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Transitional steady states of exchange dynamics between finite quantum systems
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We examine energy and particle exchange between finite-sized quantum systems and find a new form of
nonequilibrium state. The exchange rate undergoes stepwise evolution in time, and its magnitude and sign
dramatically change according to system size differences. The origin lies in interference effects contributed by
multiply scattered waves at system boundaries. Although such characteristics are utterly different from those of
true steady state for infinite systems, Onsager’s reciprocal relation remains universally valid.
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I. INTRODUCTION

One of the most fundamental phenomena in physics is
energy and particle exchange between systems, which occur
in the form of heat and mass current in the presence of
temperature and a chemical potential gradient. It is our interest
to understand steady state (SS) with constant exchange rate.
A great deal of research has been performed to clarify the SS
properties, such as the Landauer-Büttiker (LB) formula for
fermionic particle current [1–4], Onsager’s reciprocal relation
in the linear response regime [5,6], and the thermoelectric
effect [7–11]. Also in the modern formulation of stochastic
thermodynamics, the SS fluctuation theorem explains the
directionality of the flow as a consequence of the second law
of thermodynamics [12–16] and proves symmetry relations
between nonlinear response coefficients [17–19].

Decay from an initial transient state into SS usually occurs
if a system is subject to a dissipation due to a coupling to
an environment [20,21]. Recent theoretical studies show that
types of dissipation processes [22] and the presence of a bound
state [23] are crucial for the formation of SS. Numerical tools
have been developed to examine how an open quantum system
can reach SS [24]. It is worth noting that SS can also exist in a
quantum system isolated from a dissipative environment if the
system itself is infinite to have continuum energy spectra. An
elementary but illuminating example is Fermi’s golden rule
for the constant transition rate in a system having continuous
density of states [25].

As for SS in isolated quantum systems, despite the fact
that quantum systems are not infinite in their size, we
presume that if the energy levels of considered systems are
spaced densely enough, SS would also be established in a
very similar manner to infinite systems. In this regard, the
assumption of infinite size or continuum energy levels seems
only a matter of mathematical convenience. However, it is
obvious that the exchange rate between two finite systems
cannot be constant perpetually. If so, we reach an unphysical
situation, for example, that particles flow constantly from
system A to system B even if system A is totally evacuated.
Furthermore, finite quantum systems evolving according to
the time-symmetric Schrödinger equation cannot reach SS
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in the strict sense. Hence the behavior of SS predicted for
infinite systems should cease to persist after a certain time
scale τc. The following questions arise. What determines τc?
What are the subsequent states for a time longer than τc? Does
any alternative form of SS emerge which cannot be explained
by existing theories for infinite systems? These are issues of
fundamental importance in understanding exchange dynamics
between isolated quantum systems.

We answer these questions for a minimal model composed
of two systems of noninteracting fermions in one-dimensional
chains. The system details are introduced in Sec. II. In order
to quantify the exchange rate between the two systems, we
consider particle and heat currents, which are defined in
Sec. III. We preform numerical calculations to obtain particle
and heat currents between the two systems, and results for
the particle current are given in Sec. IV. We then adopt a
perturbative approach and get analytic results that explain
well the numerical data, presented in Sec. V. The behavior
of the heat currents and its implication to Onsager’s reciprocal
relation are discussed in Sec. VI. A summary and discussion
follow in Sec. VII.

II. SYSTEM

We consider two Fermonic systems (system L and system
R), each of which is well described by a noninteracting tight-
binding Hamiltonian:

Hα = −t

Mα−2∑
xα=1α

(c†xα
cxα+1 + c

†
xα+1cxα

) (1)

with α = L,R. Here cxα
(c†xα

) symbolizes an operator which
annihilates (creates) a fermionic particle at a site xα in the
system α and satisfies anticommutation relations: {cxα

,cxα′ } =
{c†xα

,c
†
xα′ } = 0, {c†xα

,cxα′ } = δxα,xα′ δα,α′ . We focus on size ef-
fects, assuming that the two chains can be different only in
their lengths. The model Hamiltonian Hα describes various
physical systems such as hard-core bosons in one-dimensional
optical lattices [26], quantum spin rotors [27], and naturally a
system of electrons if spin degrees of freedom are irrelevant.

