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We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows
based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al.
[M. Holzner et al., Phys. Rev. E 92, 013015 (2015)]. The particle’s passing through one channel is modeled as
one step of the walk. The step (channel) length is random and the walker’s velocity at consecutive steps of the
walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of
velocity. We provide the Laplace transform of the characteristic function of the walker’s position and reductions
for different cases of independence of the CTRW’s step duration τ , length l, and velocity v. We solve our model
with independent l and v. The model incorporates different forms of the tail of the probability density of small
velocities that vary with the model parameter α. Depending on that parameter, all types of anomalous diffusion
can hold, from super- to subdiffusion. In a finite interval of α, ballistic behavior with logarithmic corrections
holds, which was observed in a previously introduced CTRW model with independent l and τ . Universality of
tracer diffusion in the porous medium is considered.
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I. INTRODUCTION

Based on the seminal work of Montroll and Weiss [1] on
the theory of random walks on lattices, Scher and Lax [2]
extended the continuous-time random walk (CTRW) theory
and incorporated memory effects to solve impurity conduction
in disordered solids. Since then, the CTRW theory has been
applied to model a broad range of problems characterized
by history-dependent dynamics in fluctuating and disordered
systems [3,4]. In porous media, the CTRW model has been
successfully used to predict anomalous transport [4–12]. For
uncorrelated disorder, space and time increments are uncou-
pled and the resulting anomalous transport has been considered
via decoupled CTRWs [4,7,8,12]. Spatial correlation gives
rise to coupling that has been modeled using fully coupled
CTRWs [9,13] and correlated CTRWs [14–17]. Correlations
between successive waiting times were shown to give rise
to subdiffusion even when they are Gaussian, while corre-
lations between jump lengths produced superdiffusion [15].
Previous work showed that correlations in the Lagrangian
velocity (in particular slow velocities) produced superdiffusion
[14,16,17].

Anomalous transport arises from heterogeneous pore-scale
velocity, which in turn depends on the pore-space geome-
try [7,17–22]. In several papers, pore-scale velocity proba-
bility density functions (PDFs) in porous media have been
found to have positive (exponential or stretched exponential)
tails [17,19,20,22–32]. In [20], the heavy-tailed velocity PDF
could be related to the (exponential) pore-size distribution
and flow connectivity. A key element was the introduction
of a CTRW model that could explain the observed non-
Fickian transport behaviors [20]. However, despite significant
progress, the relation between pore-scale geometry, intermit-
tent pore-scale flow, and non-Fickian transport remains not
fully understood. In this work we consider the CTRW model
based on a given distribution of step lengths and provide exact
solution for the resulting transport behavior of flow particles.

A. Pore-scale CTRW model

In general, CTRW models are effective models char-
acterized by distributions of transition times, lengths, and
velocities. At the pore scale, the relevant distributions are
pore length and pore velocity, while for a fracture network
one has to consider the distribution of fracture lengths, etc.
Reference [33] considered for the first time a pore network
where a CTRW is parametrized using the distribution of
pore velocities. The CTRW model studied in this work is a
slightly simplified version of the model introduced in [20]
based on direct modeling of experimental observations. A
fluid tracer in a real porous medium like soil finds itself
either inside a well-defined unique channel or at a junction
between the channels. For the latter it may be difficult to find
a unique channel to which the tracer can be assigned (the
number of the channels connected to the given junction is
determined by the connectivity of the junction). The model
assumes that this assignment is done in some way so that
the tracer is always found in a certain definite pore. This
does not imply that junctions are neglected. In fact, stagnation
regions present at some junctions cause long stays of the tracer.
Those stays could cause anomalous transport at large times,
so the considered property cannot be disregarded in studies of
anomalous transport. The model includes these long stays in
the definition of residence times inside the channel to which
the tracer is assigned.

