhat counterintuitive slower approach to equilibrium
compared to an exponential process depending on the para-
metric regime; and (3) enormously different relaxation modes
between the generalized Ornstein-Uhlenbeck and exponential
class of systems even though both have inherently exponential

decay modes (admittedly, the decay mode for a generalized
exponential process is spatial compared to a temporal decay
for the Ornstein-Uhlenbeck process).

An important dynamical property of note is the relatively
slow growth followed by a fast decay in the GOU process
while the GE process conversely shows a fast saturation to
the most probable value followed by a slow decay. The four
statistically plausible cases referred to in this article, Wiener,
Ornstein-Uhlenbeck, generalized Ornstein-Uhlenbeck, and
generalized exponential, have been primarily studied for
monotonically increasing dislocation densities, although a
similar formulation, based on coupled dislocation dynamics,
could analyze relocation-annihilation effects at the microstruc-
ture level [26,27]. Generalizing the scope of the present
stochastic analysis to incorporate multiplicative noise could
bring about such features within the framework of this model.

Our results here benchmark the implication of a finite time-
decaying noise spectrum in plastic deformation dynamics and
thereby lays out a theoretical structure for studying a wide
class of exactly solvable models perturbed by different types
of noises.
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