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We apply the matrix-product ansatz to study the totally asymmetric simple exclusion process on a ring with
a generalized discrete-time dynamics depending on two hopping probabilities, p and p̃. The model contains as
special cases the TASEP with parallel update, when p̃ = 0, and with sequential backward-ordered update, when
p̃ = p. We construct a quadratic algebra and its two-dimensional matrix-product representation to obtain exact
finite-size expressions for the partition function, the current of particles, and the two-point correlation function.
Our main new result is the derivation of the finite-size pair correlation function. Its behavior is analyzed in
different regimes of effective attraction and repulsion between the particles, depending on whether p̃ > p or
p̃ < p. In particular, we explicitly obtain an analytic expression for the pair correlation function in the limit of
irreversible aggregation p̃ → 1, when the stationary configurations contain just one cluster.
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I. INTRODUCTION

The asymmetric simple exclusion process (ASEP) is one of
the simplest exactly solved models of driven many-particle
systems with particle conserving bulk stochastic dynam-
ics [1,2]. In the extremely asymmetric case, when particles
are allowed to move in one direction only, it reduces to the
totally asymmetric simple exclusion process (TASEP). For its
description in the context of interacting Markov processes
we refer to Ref. [3]. In the course of time, ASEP and
TASEP became paradigmatic models for understanding the
broad variety of nonequilibrium phenomena. Devised to model
kinetics of protein synthesis [4], TASEP and its numerous
extensions have found many applications to vehicular traf-
fic flow [5–8], biological transport [9–16], one-dimensional
surface growth [17,18], forced motion of colloids in narrow
channels [19,20], spintronics [21], transport of “data packets”
on the internet [22], current through chains of quantum
dots [23], limit order market [24], to mention some.

The stationary properties of the original TASEP in con-
tinuous time were exactly obtained by different methods.
The first exact solution was based on a recurrence relation,
obtained at special values of the parameters in Ref. [25],
and generalized by Schütz and Domany [26]. Using this
recursion, closed expressions for the average occupations of
all sites were obtained. The stationary states of TASEP and
its generalization to a reaction-diffusion process with two-site
interactions were studied also by using the quantum Hamilto-
nian formalism [27]. A combinatorial approach and mapping
on weighted lattice paths shed new light on the formulation
and solution of particle hopping models in continuous and
discrete time [28,29]. An effective way to exploit the recursive
properties of the steady states of a variety of one-dimensional
processes is the matrix-product ansatz (MPA). According
to the MPA, the stationary configuration probabilities can
be expressed as matrix elements of products of operators
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representing particles and holes. Such a matrix-product repre-
sentation of the steady-state probability distribution for TASEP
was found by Derrida, Evans, Hakim, and Pasquier [30]. Their
formalism involves two square matrices, D and E, which are
infinite-dimensional in the general case and satisfy a quadratic
algebra, known as the DEHP algebra. Krebs and Sandow [31]
proved that the stationary state of any one-dimensional system
with random-sequential dynamics involving nearest-neighbor
hopping and single-site boundary terms can always be written
in a matrix-product form. Fock representations of the general
quadratic algebra were studied by Essler and Rittenberg [32],
who found explicit representations in terms of infinite-
dimensional tridiagonal matrices. Quadratic algebras involved
in the MPA for coninuous-time processes were studied also in
Ref. [33]

The matrix-product ansatz marked a breakthrough in the
solution of TASEP and ASEP in discrete time under periodic
as well as open boundary conditions. For the definition of the
different types of discrete-time updates we refer to Ref. [34].
First, by using the MPA, the case of sublattice-parallel update
with deterministic bulk dynamics was solved [35]. The general
case of ASEP with stochastic sublattice-parallel dynamics was
studied in Ref. [36]. Next, the TASEP with ordered-sequential
update was solved by mapping the corresponding algebra onto
the DEHP algebra [37]; see also Ref. [38]. The case of parallel
update (simultaneous updating of all sites) was solved by
using two new versions of the matrix-product ansatz. One
of these versions leads to a quartic algebra [39], in contrast
to the previous cases, in which the algebra is quadratic. A
different representation as a cubic algebra is obtained from
a bond-oriented matrix-product ansatz [40]. In general, the
MPA has become a powerful method for studying stationary
states of different one-dimensional Markov processes out of
equilibrium [41]. For example, it was used to solve TASEP
with a defect particle [42], the multispecies TASEP with
uniform [43] and inhomogeneous hopping rates [44], the
discrete-time case with inhomogeneous rates in the bulk [45],
and ASEP with internal degrees of freedom [46,47].
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A powerful technique for studying the dynamics of ASEP
and some of its generalizations is the Bethe ansatz. According
to it, the amplitudes of the eigenfunctions of the transfer
matrix can be expressed as a nonlinear combination of properly
defined plane waves. This method was used to exactly solve
the open ASEP [48], a three-parametric family of hopping
probabilities, which includes TASEP and ASEP [49], its
discrete time versions with inhomogeneous and nonlocal
transition rates [45], etc. A modified algebraic Bethe ansatz
for the continuous-time TASEP with open boundaries, based
on results known for integrable quantum spin chains, is given
in Ref. [50].

It should be noted that the properties of the ASEP depend
strongly on the choice of the boundary conditions, similarly
to the case of systems with long-range interactions. This leads
to inequivalence of the nonequilibrium statistical properties
for open and closed systems. For instance, the MPA for
continuous-time TASEP on a ring becomes trivial: the algebra
has Abelian one-dimensional representation [34], while in
the case of open boundaries the corresponding matrices are
generically infinite-dimensional and noncommuting. The open
system exhibits (in the thermodynamic limit) three stationary
phases in the plane of particle input-output rates, with con-
tinuous or discontinuous transitions between them. Another
example is the application the Bethe ansatz for obtaining the
full current fluctuations in the periodic TASEP [51], and much
later in the periodic ASEP [52]. We mention also that by using a
new form of the Bethe ansatz the totally asymmetric exclusion
process on a ring was solved for the nonstationary probabilities
under arbitrary initial conditions and time intervals [53]. The
full relaxation dynamics of the TASEP on a ring was solved
also by the algebraic Bethe ansatz method [54]. For a review
of some results obtained for different versions of ASEP on a
ring by using the Bethe ansatz we refer to Ref. [55].

The steady state of TASEP with parallel update on the
ring has a pair-factorized form and exhibits nearest-neighbor
correlations [56]. A factorized form of the steady state of
ASEP on a ring was found also in its generalizations including
Langmuir kinetics for the attachment and detachment transi-
tions of particles on the chain and in a reservoir, as well in
the presence of memory reservoirs [57]. For open boundaries,
the matrix-product representation was interpreted as a pair-
factorized state on the ring modulated by a matrix-product
state [58].