Thus the motion consists of a sequence of finite-time
intervals so that during a given interval the tracer belongs
to a certain fixed channel. The model considers the passage
from channel to channel as an instantaneous event. Motion
inside the channel is determined by the random length of
the channel and the time spent inside the channel, which is
the length divided by the random velocity. This velocity is
considered as a positive quantity whose temporal variation
inside the channel is neglected. The model does not study the
directions of motion as determined by the pores’ orientation
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in space but only the lengths of the channels and the times
spent in them. This does not signify considering the medium
as a sequence of singly connected channels. Rather the model
studies the absolute distance passed by the particle but not
the net displacement in space (the relation between the two is
determined by tortuosity, discussed in the final section). The
way the channels are organized in space is outside the domain
of consideration of the model.

The core experimental observation of [20] is that when the
particle reaches the end of the channel it can either smoothly
pass to the next channel without changing the velocity strongly
or undergo strong acceleration. The value of this acceleration
is determined by the complex geometry of the pores and is to
be considered random. It is this way of motion that is proposed
to be the key property of motion in the porous medium that
determines the anomalous diffusion.

We propose that the model where the particle keeps its
velocity constant between instantaneous random acceleration
events produces the same laws of growth of moments of the
distance as the real medium. For instance, in the model the
dispersion of the passed distance is found below to obey a
power law in time. It is proposed then that in the porous
medium the growth will obey the power law with the same
exponent but different prefactor.

It was observed in [20] that acceleration events occur
typically once per ten passages between the pores. Thus, at
a typical passage the magnitude of the particle’s velocity does
not change much (the change in direction is not relevant for
the questions considered in this paper). The passage through
one pore was modeled as one step of the walk. The length
of this step is the random length of the pore. The velocity
at the next step can be conserved with probability λ (if there
is no acceleration event) or refreshed with probability 1 − λ

(if there is an acceleration event) with the new value taken
from the experimentally motivated PDF of velocities [20].
Such a persistence parameter λ was also used in [34,35]. This
persistence implied an effective longer transition length that is
rescaled by 1/λ [20]. The velocity of motion inside the pore is
the half sum of the velocities at the pore’s ends. In our CTRW
the length of one step does not obey a broad distribution,
(see [18]), but rather has an exponential distribution. The
anomalous diffusion arises because one step can take a very
long time. This is because of the near trapping of particles in
some pores. That is reflected via the power-law tail of the PDF
of the step’s duration (see below).

It was demonstrated that this model provides a realistic
description of the observations. Here we introduce a simpli-
fication taking the velocity inside the pore not as a half sum
but as the velocity at the pore’s entrance. This simplification
does not seem to be of consequence for the laws of anomalous
diffusion that concern us here.

B. Separation of variables

Due to the mentioned persistence of velocity, the described
model has correlations between the walk’s steps that make it
hard for theoretical treatment. However, we observe that by
redefining the steps the model can be reduced to a CTRW
with independent consecutive steps. We redefine the step as
the motion between consecutive acceleration events. Thus,

by definition, velocities and lengths at the consecutive steps
are independent. The PDF of the step’s length undergoes the
corresponding renormalization where the step’s length is the
sum of the lengths of the pores passed without changing
the velocity. Thus the more usual setting with independent
consecutive steps is recovered.

The CTRW that we find is separable: The step length l

and the velocity v during the step are independent random
variables. For a general CTRW the step is characterized by
three variables: the duration of the step τ , the constant velocity
v at which the step is performed, and the spatial displacement
l during the step (where in dimension higher than one v and l
are vectors). We have l = vτ , so only two of the three variables
are independent. We call the CTRW separable if any pair of
the step’s variables are independent (see [18]). Thus there are
three types of separable CTRWs. The walk with independent
τ and v is called a Lévy walk (see, e.g., [36]). We call the walk
with independent l and v the l-v CTRW and the walk with
independent l and τ the l-τ CTRW. In [18] the l-τ CTRW is
called a separable CTRW; our use of the term “separable” is
different.