Initially (at time τ = 0), the system α is in grand canonical
equilibrium state at the inverse temperature βα and chemical
potential μα . The corresponding initial density matrix reads as

ρeq = e−βL(HL−μLNL)e−βR (HR−μRNR)/(ZLZR), (2)

2470-0045/2016/94(2)/022136(9) 022136-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022136


EUIJIN JEON, JUYEON YI, AND YONG WOON KIM PHYSICAL REVIEW E 94, 022136 (2016)

FIG. 1. Schematic setup: The upper figure shows the schematic
diagram of the composite system, where t and γ represent the hopping
amplitudes defined in Eq. (1) and Eq. (3), respectively. There are
Mα − 1 lattice sites in the chain α, and βα,μα are parameters for
the initial equilibrium states described by the density matrix (2).
The lower figure exemplifies the Fermi-Dirac distributions, fα(E) =
[1 + eβα (E−μα )]−1 with βα and μα satisfying the range (4). Here the
blue line represents the energy dispersion, E = −2t cos k(E) [29].
Energy levels contributing to the currents populate the shaded region
with finite fR(E) − fL(E), which is located near the band center
k(E) = π/2.

where Zα is the grand canonical partition function of the
system α, and Nα is an operator measuring the total number
of particles in the system α, Nα ≡ ∑

xα
Nxα

with the particle

occupancy at xα , Nxα
= c

†
xα

cxα
.

A tunnel coupling between the two end sites (see Fig. 1)
is switched on at τ = 0+, which is described by a coupling
Hamiltonian:

HC = −γ (c†1L
c1R

+ c
†
1R

c1L
). (3)

The time evolution of the composite systems during τ > 0 is
then governed by H ≡ HL + HR + HC [28].

There are several relevant energy scales in our consider-
ation: β−1

α and μα for the initial equilibrium states, and the
coupling strength γ . In addition, for the system Hamiltonian
Eq. (1), we have the bandwidth w = 4t and the level spacing
δα ≈ 2πt/Mα [29]. In this work we consider weak coupling
strength (γ � t) and highlight behaviors in a regime specified
as

μα,β−1
α � w, δα � β−1

α . (4)

For the first condition, the systems are nearly half-filling,
and the contributions from the band edges are insignificant.
For temperatures not much higher than room temperature,
it is always βαw � 1 for an eligible range of band widths,
O(10−1)˜eV � w � O(1)˜eV. The second condition requires
that the systems should be large to have small level spacing
compared to the thermal energy; hence, the level discreteness
is irrelevant as for their initial equilibrium properties.

III. PARTICLE AND HEAT CURRENTS

In order to quantify exchange, we consider particle number
change in the system L:

〈	NL(τ )〉 = 〈NL(τ )〉 − 〈NL〉.

The angular bracket of an observable O represents 〈O〉 ≡
TrρeqO with ρeq in Eq. (2). The operator of an observable
O at time τ is represented by O(τ ), which is determined by
the unitary time evolution: O(τ ) = U †(τ )OU (τ ) with U (τ ) =
e−iHτ/�, and O(0) will be simply denoted as O. Due to particle
number conservation, the particle number change in the system
R is a redundant variable. The particle current, JL(t), from the
system R to the system L is then given by

JN (τ ) = 〈dNL(τ )/dτ 〉. (5)

We note here that a linear combination,

c̃nα
=

Mα−1∑
xα=1

anα,xα
cxα

(6)

with the coefficients given by

anα,xα
=

√
2

Mα

sin

(
nαπxα

Mα

)
, (7)

diagonalizes the Hamiltonian (1) into

Hα =
∑
nα

εnα
c̃†nα

c̃nα
=

∑
nα

εnα
Ñnα

. (8)

Here Ñnα
= c̃

†
nα

c̃nα
is the number operator measuring the num-

ber of fermion (0 or 1) occupying the nα-th energy eigenstate,
and the energy eigenvalue is given as εnα

= −2t cos(nαπ/Mα).
In the diagonalizing basis, the coupling Hamiltonian HC (3)
is written as

HC =
∑
nL,nR

VnL,nR
(̃c†nL

c̃nR
+ c̃†nR

c̃nL
)

with VnL,nR
= −γ anL,1L

anR,1R
.

The number operator, NL(τ ) = ∑
nL
ÑnL

(τ ) for τ > 0
evolves according to the Heisenberg equation of motion:

i�dτNL(τ ) = [NL(τ ),H]

=
∑
nL,nR

VnL,nR

(̃
c†nL

(τ )̃cnR
(τ ) − c̃†nR

(τ )̃cnL
(τ )

)
,

and thus the particle current (5) can be expressed as

JN (τ ) = 2

�

∑
nL,nR

VnL,nR
Re[i 〈̃c†nR

(τ )̃cnL
(τ )〉], (9)

where Re[X] denotes the real part of X.
Meanwhile, energy exchange occurs in the form of heat,

which is defined as [30–33] Q(τ ) = [	EL(τ ) − 	ER(τ )]/2.
Here, the energy change stored in the system α is 	Eα(τ ) =
〈	Hα(τ )〉 − μα〈	NL(τ )〉 with 	Hα(τ ) = Hα(τ ) − Hα . In
the diagonalizing basis (6), the energy change in the system α

is given by

	Eα(τ ) =
∑
nα

(εnα
− μα)[〈c̃†nα

(τ )c̃nα
(τ ) − c̃†nα

c̃nα
〉].