An important, exactly solvable generalization of the TASEP
dynamics on a ring was found and studied by Wölki in
2005 [59]. That is the exactly solvable representative pwN−1

of the general class of so-called p1p2 . . . pN models, under the
discrete-time dynamics of which all clusters of particles are
updated independently, p1p2 . . . pN being the probability that
a N -particle cluster will move as a whole one site ahead. Thus,
each particle has its own hopping probability pi , 1 � i � N ,
depending on its position in the cluster. It was shown that the
model with p1 = p and p2 = p3 = · · · = pN−1 =: w satisfies
the condition for models with discrete-mass transport to have
a factorized steady state [60]. This model, to be denoted here,
following Ref. [61], as gTASEP is the main object of study
in the present paper (in our notation w = p̃). We note that
the same model was thoroughly studied in the framework of
the Bethe ansatz integrability in Ref. [62], as a particular

case of the general family formulated and investigated in
Ref. [49].

Our main aim here is the construction and application of
a quadratic algebra and its finite-dimensional matrix-product
representation for the gTASEP on finite chains under periodic
boundary conditions. The exact expressions for the main
characteristics of the stationary state of the model are obtained
for arbitrary fixed numbers of the lattice sites L and the
particles N (N � L) on the ring. The correctness of our MPA
representation is proved by a parallel combinatorial derivation.
The finite-size two-point correlation function is calculated
within the MPA.

The paper is organized as follows: in Sec. II we formulate
the model, Sec. III presents the matrix-product algebra and
its two-dimensional representation. Within a combinatorial
approach, in Sec. IV we calculate the partition function and
the average current of particles in the system. Section V
contains derivation of the partition function, the average
particle density, the current, and the pair correlation function
by using the matrix-product formalism. A discussion of the
approach, comparison with known results in several particular
regimes of the model, as well as perspectives for further
applications are given in Sec. VI. A more detailed derivation
of the results is given in Ref. [63].

II. THE MODEL

We consider TASEP on a ring of L sites, labeled
clockwise by the index i = 1,2, . . . ,L, where site 1 is the
nearest-neighbor of site L in the clockwise direction. Each
site of the lattice can be empty or occupied by just one
particle.

The dynamics of the model corresponds to the discrete-time
backward-ordered update with probabilities p and p̃ defined
as follows. A particle can hop to a vacant nearest-neighbor
site in the clockwise direction, or stay at its place. During
each moment of time t , an update of the configuration of
the whole system takes place in L consecutive steps, passing
through successive updates of all the pairs of nearest-neighbor
sites in the counterclockwise order (L − 1,L), . . . ,(i,i +
1), . . . ,(1,2),(L,1). The probability of a hop along the bond
(i,i + 1) depends on whether a particle has jumped from
site i + 1 to site i + 2 in the previous step, when the bond
(i + 1,i + 2) was updated, or not.

(1) In the case when the site i + 1 has not changed its
occupation number, the probabilities are the standard ones: if
site i + 1 remains empty, then the jump of a particle from site
i to site i + 1 takes place with probability p, and the particle
stays immobile with probability 1 − p; if site i + 1 remains
occupied, no jump takes place and the configuration of the
bond (i,i + 1) is conserved.

(2) If in the previous step a particle has jumped from site
i + 1 to site i + 2, thus leaving i + 1 empty, then the jump of
a particle from site i to site i + 1 in the next step takes place
with a different probability p̃, and the particle stays immobile
with probability 1 − p̃.

Note that when p̃ = p one has the standard TASEP with
backward-sequential update, and when p̃ = 0 one has the
TASEP with parallel update.
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III. THE MATRIX-PRODUCT ALGEBRA

Under the above generalized dynamics, the left-hand side
in each pair of nearest-neighbors (i,i + 1), which is to be
updated, can be either empty or occupied. With these two
states we associate the matrices E and D, respectively, and
introduce the column-vector

A =
(

E

D

)
. (1)

On the other hand, the right-hand side of such a pair (i,i + 1)
can be in three states: empty, being empty in the previous step
of the update too, occupied, and empty but as a result of a
particle hopping from site i + 1 to site i + 2 in the previous
update step. With these three states we associate the matrices
Ê, D̂, and F , respectively, and introduce the column-vector

Â =
⎛
⎝Ê

D̂

F

⎞
⎠. (2)

Thus, the state of the bond (i,i + 1) to be updated is described
by the direct matrix product,

A ⊗ Â. (3)

We conjecture the same update mechanism for each pair of
nearest-neighbor sites as in the case of backward-sequential
update, see Ref. [34],

T [A ⊗ Â] = Â ⊗ A. (4)

With the definition Eq. (2) of Â, this equation resembles also
the stationarity mechanism suggested for the parallel update
in Ref. [34].

The operator T in Eq. (4) is a 6 × 6 matrix, defined by the
probabilities of the possible elementary events,

P(EÊ → ÊE) = 1,

P(ED̂ → ÊD) = 1,

P(EF → ÊE) = 1,

P(DÊ → FD) = p,
(5)

P(DÊ → D̂E) = 1 − p,

P(DF → FD) = p̃,

P(DF → D̂E) = 1 − p̃,

P(DD̂ → D̂D) = 1.

Here P(·) denotes the probability of the event in the brackets.
Hence, we obtain the following quadratic algebra:

ÊE = EÊ + EF, (6)

ÊD = ED̂, (7)

FD = p̃DF + pDÊ, (8)

D̂E = (1 − p)DÊ + (1 − p̃)DF, (9)

D̂D = DD̂, (10)

FE = 0. (11)

The corresponding stochastic matrix T has the explicit form

T =

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 − p 0 1 − p̃

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 p 0 p̃

⎞
⎟⎟⎟⎟⎟⎠. (12)

To solve the quadratic algebra Eqs. (6)–(11), we make the
ansatz

Ê = E − F + c1, D̂ = D + c2. (13)

The constants ci , i = 1,2 will be determined later. The ansatz
solves trivially Eq. (10), Eq. (6) is satisfied under the condition
of Eq. (11), and Eqs. (7) and (8) become equivalent. Thus, the
algebra reduces to the following three equations:

FD = c1D − c2E, (14)

pDE − (p − p̃)DF = c1(1 − p)D + c2E, (15)

FE = 0. (16)

We choose c2 = 0, when

FD = c1D, (17)

pDE − (p − p̃)DF = c1(1 − p)D, (18)

FE = 0. (19)

A two-dimensional representation of the quadratic algebra
Eqs. (17)–(19), depending on four free parameters d,e,f , and
c1, is provided by the matrices

D = D̂ = d

(
1 0
pe

f (1−p) 0

)
, E =

(
e

(p−p̃)f
p

0 0

)
,

F =
(

0 f

0 pe

1−p

)
, Ê =

(
c1 + e

(p−p̃)f
p

0 c1 − pe

1−p

)
. (20)

One of the most convenient forms of the above representation
is obtained when d = e = f = 1, and c1 = p

1−p
. Then,

D = D̂ =
(

1 0
p

1−p
0

)
, E =

(
1 p−p̃

p

0 0

)
,

F =
(

0 1
0 p

1−p

)
. (21)

Hence,

Ê =
( 1

1−p
− p̃

p

0 0

)
, C = E + D =

(
2 p−p̃

p
p

1−p
0

)
. (22)

Note that, in view of the ansatz Eq. (13), we have Ĉ := Ê +
D̂ + F = C + c1, hence, ĈC = CĈ.