The three described separable walks are quite different. In
our separable l-v CTRW model of tracer motion in the porous
medium the distribution p(l) of length l is fast decaying. The
fast decay of p(l) seems to be the necessary property of the
porous medium (disregarding the possible existence of long
sequences of almost parallel channels, corridors, over which
the tracer velocity does not change much; the study of those is
beyond our scope here). Thus the fluctuations of l are weak so
that fluctuations of step duration τ = l/v are chiefly those of
1/v (which is independent of l). Correspondingly, if the PDF
of velocity is finite at zero velocity then 〈τ 〉 ∝ 〈1/v〉 diverges.
This implies that the PDF of τ has a power-law tail with a decay
exponent smaller than or equal to 2. This is the known reason
for anomalous diffusion defined as the power-law growth of the
coordinate’s dispersion whose exponent differs from one [18].
The laws of anomalous diffusion that we find seem to be
richer than for an l-τ CTRW or a Lévy walk (see [18,37],
respectively).

In a Lévy walk anomalous diffusion is found in the case
where the PDF of τ has a power-law tail and the PDF of
velocity is fast decaying. When the tail’s decay exponent
is between 1 and 2 so that 〈τ 〉 = ∞ the dispersion of the
particle’s position has universal quadratic growth in time. For
an exponent between 2 and 3 one finds superdiffusion, where
the dispersion grows faster than linearly in time but slower
than quadratically in time. Finally, for an exponent larger than
3 normal diffusion holds, where dispersion grows linearly in
time. Thus, in this case only superdiffusion holds [37].

In contrast, in the l-τ CTRW when the PDF of τ has
a power-law tail with an exponent between 1 and 2, the
dispersion grows slower than linearly in time (subdiffusion).
For an exponent between 2 and 3 normal diffusion with linear
growth of dispersion holds in the leading order. Thus, in this
case only subdiffusion holds [18].

Our l-v CTRW can give both super- and subdiffusive
growth of the dispersion, as previously noted in [8,12].
These are determined by the behavior of the PDF of velocity
pv(v) at small velocities. For finite pv(0) where 〈τ 〉 = ∞ we
find ballistic growth with logarithmic correction. Up to that
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correction this is similar to the Lévy walk in the regime of
divergent 〈τ 〉. However, when pv(v) has integrable power-law
singularity at zero velocity we find that an arbitrary growth
exponent between 0 and 2 is possible depending on the power
law’s exponent. Thus this l-v CTRW can incorporate both
superdiffusion and subdiffusion.

In the case of finite pv(v) that leads to a τ−2 tail of the
PDF of τ we find that the average distance passed by the
particle grows as t/ ln t and the dispersion of the distance as
t2/ln3t . Though these laws hold for the distance (path length)
rather than spatial displacement when the geometry of the
medium is not too complex, these laws can be transferred from
distance to the displacement of the particle in the direction of
the mean flow (in the simplest case this is done by introducing
the projection factor in the direction of the flow).

Identical t/ ln t and t2/ ln3 t laws of growth were obtained
in the l-τ CTRW model of the tracer motion in the porous
medium introduced in [11]. The studied PDF of the step’s
duration had a τ−2 tail identical to that described above
(see the discussion in the final section). We hence note that
different types of separable CTRWs can produce either similar
or different results.

C. Outline

In the next section we derive for inseparable CTRWs the
Laplace transform of the characteristic function of the walker’s
coordinate through statistical properties of one step of the walk.
The corresponding formula is known as the Montroll-Weiss
equation (this equation itself will not be needed until Sec. VII).
Considering the reductions of the equation for different types
of separable walks, we clarify the difference between different
types of separations. The results are scattered throughout the
literature and the difference between different types of sepa-
rability was not stressed. This difference is to be considered
carefully in modeling transport in the porous medium.

Having provided the relevant basis for the study of CTRWs,
we describe our model of tracer motion in the porous medium
in Sec. III. The model was introduced phenomenologically
based on the experiment. This model is not a CTRW because
the velocity in subsequent pores is correlated with finite
probability. However, in the next section we demonstrate that
the model can be reduced to a CTRW by redefining the step.
We find that we can introduce an effective length of the pore
beyond which the velocity decorrelates. This length is about
ten times the typical length of one pore. We expect this to be
a realistic feature of the porous medium as discussed in the
final section.