Using the Heisenberg equation of motion for c̃
†
nα

(τ )c̃nα
(τ ) =

Ñnα
(τ ), we obtain the time derivatives of the energy change in

the system L as

dτ	EL(τ ) = 2
∑
nL,nR

(εnL
− μL)VnL,nR

Re[i〈c†nR
(τ )cnL

(τ )〉],
(10)
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FIG. 2. Time evolution of the particle currents. In presenting the
results, the current is normalized by J LB

N , the current value for infinite
systems, which is obtained by the Landauer-Büttiker formula. The
time is scaled in units of τR = 2MR/v(0) with v(E) given by Eq.
(11), which is the minimum time required for a single round trip
along the right system. Here we set γ = 0.01t , βL = βR = 10/t ,
μL = 0.3t , and μR = 0.1t . (a) Results for a symmetric arrangement
(ML = MR = 300). The density plot of particle number change as a
function of the position and the observation time (the upper panel)
and the particle currents (the middle panel). In the lower panel, we
show the long-time behavior where the step structure becomes vague
because of the retardation of the round-trip time of a slow particle
[see the discussion following Eq.(11)]. (b) The particle currents for
	M ≡ ML − MR = 1, 	M = 2, and 	M = 300 with fixing MR =
300.

which upon interchanging the system indices as L ↔ R gives
the time derivative of the energy change in the system R.
This determines the heat current through a relation, JQ(τ ) ≡
dτQ(τ ) = [dτ	EL(τ ) − dτ	ER(τ )]/2.

IV. NUMERICAL RESULTS FOR PARTICLE CURRENTS

We numerically calculate the currents and present the
results for JN (τ ) in Fig. 2. (Results for the heat currents will be
discussed in Sec. VII.) The upper panel of Fig. 2(a) displays
the density plot of the particle number variance, 	Nxα

(τ ),
for ML = MR . The density variation propagates with the
maximum velocity (the white dashed line) given by v(0) in
Eq. (11) below, and it forms the triangular pattern. The middle
panel of Fig. 2(a) shows the particle current as a function of
time, which evolves stepwise in time, and the step heights

are given by odd integer multiples of JLB
N . Here JLB

N is the
SS current for ML = MR = ∞, and it is obtained from the
Landauer-Büttiker formula (see Appendix A). Also we scale
observation time τ in units of τR with τα ≡ 2Mα/v(0), where
the group velocity v(E) is

�v(E) = ∂E(k)/∂k =
√

4t2 − E2 (11)

for the energy dispersion E(k) = −2t cos k. Hence, the time
scale τR corresponds to the shortest round-trip time of a
particle occupying the band center (E = 0) along the system
R. One finds that the currents abruptly jump at every time
τR ≡ 2MR/v(0).

The round-trip time of a particle having energy E is given by
τR(E) ≈ 2MR[1 + 2(E/w)2]/v(0) ≡ τR[1 + R(E)]. We find
that the round trip of a particle with E �= 0 is retarded to have a
round-trip time longer than τR . This retardation determines the
transient width between the mth and (m + 1)-th step, which is
roughly given by mτRR(E). This effect can be observed in the
current behavior for time τ = mτR with large m, as illustrated
in the lower panel of Fig. 2(a). For a longer time, the step
structure vanishes, and the current oscillates between positive
and negative values (see Appendix B).

We now look at other system size differences [Fig. 2(b)].
First note that, for 0 < τ � τR , the currents are given by JLB

N ,
irrespectively of 	M ≡ ML − MR . This indicates that, up to
the time τR , the systems do not sense their boundaries, and the
exchange occurs in the same way as it does between infinite
systems. However, as time elapses, the temporal behaviors
of the currents can be very different from the symmetric
case (	M = 0). The current amplitude sensitively depends
on the size arrangement and observation time. Intriguingly,
for the case 	M = 1, the current direction is negative of JLB

N ,
indicating back flow from low to high chemical potential. In
the next section, we derive an analytic formula that describes
well the numerical results and explains the size dependence of
the current behaviors.

V. ANALYTIC RESULT

In order to evaluate the particle current (9) analytically,
we need to calculate the equal time correlator 〈̃c†nR

(τ )̃cnL
(τ )〉.