The most important properties of the representation Eq. (21)
are

D2 = D, E2 = E, Tr(DE) = 1 − p̃

1 − p
≡ x,

det(DE) = 0. (23)

The eigenvalues of the degenerate matrix DE are λ1 = 0 and
λ2 = x. It can be cast in diagonal form by means of a similarity
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transformation V −1DEV , where

V −1DEV =
(

0 0
0 x

)
, V = x−1/2

(
p−p̃

p
1

−1 p

1−p

)
,

V −1 = x−1/2

(
p

1−p
−1

1 p−p̃

p

)
. (24)

Hence, Tr(DE)k = xk , k = 1,2,3, . . . , is the crucial feature
used in the following consideration.

We note that another choice of the parameters, d = 1, e =
1 − p, f = 1, and c1 = p, leads to a representation recently
derived by P. Hrabák in Ref. [64] but it does not have all the
nice properties of Eq. (23).

IV. COMBINATORIAL SOLUTION

Here we calculate the partition function and the average
current within a purely combinatorial approach, involving a
detailed analysis of all the possible configurations of a given
number of particles on a finite periodic lattice, taking into
account their statistical weights, and by application of the
multinomial theorem.

A. The partition function

In the matrix-product representation each stationary con-
figuration is represented as a string of the matrices E (for
an empty site) and D (for an occupied site), e.g., C =
EEEDDEDEE . . . ED, with length equal to the number
of lattice sites L. Due to the projective properties of these
matrices, the weight W (C) of a configuration C is proportional
to the number of clusters k(C) in the configuration and does
not depend on any other features of C. Thus,

W (C) ∝ Tr(DE)k(C) = xk(C). (25)

A more detailed description of C is given by its cluster
composition, which is represented by a partition n(C) of the
fixed number of particles N :

n(C) = (n1(C),n2(C), . . . ,nN (C)) :
N∑

j=1

jnj (C) = N. (26)

Here n(C) is a N -component vector with integer coordinates
nj � 0 denoting the number of clusters of size j , such that∑N

j=1 jnj (C) = N (obviously, nN ∈ {0,1}). The total number
of clusters in a given configuration C equals

k(C) =
N∑

j=1

nj (C), 1 � k(C) � min{N,L − N}. (27)

To calculate the partition function Z(L,N ), we have to
determine the number of configurations of N particles with
exactly k clusters on the ring of L labeled sites, so that 1 � k �
min{N,L − N}. To solve the problem, we start by ordering
the elements of the partition nN,k into an ordered set sN,k ,
corresponding to the clockwise position on the ring of all the
k clusters. Then, to each element of sN,k we put into one-
to-one correspondence an initial configuration, constructed as
follows. First, we choose any of the k clusters as the first one,
and place its first (leftmost) particle at site 1 of the ring. Next,

we realize that the number of compositions of the N particles
into k clusters is (

N − 1
k − 1

)
, (28)

and the composition of the L − N empty sites into the same
number k of clusters is(

L − N − 1
k − 1

)
. (29)

Obviously, each of the empty clusters can separate any pair
of particle clusters consecutively ordered on the ring after
the first one, so the number of configurations with fixed
position of the first cluster is given by the product of Eqs. (28)
and (29). Finally, restoring the translational invariance of the
configurations along the ring, we have to multiply the above
number by L, because the origin can be taken at any site
of the ring, and divide it by k, because the origin will k

times occur at the leftmost site of one the k clusters. Thus,
taking into account that the weight of a configuration is given
by Eq. (25), we obtain the partition function of the model
(N � 1, L − N � 1):

ZL,N (p,p̃) = L

min{N,L−N}∑
k=1

xk

(
L − N − 1

k − 1

)
1

k

(
N − 1
k − 1

)

= L

L − N

min{N,L−N}∑
k=1

(
L − N

k

)(
N − 1
k − 1

)
xk, (30)

where x = (1 − p̃)/(1 − p). In the particular cases when there
are no particles or no holes on the ring one has to set ZL,0 =
ZL,L = 1.

Equation (30) represents the partition function ZL,N (p,p̃)
as a polynomial in (1 − p̃)/(1 − p) := x. Sometimes it is
convenient to express it as a polynomial in

ν = p̃ − p

1 − p
= 1 − x.

To this end we expand xk = (1 − ν)k according to the binomial
formula and make use of the identity

min{N,L−N}∑
k=1

(
L − N − 1

k − 1

)(
N − 1
k − 1

)
1

k

(
k

m

)

= 1

m

(
L − N − 1

m − 1

)(
L − 1 − m

N − m

)
(31)

and obtain the result

ZL,N (p,p̃) = L

min{N,L−N}∑
m=0

(−ν)m(L − m − 1)!

m!(N − m)!(L − N − m)!

=
(

L

N

)
2F1(−N, − L + N ; 1 − L; ν), (32)

where 2F1(a,b; c; x) is the Gauss hypergeometric function.
Note that the above expression includes the special cases

ZL,0 = ZL,L = 1 and apparently exhibits the particle-hole
symmetry N ↔ L − N of the partition function. In addition,

022138-4



MATRIX-PRODUCT ANSATZ FOR THE TOTALLY . . . PHYSICAL REVIEW E 94, 022138 (2016)

since

ZL,N (p,p̃) =
(

L

N

)
+ L

min{N,L−N}∑
m=1

× (−ν)m(L − m − 1)!

m!(N − m)!(L − N − m)!
, (33)

it is convenient to adopt the convention

Z0,N (p,p̃) = δN,0. (34)

When p̃ = p (ν = 0), the partition function becomes indepen-
dent of the jump probability,

ZL,N (p,p) =
(

L

N

)
. (35)

Comparing Eq. (32) with the result for the corresponding
zero-range process (ZRP) obtained in Ref. [61], we see that

ZL,N (p,p̃)gTASEP = L

L − N
ZL,N (p,p̃)ZRP,

N � 1, L − N � 1. (36)

The factor L/(L − N ) is due to the different number of
configurations in gTASEP and ZRP.

B. The current of particles

According to the update rules, a cluster of n particles yields
the following average number of jumps per update (unit time):

j cl
n = p

[
(1 − p̃)

n−1∑
k=1

kp̃k−1 + np̃n−1

]

= p

[
n−1∑
k=1

kp̃k−1 −
n−1∑
k=1

kp̃k + np̃n−1

]

= p

n∑
k=1

p̃k−1. (37)

Having in mind the number of different configurations
Ndiff(nN,k) calculated above for any given partition nN,k of
the number of particles N into k cluster, by summing up all
the contributions we obtain for the current (the average total
number of jumps per lattice site),

JL,N (p,p̃) = p

ZL,N (p,p̃)

min{N,L−N}∑
k=1

xk

(
L − N − 1

k − 1

) ∑
nN,k

(k − 1)!∏N
j=1 nj !

N∑
s=1

ns

s−1∑
m=0

p̃m

= p

ZL,N (p,p̃)

min{N,L−N}∑
k=1

xk 1

k

(
L − N − 1

k − 1

) N−1∑
m=0

p̃m
∑
nN,k

k!
∑N

s=m+1 ns∏N
j=1 nj !

. (38)

To evaluate the sum

∑
nN,k

k!∏N
j=1 nj !

N∑
s=m+1

ns (39)

we apply the operator

N∑
s=m+1

zs ∂

∂zs

to both sides of the multinomial identity,∑
nk

k!∏N
j=1 nj !

z
n1
1 z

n2
2 . . . z

nN

N = (z1 + z2 + · · · + zN )k, (40)

where
∑

nk
denotes summation over the non-negative integers nj � 0, j = 1,2, . . . N , under the constraint

∑
j nj = k. The

results reads

∑
nk

k!∏N
j=1 nj !

[
N∑

s=m+1

ns

]
z
n1
1 z

n2
2 . . . z

nN

N = k

N∑
s=m+1

zs(z1 + z2 + · · · + zN )k−1. (41)

Next, by setting here zj = zj (j = 1,2, . . . ,N ), we obtain

∑
nk

k!∏N
j=1 nj !

[
N∑

s=m+1

ns

]
z

∑
j j nj = k

N∑
s=m+1

zs(z + z2 + · · · + zN )k−1. (42)

Therefore, when the number of particles is fixed,
∑

j j nj = N , the sum on the left-hand side of Eq. (42) at z = 1 must equal
the coefficient of zN in the expansion of the right-hand side,

k[zN ]
N∑

s=m+1

zs(z + z2 + · · · + zN )k−1 = k

N∑
s=m+1

(
N − s − 1

k − 2

)
= k

(
N − m − 1

k − 1

)
. (43)
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Thus, the expression for the current Eq. (38) simplifies to

JL,N (p,p̃) = p

ZL,N (p,p̃)

M∑
k=1

xk

(
L − N − 1

k − 1

) N−k∑
m=0

p̃m

(
N − m − 1

k − 1

)

= x p

ZL,N (p,p̃)

N−1∑
m=0

p̃m

M−1∑
k=0

xk

(
L − N − 1

k

)(
N − m − 1

k

)
, (44)

where M ≡ min{N,L − N} � 1.
It is instructive to rewrite the above expression as a polynomial in ν = 1 − x. To this end we write xk = x (1 − ν)k−1, and

expand the last expression according to the Newtonian binomial. By using the identity

M−1∑
k=0

(
k

n

)(
L − N − 1

k

)(
N − m − 1

k

)
=

(
L − N − 1

n

)(
L − m − n − 2
N − m − n − 1

)
, (45)

we obtain

JL,N (p,p̃) = x p

ZL,N (p,p̃)

N−1∑
m=0

p̃m

M−1∑
n=0

(−ν)n

n!

(L − m − n − 2)!

(N − m − n − 1)!(L − N − n − 1)!

= x p

ZL,N (p,p̃)

N−1∑
m=0

p̃m

(
L − m − 2
N − m − 1

)
2F1(1 + m − N,N + 1 − L; 2 + m − L; ν)

= x p

ZL,N (p,p̃)

(
L − 2
N − 1

)
F1(1 − N,N + 1 − L,1,2 − L; ν,p̃)

= p

(
1 − p̃

1 − p

)
N (L − N )

L(L − 1)

F1(1 − N,N + 1 − L,1,2 − L; ν,p̃)

2F1(−N, − L + N ; 1 − L; ν)
. (46)

This expression coincides with the gTASEP current derived in
Ref. [61] under a mapping of the ZRP on the gTASEP.

V. MATRIX-PRODUCT DERIVATION

A. The partition function

According to the matrix-product ansatz, the grand canonical
partition function is given by

ZL(p,p̃) = Tr(CL), (47)

with C = E + D. To obtain the partition function in the case of
fixed number of particles N , we introduce a chemical potential
μ of the particles, and define

C(μ) = E + μD =
(

1 + μ
p−p̃

p
μp

1−p
0

)
. (48)

Now the partition function for the generalized TASEP, on a
ring of L sites with fixed number of particles N , we can write
in the form

ZL,N (p,p̃) = [μN ] Tr{CL(μ)}, (49)

where the symbol [μN ] denotes the coefficient of the μN term
in the polynomial in μ. Since the eigenvalues of the 2 × 2
matrix C(μ) are

λ1,2(μ; p,p̃) = 1
2 [1 + μ ±

√
(1 + μ)2 − 4μν], (50)

where

x = 1 − p̃

1 − p
, ν := 1 − x = p̃ − p

1 − p
, (51)

after some algebra we obtain

ZL,N (p,p̃) = [μN ]
{
λL

1 (μ; p,p̃) + λL
2 (μ; p,p̃)

}
= [μN ]2−(L−1)

[L/2]∑
m=0

(
L

2m

)
(1 + μ)L−2m

× [(1 + μ)2 − 4μν]m

= 2−(L−1)
[L/2]∑
m=0

(
L

2m

) m∑
n=0

(
m

n

)
4n(−ν)n

×
(

L − 2n

N − n

)
. (52)

Next, we change the order of summation over m and n and
make use of the identity

[L/2]∑
m=n

(
L

2m

)(
m

n

)
= 2L−2n−1 L

L − 2n

(
L − n − 1

n

)
, (53)

to obtain the result

ZL,N (p̃,p)

=
min{N, L−N}∑

n=0

(
L − n − 1

n

)(
L − 2n

N − n

)
L

L − 2n
(x − 1)n

= L

min{N,L−N}∑
n=0

(−1)n
(L − n − 1)!