This can be done through a perturbative approach for the weak
coupling strength γ � t , as will be explained below. Note
first that the time evolution of c̃nα

(τ ) is determined by the
Heisenberg equation of motion:

i�dτ c̃nα
(τ ) = [̃cnα

(τ ),H]

= εnα
c̃nα

(τ ) +
∑
nα′ �=α

Vnα,nα′ c̃nα′ (τ ). (12)

We then obtain c̃nα
(τ ) up to the linear order in V for the weak

coupling:

c̃nα
(τ ) � e−iεnα τ/�c̃nα

−
∑
nα′ �=α

Fnα,nα′ (τ )e−iεn
α′ τ/�

Vnα,nα′ c̃nα′ ,

(13)
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where the time-dependent coefficient Fnα,nα′ (τ ) is defined as

Fnα,nα′ (τ ) = i

�

∫ τ

0
dτ ′ei(εnα −εn

α′ )τ ′/� = e
i(εnα −εn

α′ )τ/� − 1

εnα
− εnα′

.

(14)

Inserting Eq. (13) into the equal time correlator in Eq. (9), we
find

〈̃c†nR
(τ )̃cnL

(τ )〉 � −FnL,nR
(τ )VnL,nR

[fR − fL], (15)

where we used a symmetry relation, F ∗
nR,nL

(τ ) = −FnL,nR
(τ ),

and the initial equilibrium averages, 〈̃c†nα
c̃nα′ 〉 = δα,α′δnα,nα′ fα

with the Fermi-Dirac distribution function, fα = [1 +
eβα (εnα −μα)]−1. The particle current can then be readily obtained
by inserting Eq. (15) into Eq. (9):

JN (τ ) = 2

�

∑
nL,nR

V 2
nL,nR

ImFnL,nR
(τ )[fR − fL]

=
∑
nR

TLRfR −
∑
nL

TRLfL. (16)

Let us first consider the term,
∑

nR
TLRfR ≡ JR→L

N in Eq.
(16), corresponding to the current from the system R to the
system L. We find that in time domain 2τ/τL � (w/E)2 the
current is determined by (see Appendix C for the calculation
details)

JR→L
N ≈

∫
dE

h
TLR(E,τ )fR(E), (17)

where the transmission amplitude is given as

TLR(E,τ ) = T (E){1 + 2D(τ )
m∑

�=1

cos[2k(E)C�]}. (18)

The time dependence of TLR lies in the factor

D(τ ) = 
(τ − mqτR)
[(m + 1)qτR − τ ] (19)

with 
(x) being the Heaviside step function and q being a
positive integer related to the system sizes as pML = qMR +
C for its co-prime pair p to make C ∼ O(1). Here T (E) is the
transmission amplitude between semi-infinite chains, given in
Eq. (A5). Exchanging the system indices, L and R in Eq. (17)
[and correspondingly, q and τR in Eq. (19) should be replaced
with p and τL, respectively], we obtain the current from
the left to the right system. Noting that TRL(E,τ ) is invariance
under L ↔ R and p ↔ q due to pτL ≈ qτR , we arrive at the
following expression of the total current:

JN =
∫

dE

h
TLR(E,τ )(fR − fL), (20)

which is similar to the Landauer-Büttiker formula, except for
the fact that the transmutation amplitude is time dependent.

The analytic results for the particle currents are represented
by the lines in Fig. 2, and they show good agreement with the
numerical data. Let us briefly explain how Eq. (20) together
with Eqs. (18) and (19) explain the numerical results. For
example, if ML = MR , the time interval Eq. (19) indicates that
transmission jumps occur at every τR , as indeed is displayed
in the middle panel of Fig. 2(a). For this case, we have C = 0
in Eq. (18), and the transmission amplitude for time interval

m = 1 becomes TLR = 3T (E), explaining the current value
quantized at three times of JLB

N . On the other hand, if 	M = 1,
we have C = 1 and the cosine factor near the band center
k(E) ≈ π/2 becomes cos(π�), which for � = 1 yields TLR =
−T (E). This negative transmission yields the negative current
in the time interval given by m = 1, as shown in the upper
panel of Fig. 2(b). Behaviors for other cases can be deduced
along the same line of reasoning.

Note that C in Eq.(18) corresponds to the path difference
between the round-trip distance along the left and along
the right system. This suggests that the deviation from the
Ladauer-Büttiker formula originates from interference effects
contributed by waves reflected at the system boundaries
and returning back to the coupling region. Furthermore, the
commensurability of the round-trip times pτL ≈ qτR and the
time interval in Eq. (19) indicates that the interference effect
manifest itself only when the round trip along one system is
concurrent with the other.

VI. HEAT CURRENTS AND ONSAGER
RECIPROCAL RELATION

We now look at behaviors of the heat currents, considering
first the analytic expression (10) of the energy change rate in
the system L.

Substituting the equal-time correlator Eq. (15) into Eq. (10),
we get

dτ	EL(τ ) =
∑
nL,nR

2V 2
nL,nR

(εnL
− μL)ImFnL,nR

[fR − fL].

(21)
Further using a relation,

εnL
ImFnL,nR

= εnR
ImFnL,nR

+ sin[(εnL
− εnR

)τ ]

given from Eq. (14), we can write Eq. (21) as

dτ	EL(τ ) =
∑
nR

fR(εnR
− μL)

∑
nL

2V 2
nL,nR

ImFnL,nR

−
∑
nL

fL(εnL
− μL)

∑
nR

2V 2
nL,nR

ImFnL,nR

+
∑
nR

fR

∑
nL

2V 2
nL,nR

sin[(εnL
− εnR

)τ ].

The last term is given by Si and Ci with i > 0 in Eq. (C5),
which are delta functions or derivatives of delta functions as
shown in Eqs. (C12) and (C13). Neglecting the last term acting
only instantaneously and using the definition of TLR and TRL

in Eq. (16), we obtain

dτ	EL(τ ) =
∑
nR

fR(εnR
− μL)TLR −

∑
nL

fL(εnL
− μL)TRL.

Converting the summation into integration, we can express the
energy change rate of the left system as

dτ	EL(τ ) =
∫

dE

h
(E − μL)T (E,τ )[fR − fL]

and finally reach the analytic formula for the heat current
2JQ(τ ) = dτ	EL(τ ) − dτ	ER(τ ):

JQ(τ ) =
∫

dE

h
(E − μ̄)T (E,τ )[fR − fL], (22)
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FIG. 3. Temporal behaviors of the heat currents for various 	M

with a fixed MR = 300. Here the heat currents are normalized in units
of J LB

Q given by Eq. (23), and the observation time τ is scaled by τR

as in Fig. 2. The parameters are set to be γ = 0.01t , μL = μR = μ =
0.2t , βL = 11/t , and βR = 9/t .

where μ̄ ≡ (μL + μR)/2, and T (E,τ ) = TRL = TLR is given
in Eq. (18).

In Fig. 3 we present the heat currents, which are normalized
by the SS heat current:

JLB
Q =

∫
dE

h
(E − μ̄)T (E)[fR − fL]. (23)

Analytic results (the lines) from Eq. (22) are in good agreement
with the numerical results (the points). Also we can see that the
heat currents evolve stepwise in time, similarly to the particle
current behaviors shown in Fig. 2, which could be understood
from the time-dependent transmission, T (E,τ ).

The formula given in Eq.(20) for the particle current and in
Eq. (22) for the heat current has an fundamental implication

FIG. 4. Onsager’s reciprocal relation: We evaluate LNQ and LQN

for the cases presented in Fig. 2 at times τ = 0.5τR,1.5τR and 2.5τR ,
and all data points are collapsed onto the single line LNQ = −LQN .

to the Onsager reciprocal relation [5,6]. Generally, particle
currents can be expressed as JN (τ ) = ∫

dE(TLRfR − TRLfL)
with TLR (TRL) denoting the transmission amplitude from the
right (left) to the left (right), and TLR is not always equal to
TRL. The transmission in our consideration is shown to be
symmetric under exchanging the system index L and R, and
there exists a symmetry,

TRL(E,τ ) = TLR(E,τ ) = T (E,τ ), (24)

which leads to Eqs. (20) and (22) in a form similar to the
Landauer-Büttiker formula.

In the linear response regime, the particle current and
the heat current can be approximated as JN � LNNβ	μ +
LNQ	β and JQ � LQNβ	μ + LQQ	β for small affinity
differences, 	β = βL − βR � β̄ and 	μ = μL − μR � μ̄

with average temperature and chemical potential, 2β̄ = βL +
βR and 2μ̄ = μL + μR . Expanding fR − fL in Eqs. (20) and
(22) up to the linear order in 	β and 	μ, one can readily
check that those forms of the current formula, Eqs. (20)
and (22), although T (E,τ ) is time dependent, validate the
Onsager relation, LNQ = −LQN . This is also confirmed by
our numerical results shown in Fig. 4. Therefore, Eq. (24), a
detailed balance condition, can be viewed as the fundamental
symmetry underlying the Onsager reciprocal relation.

VII. SUMMARY AND DISCUSSION

In this work, we suggest the existence of a new form of
nonequilibrium state, characterizing exchange properties of
finite-sized quantum systems. A fundamental trait of the states
is the stepwise evolution of currents with extreme sensitivity
to system size difference, while still preserving the Onsager
symmetry. Although we consider a one-dimensional fermonic
system, underlying mechanisms is not restricted to the specific
system, and similar size effects must be present also for higher
dimensional systems if their exchange dynamics are mainly
governed by coherent (ballistic) transport.