(N − n)!(L − N − n)! n!
νn, (54)

which is identical to Eq. (32).
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B. The local density

We show here how our matrix-product expression for
the particle density ρL,N = N/L produces several identities
involving sums over sets of reduced partition functions. We
start from the definition of the average particle density of the
model:

ρL,N = Z−1
L,N [μN−1]Tr[DCL−1(μ)], (55)

which is, obviously, constant over the ring, equal to N/L. The
above trace is readily calculated by using the diagonal form of
the matrix C(μ),

U−1(μ)C(μ)U (μ) =
(

λ1(μ) 0
0 λ2(μ)

)
, (56)

where (for the sake of brevity we omit the argument μ)

U (μ) =
[

p̃ − p

p(λ1 − λ2)

]1/2( 1 1
pλ2

p̃−p

pλ1

p̃−p

)
,

U−1(μ) =
[

p̃ − p

p(λ1 − λ2)

]1/2
(

pλ1

p̃−p
−1

− pλ2

p̃−p
1

)
. (57)

Now, the similarity transformation of D with the matrix U (μ)
yields

U−1DU = 1

λ1 − λ2

(
λ1 − ν λ1 − ν

ν − λ2 ν − λ2

)
. (58)

Thus,

Tr[U−1DUU−1CL−1(μ)U ] = 1

λ1 − λ2

[
(λ1 − ν)λL−1

1 − (λ2 − ν)λL−1
2

] =
(

L−1∑
m=0

λm
1 λL−1−m

2 − ν

L−2∑
m=0

λm
1 λL−2−m

2

)
. (59)

Next, we use the equalities,

n∑
k=0

λk
1λ

n−k
2 =

{∑[n/2]
m=0 (μν)m

[
λn−2m

1 + λn−2m
2

]
, n = odd,∑n/2−1

m=0 (μν)m
[
λn−2m

1 + λn−2m
2

] + (μν)n/2, n = even,
(60)

and take into account that in the remainder we will need the expression for

[μq]
n∑

k=0

λk
1λ

n−k
2 =

[n/2]∑
m=0

νmZn−2m,q−m, (61)

which is independent of the parity of n. In deriving Eq. (61) we have taken into account that for n even one has [μq](μν)n/2 =
μn/2δq,n/2, which equals the summand νmZn−2m,q−m at the upper limit m = n/2; see Eq. (34).

Thus, the result for the particle density ρL,N = N/L can be cast in the form of the identity

N

L
ZL,N (ν) = ZL,N (ν) +

[L/2]∑
m=0

νm[ZL−1−2m, N−m−1(ν) − ZL−2m, N−m(ν)]. (62)

Next, we derive a different expression, which follows from the definition of the average density of empty sites:

1 − ρL,N (ν) = Z−1
L,N [μN ]Tr[ECL−1(μ)], (63)

which is, obviously, constant over the ring, equal to 1 − N/L.
The above trace is readily calculated by using the similarity transform of the matrix E with the matrix U (μ), see Eq. (57),

U−1EU = 1

λ1 − λ2

[
λ1(1 − λ2) λ1(1 − λ1)

−λ2(1 − λ2) −λ2(1 − λ1)

]
. (64)

Then

[μN ]Tr(μU−1ECL−1(μ)U ) = [μN ]
1

λ1 − λ2

[(
λL

1 − λL
2

) − μν
(
λL−1

1 − λL−1
2

)]

= [μN ]

[
L−1∑
m=0

λm
1 λL−1−m

2 − μν

L−2∑
m=0

λm
1 λL−2−m

2

]
. (65)

Due to the equality Eq. (61), the expression for the hole density 1 − N/L does not depend on the parity of L:

(1 − N/L)ZL,N (ν) = ZL,N (ν) +
[L/2]∑
m=0

νm[ZL−1−2m, N−m(ν) − ZL−2m, N−m(ν)]. (66)

Finally, by taking the difference of Eqs. (62) and (66), we find

(2N/L − 1)ZL,N (ν) =
[L/2]∑
m=0

νm[ZL−1−2m, N−1−m(ν) − ZL−1−2m, N−m(ν)]. (67)
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Thus, here we have established three identities, Eqs. (62), (66), and (67), involving the particle density N/L for all L � 1 and
1 � N � L.

C. The pair correlation function

The matrix-product form of the two-point particle-particle correlation function of the model is given by the expression

GL,N (τi = 1,τj = 1) = [μN ]
1

ZL,N

Tr[Ci−1(μ)μDCj−i−1μDCL−j (μ)] = [μN ]
1

ZL,N

Tr[μDCj−i−1μDCL−j+i−1(μ)]. (68)

Consider first the nearest-neighbor particle-particle correlations, when j = i + 1. In this case Eq. (68) reduces to

GL,N (τi = 1,τi+1 = 1) = [μN ]
1

ZL,N

Tr[μ2D2CL−2(μ)] = 1

ZL,N

[μN−2]Tr[DCL−2(μ)] = N − 1

L − 1

ZL−1,N−1

ZL,N

. (69)

Here we have taken into account the relationship D2 = D and used the definition of the particle density for a ring of length L − 1
sites having N − 1 particles; see Eq. (55).

Hence, one readily obtains the nearest-neighbor particle-hole correlation function

GL,N (τi = 1,τi+1 = 0) = [μN ]
1

ZL,N

Tr[μDECL−2(μ)] = 1

ZL,N

[μN ]Tr[μDCL−1(μ) − μDμDCL−2(μ)]

= N

L
− N − 1

L − 1

ZL−1,N−1

ZL,N

. (70)

It is interesting to note that quite a different in form representation for that function follows from the direct evaluation of the trace
in the first line of Eq. (70). To this end we make use of the matrices U (μ) and U−1(μ), which diagonalize C(μ), see Eqs. (56)
and (57), to obtain

Tr{DECn} = Tr
{
U−1DEUdiag

{
λn

1,λ
n
2

}}
, (71)

where diag{λn
1,λ

n
2} denotes a diagonal 2 × 2 matrix with eigenvalues λn

1 and λn
2. Taking into account that

U−1DEU = ν

λ1 − λ2

(
(1 − λ2)(λ1/ν − 1) (1 − λ1)(λ1/ν − 1)
(1 − λ2)(1 − λ2/ν) (1 − λ1)(1 − λ2/ν)

)
, (72)

we obtain

Tr{DECn} = ν

λ1 − λ2

[ − (
1 + λ1λ2/ν

)(
λn

1 − λn
2

) + λ1λ2
(
λn−1

1 − λn−1
2

) + (
λn+1

1 − λn+1
2

)
/ν

]

= x

n∑
m=0

λm
1 λn−m

2 =
{

x
∑[n/2]

m=0 (μν)m
[
λn−2m

1 + λn−2m
2

]
, n = odd

x
∑n/2−1

m=0 (μν)m
[
λn−2m

1 + λn−2m
2

] + x(μν)n/2, n = even.
(73)