Experimental observation therefore depends on the avail-
ability of samples where particles maintain phase coherence.
In this aspect, carbon nanotubes are a promising candidate
material: Phase coherence of electrons is maintained over mi-
crometers, and their conduction properties at low temperatures
are well described by the theory of ballistic transport [34]. Also
important is the time resolution of current measurement. For
w = 0.1–1 eV and Mα = 1˜μm/1 Å, the round trip time is
roughly estimated as τα ≈ 4(�/w)Mα ≈ O(10−1) ∼ O(10−2)
nsec. This gives a rough criterion for the required time
resolution. A superconducting quantum interference device
(SQUID) can be most efficient for the current measurement,
which detects magnetic fields generated by charge current
flows with high sensitivity and picosecond time resolution
[35]. We do not answer how effects of particle interactions,
interstitial defect, and impurity modify the behaviors revealed
here. In particular, at high temperatures electron-phonon
scattering must be a crucial phase-randomizing source (for
carbon nanotubes the scattering time is about picoseconds at
room temperature). These issues remain important questions
together with experimental challenges, which must be explored
to advance our understanding of exchange phenomena in
isolated quantum systems.
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APPENDIX A: LANDAUER-BÜTTIKER FORMULA

The particle currents between infinite systems (ML =
MR = ∞) can be obtained by using the Landauer-Büttiker
formula,

JLB
N =

∫
dE

h
T (E)[fR(E) − fL(E)], (A1)

with h = 2π�. We consider the coupling sites, 1L and 1R ,
as a small device connecting the two semi-infinite chains.
According to the transport theory [2–4], the transmission
amplitude T (E) is given by

T (E) = �2|G1,2|2 (A2)

with G(E) being the retarded Green function of the coupling
device:

G(E) = [E − HC − �]−1 =
(

E − � γ

γ E − �

)−1

. (A3)

Here � is the self-energy for the coupling to the semi-infinite
chains,

� = E

2
− i

√
t2 − E2

4
, (A4)

and its imaginary part gives the coupling function � in Eq.
(A2) as � = −2Im�. Using Eqs. (A3) and (A4), one obtains

T (E) = 4(γ /t)2

[
1 −

(
E

2t

)2
]
. (A5)

Inserting this into Eq. (A1), we can evaluate the particle current
between two infinite chains, JLB

N .

APPENDIX B: LONG-TIME BEHAVIORS

We present here particle current behaviors at longer times.
Figure 5 shows JN as a function of time for MR = ML = 300
in comparison with MR = 300,ML = 301. For the both cases,
systems do not reach true SS even in the long-time limit.

FIG. 5. Particle current for ML = MR and ML − MR = 1 plotted
for the long range of time, where we take the same parameters as
used in producing Fig. 2. Here time τ is scaled by τosc = hM/(4γ )
for ML = MR and by τosc = 2�MR/t for ML − MR = 1 (see the text).
The upper panels are the enlarged views of the current oscillations.

There are several points to be mentioned. Let us consider
transitions between energy level in one system and its closest
energy level in the other system, which we let εnL

and εnR
,

respectively. Due to the coupling described by HC with its
coupling strength VnL,nR

given by

VnL,nR
= − 2γ√

MLMR

sin(nLπ/ML) sin(nRπ/MR),

the two energy levels are hybridized into new levels having
energies:

E± = 1
2 [εnL

+ εnR
±

√
(εnL

− εnR
)2 + 4|VnL,nR

|2].

Transition between the energy levels E± yields oscillation
with period τosc = h/(E+ − E−). For the symmetric case
(ML = MR = M), εnL

= εnR
, and the oscillation period is

given by τosc = h/(2VnL,nR
), which for levels at the band

center, that is, nL = nR = M/2, becomes τosc = hM/(4γ ).
As shown in the left upper panel, the current oscillates with
period τosc, and also in the time domain not shown in the figure
the oscillation period remains roughly τosc. This indicates
that the rapid oscillation results from a resonant transition
between two energy levels having the same energy at band
center. On the other hand, for the asymmetric case (MR =
300,ML = 301), we have εnL

− εnR
� 2|VnL,nR

| for the energy
levels near the band center, and the oscillation period is
determined by the spacing between the unperturbed energy
levels: τosc ≈ h/(εnL

− εnR
) ≈ 2�MR/t . Unlike the symmetric

case, τosc only roughly fits the oscillation period during certain
time intervals, for example, the time range of the upper right
panel, and very noisy signals are present, as can be seen in the
upper middle panel. Size effect appears not only in the rapid
oscillation but also in the long time-scale behaviors. For the
symmetric case, the amplitude decays inversely proportional to√

τ , and around τ = 150τosc beating effect comes in. As time
elapses, the beating frequency increases and the effect becomes
more pronounced. For the asymmetric case (ML − MR = 1),
current behaviors are very distinctive from the symmetry case.
Amplitude decay is accompanied by weak beating effect, and
near τ = 120τosc large-amplitude periodic oscillation sets in.
Detailed analysis of these size effects in long time behaviors
will be done in our future study.

APPENDIX C: EVALUATION OF J R→L
N

Let us first examine TLR , the transmission amplitude from
the right to the left system. We write its explicit form,

TLR = 2

�

∑
nL

V 2
nL,nR

ImFnL,nR
, (C1)

where the wave numbers kR and kL are related to the energy
level indices, nL and nR , as

kα = nαπ/Mα,

and ImFnL,nR
(τ ) in Eq. (14) is

ImFnL,nR
(τ ) = sin[(εnL

− εnR
)τ/�]

εnL
− εnR

. (C2)

From the factor ImFnL,nR
, we can see that transitions

between adjacent energy levels, εnL
≈ εnR

, are dominant.
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Furthermore, since we are interested in physics coming from
the band center where the energy levels are approximately
linear in kα , we find that 	 ≡ kR − π/2 and x ≡ kL − kR are
expansion parameters. The energy difference in ImFnL,nR

is
expanded as

εnL
− εnR

= 2t cos kR − 2t cos kL

≈ 2tx(1 − 	2/2 − 	x/2 − x2/6)

≡ 2tx + �(x,	), (C3)

and the coefficient in front of ImFnL,nR
in Eq. (C1) has an

approximate form:

2

�
V 2

nL,nR
= 8γ 2

MRML�
sin2(kR) sin2(kL)

≈ 8γ 2

MRML�
(1 − x2 − 2x	 − 2	2).

Using these expansions, we can express TLR as

TLR = 4γ 2

t�MR

∞∑
i=0

[AiSi(τ ) + BiCi(τ )], (C4)

where the time-dependent functions, Si(τ ) and Ci(τ ), are
defined by

Si(τ ) = 1

ML

∑
nL

xi−1 sin(2txτ/�), (C5)

Ci(τ ) = 1

ML

∑
nL

xi−1 cos(2txτ/�). (C6)

Here we give a few coefficients relevant to our analysis:

A0 ≈ 1 − 3	2/2, B0 = 0,

A1 ≈ −3	/2, B1 = −tτ	2A0/�. (C7)

Let us now evaluate Eq. (C1) with TLR in Eq. (C4), where
the summation should be performed over nL for a given nR .
We consider an energy level n∗

L in the left system, which has
the closest energy to εnR

:

n∗
L = (ML/MR)nR + ξ, (C8)

where ξ is a number whose absolute value is less then 1/2.
Then x = kL − kR becomes

x = πnL/ML − πnR/MR = (nL − n∗
L + ξ )π/ML.

Since in our consideration the number of levels close to n∗
L

is sufficiently large for the convergence of the summation, we
can extend the finite summation interval of nL in Eqs. (C5)
and (C6) to infinite, −∞ � n ≡ nL − n∗

L � ∞:

Si(τ ) = (ML)−i

∞∑
n=−∞

sin[2π (n + ξ )τ̃L]

[(n + ξ )π ]1−i
, (C9)

Ci(τ ) = (ML)−i

∞∑
n=−∞

cos[2π (n + ξ )τ̃L]

[(n + ξ )π ]1−i
, (C10)

where τ̃L = τ/τL with τL ≡ �ML/t being the minimum
round-trip time along the left system. Note here that the

round-trip time of a particle with wave number k is given
by

τL(k) = 2ML/v(k), (C11)

where the velocity of the particle is v(k) = |2t sin k|/�, and
τL ≡ τL(π/2) is the round-trip time of the fastest particle
having k = π/2.

We can evaluate S1 and C1, which are the imaginary and the
real part of

∑
n e2i(n+ξ )πτ̃L = ∑

� e2πi�ξ δ(τ̃L − �), respectively:

S1(τ ) = 1

ML

∑
�

sin(2π�ξ )δ(τ̃L − �),

C1(τ ) = 1

ML

∑
�

cos(2π�ξ )δ(τ̃L − �). (C12)

In determining Si and Ci with i �= 1, we use recursion relations,

Si+1(τ ) = − 1

2ML

∂τ̃L
Ci,

Ci+1(τ ) = 1

2ML

∂τ̃L
Si, (C13)

which can be derived from Eqs.(C9) and (C10). We obtain S0

by integrating C1 over τ̃L as

S0(τ ) = ML

∫ τ̃L

−τ̃L

dτ̃ ′
LC1(τ̃ ′

L) (C14)

= 1 + 2D(τ )
m∑

�=1

cos 2π�ξ, (C15)

D(τ ) ≡ 
(m + 1 − τ̃L)
(τ̃L − m). (C16)

Time dependence lies in the factor D(τ ) with 
(x) being the
Heaviside step function, and we find that the value of S0(τ )
jumps at times integer multiples of τL.