In the above derivation we have used the equalities x = 1 − ν, λ1λ2 = μν, and (1 + μ)λ2 = μν + λ2
2. Thus, taking into account

equality Eq. (61), we find

GL,N (τi = 1,τi+1 = 0) = [μN−1]
1

ZL,N

Tr[DECL−2(μ)] = 1 − ν

ZL,N

[(L−2)/2]∑
m=0

νmZL−2−2m,N−1−m = N

L
− N − 1

L − 1

ZL−1,N−1

ZL,N

. (74)

Now we turn to the pair correlations in the case of general separation between the sites, j − i − 1 = n � 1, and for brevity of
notation denote L − j + i − 1 = L − n − 2 = m. With the use the similarity transformation Eq. (58) for D, and the diagonal
form of the matrix C, we obtain for the trace in Eq. (68),

[μN ]Tr[μDCn(μ)μDCm(μ)] = [μN−2]

(λ1 − λ2)2

[
λn+1

1 − λn+1
2 − ν

(
λn

1 − λn
2

)][
λm+1

1 − λm+1
2 − ν

(
λm

1 − λm
2

)]
. (75)

Next, having in mind that

λn
1 − λn

2 = (λ1 − λ2)
n−1∑
k=0

λk
1λ

n−1−k
2 , (76)
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and applying equality Eq. (61), we find

[μN−2]Tr[DCn(μ)DCm(μ)] =
N−2∑
q=0

[μq]

(
n∑

k=0

λk
1λ

n−k
2 − ν

n−1∑
k=0

λk
1λ

n−1−k
2

)
[μN−2−q ]

(
m∑

l=0

λl
1λ

m−l
2 − ν

m−1∑
l=0

λl
1λ

m−1−l
2

)

=
N−2∑
q=0

[Zn+1,q+1 +
[(n+1)/2]∑

k=0

νk[Zn−2k, q−k − Zn+1−2k, q+1−k]]

×
[
Zm+1,N−1−q +

[(m+1)/2]∑
l=0

νl[Zm−2l, N−2−q−l − Zm+1−2l, N−1−q−l]

]
. (77)

Here we have taken into account that for n even [n/2] = [(n + 1)/2] = n/2, and for n odd Zn−2k, q−k vanishes at the upper limit
k = (n + 1)/2; similarly, for m odd Zm−2l, N−2−q−l vanishes at the corresponding the upper limit l = (m + 1)/2.

The above expression essentially simplifies by noting that the substitution L = n + 1, N = q + 1 in Eq. (62) yields for the
summand in the first square brackets in the right-hand side of Eq. (77),

Zn+1,q+1 +
[(n+1)/2]∑

k=0

νk[Zn−2k, q−k − Zn+1−2k, q+1−k] = q + 1

n + 1
Zn+1,q+1. (78)

The expression for the summand in the second square brackets in the right-hand side of Eq. (77) follows from Eq. (78) under the
replacement n → m = L − 2 − n, and q → N − 2 − q:

Zm+1,N−1−q +
[(m+1)/2]∑

l=0

νl[Zm−2l, N−2−q−l − Zm+1−2l, N−1−q−l] = N − 1 − q

L − 1 − n
ZL−1−n,N−1−q (m = L − 2 − n). (79)

Thus, we obtain for the pair correlation between particles at sites i and j = i + 1 + r:

GL,N (τi = 1,τi+1+r = 1; p̃,p) := F
1,1
L,N (r; ν) = 1

ZL,N (p̃,p)

min{r,N−2}∑
q=max{0,r−L+N}

q + 1

r + 1
Zr+1,q+1(p̃,p)

N − 1 − q

L − 1 − r
ZL−1−r,N−1−q (p̃,p)

= 1

ZL,N (ν)

min{r,N−2}∑
q=max{0,r−L+N}

(
r

q

)(
L − 2 − r

N − 2 − q

)
2F1(−q − 1,q − r; −r; ν)

× 2F1(q + 1 − N, − L + N − q + r; −L + 2 + r; ν). (80)

This expression is valid for any r � 0. Indeed, at r = 0 it reduces to

FL,N (0; ν) = 1

ZL,N (p̃,p)
Z1,1(p̃,p)

N − 1

L − 1
ZL−1,N−1(p̃,p), (81)

which, in view of Z1,1(p̃,p) = 1, coincides with the pair correlation function Eq. (69).
Obviously, the pair correlation function Eq. (80) is invariant with respect to exchanging the place of the two distances between

the particles on the ring, r ↔ L − 2 − r .
Remarkably, in the case of the backward sequential update, when p̃ = p (ν = 0), the pair correlation function F

1,1
L,N (r; 0)

becomes constant, independent of both the distance r and the jump probability p. Indeed, in this case, taking into account
Eq. (35), we obtain

F
1,1
L,N (r; p,p) = 1

ZL,N (p,p)

min{r,N−2}∑
q=max{0,r−L+N}

q + 1

r + 1

(
r + 1
q + 1

)
N − 1 − q

L − 1 − r

(
L − 1 − r

N − 1 − q

)
=

(
L

N

)−1(
L − 2
N − 2

)
= N (N − 1)

L(L − 1)
. (82)

Another exact analytic expression follows in the limit p̃ → 1,
i.e., x = (1 − p̃)/(1 − p) → 0. This case models a deter-
ministic (irreversible) aggregation of one-dimensional driven
lattice gas. Now, it is convenient to use representation Eq. (30)
for the partition function, since

ZL,N (p̃ → p) = Lx + O(x2), when N �= 0,L, and

ZL,L(p̃,p) = 1, L � 1. (83)

Hence, assuming N < L, a nonzero contribution in the sum
over q in Eq. (80) for the pair correlation function will come
from the following terms:

(1) The first partition function in the numerator becomes
Zr+1,r+1 = 1, and the other multipliers are nonzero. This takes
place for all 0 � r � N − 2, when q = r;

(2) The second partition function ZL−1−r,L−1−r = 1 and all
the prefactors are nonvanishing. That occurs for all L − N �
r � L − 2, when q = r − L + N .
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FIG. 1. The dependence on the distance r of the particle-particle
correlation function F

1,1
24,9(r; ν) on a ring of L = 24 sites with N = 9

particles: (a) in the limit ν → 1, when only configurations containing
a single cluster survive (red stars); (b) at ν = 0, when the correlations
are constant (magenta disks), and (c) at ν = −10, when marked
anticorrelations appear at the wings (blue rotated squares).

Thus, we obtain

F
1,1
L,N (r; 1) =

{
(N − 1 − r)/L, 0 � r � N − 2
(r − L + N + 1)/L, L − N � r � L − 2,

(84)

and F
1,1
L,N (r; 1) ≡ 0, if N − 2 < r < L − N . This behavior is

illustrated in Fig. 1 for the case of L = 24 and N = 9. The
shape of the correlation function is readily explainable by the
fact that in the limit p̃ → 1 the configurations of the lowest
order in x → 0 are those in which all the N particles constitute
a single cluster.