On the other hand, in (C4) C0(τ ) makes null contribution
because of the vanishing coefficients B0. Other terms with
i � 1 in Eq. (C4) are delta functions as given in Eq. (C12), or
derivative delta function because Si>1 and Ci>1 are given by
the derivative S1 and C1 with respect to τ̃L. Therefore, the time
dependence of S0 essentially explains the temporal behavior
of the currents shown in the main text.

A word of caution should be given here. The contribution
from C1(τ ) in Eq. (C4) is non-negligible for large τ because
of its associated coefficient B1 linearly increasing in τ . The
term B1C1 is written as

B1C1 = [v(kR) − v(π/2)]τ

2ML

A0∂τ̃L
S0(τ ), (C17)

where v(k) is defined in Eq. (C11). Including B1C1 in Eq.
(C4), we obtain

TLR/(4γ 2/MRt) ≈ A0S0(τ̃L) + [τ̃L(kR) − τ̃L]A0∂τ̃L
S0(τ̃L)

� A0S0[τ̃L(kR)],

where τ̃L(kR) is defined by τ̃L(kR) ≡ v(kR)τ/(2ML). This
indicates that the time duration function D(τ ) in Eq. (C14)
has wave number dependence as

D(τ ) ≡ 
(m + 1 − τ̃L(k))
[τ̃L(k) − m],
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and as a consequence the variation of S0 occurs over a range
of width which around time τ = mτL is given by

m[τL(kR) − τL] ≈ mML	2
�/(2t) ≈ 2τ (E/w)2.

Here the energy is approximated as E(k) ≈ 2t	 near kR =
π/2, and w = 4t is the energy band width. Since E/w is very
small for E in the relevant energy range (4), the above variation
width can be visible in the long-time regime 2τ (E/w)2 � τL.
Therefore, in time domain 2τ/τL � (w/E)2 keeping only the
S0 term, we find the transmission amplitude,

TLR = 4γ 2

t�MR

(1 − 3	2/2)S0(τ ) ≡ Q(nR)S0(τ ),

with 	 = kR − π/2 = nRπ/MR − π/2, which gives the ex-
pression of JR→L

N as

JR→L
N =

∑
nR

fRQ(nR)

[
1 + 2D(τ )

m∑
�=1

cos(2π�ξ )

]
. (C18)

Let us take a look at the cosine factor in the above equation:

cos(2π�ξ ) = cos[2πl(ML/MR)nR]. (C19)

Relating the system sizes as pML − qMR = C, where p and
q are positive integers and mutually prime, making C to be
a constant of the order of unity (for example, for ML = 402
and MR = 300, p = 3 and q = 4, which give C = 6), we can
write Eq. (C19) as

cos(2π�ξ ) = cos

[
2πnR

(
q + C

MR

)
�

p

]
,

which oscillates with nR and the oscillation period depends
on the size factors. The phase component associated with

integer q may cause rapid oscillations as nR varies, if �(q/p)
is not an integer, while the phase with C/MR � 1 is a slowly
varying component. When performing summation over nR in
Eq. (C18), the nonvanishing contribution is made by only terms
with � = p�′ with �′ = 1,2, . . . because q and p are mutually
prime. Considering this fact, one arrives at

JR→L
N =

∑
nR

fRQ(nR)

[
1 + 2D(τ )

m′∑
�′=1

cos(2kRC�′)

]
(C20)

with the time-dependent factor D(τ ) = 
(p(m′ + 1)τL −
τ )
(τ − m′pτL).

We now change the summation over nR into integration
with respect to energy E = −2t cos kR . Upon using

∑
nR

≈ MR

π

∫
dkR = MR

π

∫
dEρ(E)

with the density of state for the one-dimensional chains,
ρ(E) = |dk/dE| ≈ [1 + E2/(8t2)]/(2t),

Equation (C20) becomes

∑
nR

TLRfR ≈
∫

dE

h
TLR(E,τ )fR(E),

TLR(E,τ ) = T (E){1 + 2D(τ )
m∑

�=1

cos[2k(E)C�]}.
Here T (E) is the transmission amplitude between infinite
chains, given in Eq. (A5).
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