In the considered limit p̃ → 1, the value of the nearest-
neighbor correlation function is F

1,1
L,N (0; 1) = (N − 1)/L, and

the maximum distance at which nonvanishing particle-particle
correlations occur is r = N − 2, when F

1,1
L,N (N − 2; 1) = 1/L.

The above facts are in exact conformity with the single-cluster
stationary state of the model in the deterministic aggregation
regime.

Another interesting observation concerns the case 2N �
L + 2, when the summation in Eq. (80) allows for simultane-
ous contribution from both partition functions in the numerator.
That takes place for distances L − N � r � N − 2, and the
sum of the two results in the right-hand side of Eq. (84) gives
the constant value: Thus, we obtain

F
1,1
L,N (r; 1) = (2N − L)/L, when

L − N � r � N − 2. (85)

Actually, this nonzero flat bottom of the pair correlation
function extends in the somewhat larger interval L − N −
1 � r � N − 1, since each of the endpoints of that interval
contributes the same value,

F
1,1
L,N (r = L − N − 1; 1) = F

1,1
L,N (r = N − 1; 1)

= (2N − L)/L, (86)

FIG. 2. The dependence on the distance r of the particle-particle
correlation function F

1,1
24,12(r; ν) on a ring of L = 24 sites with

N = 12 particles: (a) in the limit ν → 1, when only single-cluster
configurations contribute (red stars), (b) at ν = 0.5, when the graph
is considerably more smooth and flat (blue rotated squares), and (c)
at ν = 0, when the correlations are constant (magenta disks).

coming from the second partition function the numerator of
Eq. (80), when q = r = L − N − 1, and from the first par-
tition function when r = N − 1 and q = 2N − L − 1. Thus,
the flat bottom at value (2N − L)/L > 0 occurs whenever
2N � L + 1; when 2N = L, the function F

1,1
L,L/2(r; 1) is V-

shaped, and vanishes at the single-site bottom at r = L/2 − 1;
see Fig. 2.

Obviously, positive values of ν < 1 lead to more smooth
and flat graph of the correlation function which, as ν → 0,
approaches the constant value Eq. (82) describing a completely
uniform distribution of particles in the stationary state; see
Fig. 2.

On the other hand, negative values of ν mark the tendency of
splitting clusters of particles into smaller ones by the stochastic
dynamics. An extreme case is provided by the parallel
dynamics, when p̃ = 0, hence ν = −p/(1 − p). Nearest-
neighbor particle-hole effective attraction, or particle-particle
anticorrelations like those observed on Fig. 1 at ν = −10, were
analytically obtained in the thermodynamic limit for TASEP
with parallel update and ring geometry in Ref. [65]; see also
Ref. [56].

D. The current

To prove the matrix-product representation for the current
Eq. (46),

JL,N (p,p̃) = p

ZL,N (p,p̃)

N−1∑
k=0

p̃k[μN−k] Tr{μDECL−2−k},

(87)

we make use of Eq. (73) for Tr{DECn(μ)} and equality
Eq. (61) for [μq] Tr{DECn(μ)}. For brevity of notation, we
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set a = L − 2 − k, b = N − 1 − k, and write

JL,N (p,p̃) = p

ZL,N (p,p̃)

N−1∑
k=0

p̃k[μN−k−1] Tr{DECL−2−k} = x p

ZL,N (p,p̃)

N−1∑
k=0

p̃k

[a/2]∑
m=0

νm[μb−m]
[
λa−2m

1 + λa−2m
2

]

= x p

ZL,N (p,p̃)

N−1∑
k=0

p̃k

[a/2]∑
m=0

νmZa−2m,b−m(p,p̃). (88)

To bring the above expression to the form of Eq. (46), we consider

[a/2]∑
m=0

νmZa−2m,b−m(p,p̃) =
[a/2]∑
m=0

νm(a − 2m)
∑
n�0

(−ν)n(a − 2m − n − 1)!

n !(b − m − n)!(a − b − m − n)!

=
M(a,b)∑
j=0

(−ν)j

(b − j )!(a − b − j )!

j∑
m=0

(−1)m(a − 2m)(a − m − j − 1)!

(j − m)!
. (89)

Here, in exchanging the order of summation over m and j , we have taken into account that [a/2] � M(a,b) ≡ min{a − b,b}.
Now we prove the equality

j∑
m=0

(−1)m
(a − 2m)(a − 1 − j − m)!

(j − m)!
− (−1)j δa,2j = (a − j )!

j !
(a � 2j ), (90)

valid for a � 2j . The calculation of the sum here is straightforward when we consider the cases of a � 2j + 1 and a = 2j

separately.
(1) First we assume a � 2j + 1 and set n = a − 2j − 1 � 0. Then the left-hand side of Eq. (90) becomes

j∑
m=0

(−1)m
[1 + n + 2(j − m)](n + j − m)!

(j − m)!
= (−1)j

j∑
m=0

(−1)m
(1 + n + 2m)(n + m)!

m!
. (91)

Now we perform the summation as follows:

(−1)j
j∑

m=0

(−1)m
(1 + n + 2m)(n + m)!

m!
= (−1)j (n + 1)!

j∑
m=0

(−1)m
[(

n + m + 1
n + 1

)
+

(
n + m

n + 1

)]

= (−1)j (n + 1)!

[
−

j+1∑
m=1

(−1)m
(

n + m

n + 1

)
+

j∑
m=1

(−1)m
(

n + m

n + 1

)]

= (n + 1 + j )!

j !
= (a − j )!

j !
, (92)

which is exactly the right-hand side of Eq. (90).
(2) Finally, let a = 2j . Then the left-hand side of Eq. (90) becomes

j∑
m=0

(−1)m
2(j − m)(j − 1 − m)!

(j − m)!
− (−1)j = 2

j∑
m=0

(−1)m − (−1)j = 1, (93)

which equals the right-hand side of Eq. (90) at a = 2j . This completes the proof of the equality under the given condition.
Now, we insert equality Eq. (90) for a > 2j into Eq. (89) to obtain

[a/2]∑
m=0

νmZa−2m,b−m(p,p̃) =
M(a,b)∑
j=0

(−ν)j (a − j )!

j !(b − j )!(a − b − j )!
. (94)

Finally, after restoring the original values of a and b, and inserting the above result into Eq. (88), we recover representation
Eq. (46) for the current.

Let us show now how Eq. (88) reproduces in the thermodynamic limit the well-known result for the backward-ordered
sequential update. When p̃ = p, hence x = 1 and ν = 0, Eq. (88) reduces to

JL,N (p,p) = p

ZL,N (p,p)

N−1∑
k=0

pkZL−2−k,N−1−k(p,p). (95)
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Note that Eq. (32) at ν = 0 yields

ZL,N (p,p) = L!

N !(L − N )!
=

(
L

N

)
. (96)

Therefore, Eq. (95) can be written as

JL,N (p,p) = p

(
L − 2
N − 1

)(
L

N

)−1 N−1∑
k=1

pk

(
L − 2 − k

N − 1 − k

)(
L − 2
N − 1

)−1

= p
N (L − N )

L(L − 1)

[
1 +

N−1∑
k=1

cL,N (k)pk

]
, (97)

where

cL,N (k) =
k∏

n=1

N − n

L − 1 − n
. (98)

Taking the limit L → ∞ with N = ρL at fixed ρ and k, we
obtain

lim
L→∞

cL,ρL(k) = ρk, (99)

and

lim
L→∞

JL,ρL(p,p) = pρ(1 − ρ)
∞∑

k=0

(ρp)k = p
ρ(1 − ρ)

1 − pρ

(100)

is the well-known result for the thermodynamic current in the
TASEP with backward-ordered update [34].

Finally, from the general expression Eq. (88) we derive the
well-known result for the thermodynamic limit of the current
in TASEP with parallel update. In this case p̃ = 0 and Eq. (88)
reduces to

JL,N (p,0) = p

ZL,N (p,0)

M(L,N)∑
k=1

xk

(
L − N − 1

k − 1

)(
N − 1
k − 1

)
,

(101)

where x = (1 − p)−1, hence p = 1 − x−1. On the other hand,
from the expression for the partition function Eq. (30) at p̃ = 0
we have

ZL,N (p,0) = L

M(L,N)∑
k=1

xk

k

(
L − N − 1

k − 1

)(
N − 1
k − 1

)
. (102)

From Eqs. (101) and (102) it follows that

JL,N (p,0) = p x

L

∂

∂x
ln ZL,N (1 − x−1,0)

∣∣∣∣
x=(1−p)−1

. (103)

This remarkable expression allows us to evaluate
limL→∞ JL,ρL(p,0) by using the leading order approximation
for ZL,ρL(p,0) as L → ∞. To this end, we set in Eq. (102)
N = ρL and k = yL, and evaluate the sum by the correspond-
ing Laplace integral:

ZL,ρL(p,0) ∝
∫ min{1−ρ,ρ}

y=1/L

dy exp[LS(x,y)], (104)

where

S(x,y) = (1 − ρ) ln(1 − ρ) + ρ ln ρ

+y ln x − (1 − ρ − y) ln(1 − ρ − y)

−(ρ − y) ln(ρ − y) − 2y ln y. (105)

Hence, one readily finds the equation for the stationary point
of S(x,y) as a function of y:

(1 − x−1)y2 − y + ρ(1 − ρ) = 0, (106)

and the solution

y = ȳ(x,ρ) ≡ 1 −
√

1 − 4(1 − x−1)ρ(1 − ρ)

2(1 − x−1)
, (107)

at which S(x,y) attains its maximum with respect to y in the
interval 1/L � y � min{1 − ρ,ρ}. Thus, we obtain

lim
L→∞

1

L
ln ZL,ρL(p,0) = S(x,ȳ(x,ρ)), (108)

which implies

lim
L→∞

JL,ρL(p,0) = ȳ(x = (1 − p)−1,ρ)

= 1 − √
1 − 4pρ(1 − ρ)

2
. (109)

This is exactly the thermodynamic limit for the current of
particles in the TASEP with parallel update; see, e.g., Ref. [34].

VI. DISCUSSION

We have studied a version of the TASEP with a gen-
eralized discrete-time dynamics described by two hopping
probabilities, p and p̃, within the MPA approach to stationary
stochastic states. The model is considered on a ring of finite
number of sites, labeled in counterclockwise order from 1
to L. The configurations with a fixed number of particles
N are updated in a cluster-oriented clockwise order, starting
with a particle which has a vacant nearest-neighbor site in the
hopping direction. If the particle is isolated, or if it is the first
particle to be updated in a cluster of particles, then it can jump
to its nearest-neighbor site in the counterclockwise direction
with probability p, and stay immobile with probability 1 − p.
On the other hand, if the particle is not the rightmost one
in a cluster of particles (before the update), and if the site
in front of it has been emptied in the same update, then
the particle can jump ahead with probability p̃, or stay
immobile with probability 1 − p̃. Therefore, k � 1 particles
will chip off a cluster of length n > k with probability
(1 − p̃)p̃k−1p. Following Ref. [61], we denote the studied
model by gTASEP. The gTASEP contains as special cases the
TASEP with parallel update, when p̃ = 0, and with sequential
backward-ordered update, when p̃ = p. It belongs to the
most general class of discrete-mass transport models, and was
recognized as its exactly solvable representative pwN−1 in the
unpublished Ref. [64].
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In Ref. [64] the gTASEP was solved in the thermodynamic
limit by using a mean-field theory, and for finite L and N in the
partially deterministic case p = 1. Unfortunately, our matrix
representation of the underlying algebra is singular at p = 1
and we cannot cover that case.

In Ref. [61] the stationary properties of the model were
obtained by using a mapping onto the zero-range process.
The pair correlation function was derived by using the
transfer-matrix method in the grand canonical ensemble
with a subsequent choice of the fugacity yielding the pre-
scribed average density of particles in the thermodynamic
limit.

In contrast, we have worked entirely in the ensemble with
fixed number of particles on a finite ring, which has lead to
more involved calculations. The main aim of the paper was
to construct a two-dimensional matrix-product representation
for the gTASEP and to use it for the derivation of exact
finite-size expressions for the partition function, the current
of particles and the two-point correlation function. Our results
for the partition function and the current were checked against
expressions independently derived by combinatorial methods,
as well as by comparison with the results of Ref. [61] and
the well-known ones for the particular cases of parallel and

backward-ordered updates. The obtained expression for the
gTASEP partition function is related to the corresponding ZRP
by the constant factor L/(L − N ), just as the densities and
the currents of the two processes are related. This constant
factor is due to the different number of configurations in the
TASEP and ZRP. Our main new result is the derivation of the
finite-size pair correlation function by the MPA method. Its
behavior is analyzed in different regimes of effective attraction
and repulsion between the particles, depending on whether
p̃ > p or p̃ < p. In particular, we have explicitly obtained
an analytic expression for the pair correlation function in the
limit of irreversible aggregation p̃ → 1, which has confirmed
the expectation that in that limit the stationary configurations
contain just one cluster.

As a future continuation of the present study we intend
to attempt the construction of (infinite-dimensional) matrix-
product representations of the gTASEP on open chains.
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