The key property that underlies the anomalous diffusion at
large times is the power-law tail of the PDF of the residence
time in the pore derived in Sec. V. The power-law tail tells us
that the tracer can spend much time in the pore with quite high
probability. In the real porous medium long residence times
can be caused by stagnation regions at the junctions and/or
long stays near the channels’ walls where the velocity of the
fluid is very small because of the no-slip boundary condition at
the walls. These delays in the propagation through the medium
cause anomalous scaling of passed distance with time.

Besides the passed distance, porous medium flow can be
characterized by a different random variable, which is the

number of pores passed by the particle in time t . We find
this quantity very useful because even though it is simpler
for calculations than the distance, many properties of the
distance statistics can be inferred from it. The reason is that
the length of the single pore does not have strong fluctuations,
so the passed distance for many purposes is equivalent to the
number of passed pores times a characteristic pore length. The
calculation of the PDF of the number of passed pores is done in
Sec. VI. We find the power-law growth of the average number
of passed pores and the dispersion of that number with time.
In the next section we demonstrate that this power-law growth
coincides with the power-law growth of the passed distance
where the difference between the two random variables is in
the prefactor of the power. The derivation is based on using
the Montroll-Weiss equation for the CTRW formulation of our
model. Finally, in the final section we provide the formulation
of the results and their implications.

II. INSEPARABLE CTRW PROPAGATOR AND
REDUCTIONS FOR SEPARABLE WALKS

In this section we describe the framework of a CTRW and
provide the Fourier-Laplace transform of the PDF p(t,x) of
the position x(t) of the particle (propagator). The CTRW is
determined by the law of change of x(t),

xn+1 = xn + ln, tn+1 = tn + τn, ln = vnτn, (1)

where x0 = 0, t0 = 0, and between the steps the particle moves
at constant velocity vn. The quantities pertaining to different
steps of the walk ln, τn, and vn are considered independent.

The inseparable CTRW is determined by the joint PDF
of any pair of random variables l , τ , and v characterizing
one-step statistics. We take the pair to be τ and l and designate
the corresponding PDF by ψ(τ,l), using notation similar to
that of [7,18].

The derivation of p(t,x) is done by introducing the auxiliary
probability density q(t,x) that the particle finishes one of the
walk’s steps in the vicinity of x at time t and thus q(t,x)dxdt

is the probability that one of the walk’s steps finishes in the
time interval (t,t + dt) in the dx vicinity of x. We observe
that the particle’s position at the beginning of the step that
ends at x at time t can be either x = 0 at time t = 0 or a
certain position x′ at time t − τ , where 0 < τ < t . In the first
case the particle comes to x in one step directly from its
initial position. This contributes ψ(τ,x) to q(t,x). In the case
that the particle performed more steps before ending up at x
the corresponding contribution to q(t,x) is the product of the
probability of reaching x′ at time t − τ and the probability
of making a step of duration τ from x′ to x. Summing the
probabilities we find

q(t,x) = ψ(t,x) +
∫ t

0
dτ

∫
dx′q(t − τ,x′)ψ(τ,x − x′).

(2)

If we introduce q(t,x) = ν(t,x) − δ(t)δ(x) then we find

ν(t,x) =
∫ t

0
dτ

∫
dx′ν(t − τ,x′)ψ(τ,x − x′) + δ(t)δ(x).

(3)
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[Here the δ function is defined so that
∫ ∞

0 δ(t)dt = 1.] The
functions q(t,x) and ν(t,x) coincide at t > 0 and either of them
can be used as intermediate quantity in the derivation of the
Montroll-Weiss equation. We use the function q(t,x) that pro-
vides the continuum counterpart of the corresponding equation
on the lattice (see, e.g., [18]). The consideration using ν(t,x)
and the corresponding equation on the PDF is used, e.g., in [4].

The solution of Eq. (2) is found using the Fourier-Laplace
transform in coordinate and time, respectively, using

ψ(s,k) =
∫ ∞

0
dt

∫
dx exp[−st − ik · x]ψ(t,x), (4)

with similar formulas for other functions of t and x. We
designate the function and its transform by the same letter
so the distinction is done via the argument. We find

q(s,k) = ψ(s,k)

1 − ψ(s,k)
. (5)

The probability p(t,x)dx of finding the particle at time t in the
dx vicinity of x is the sum of the probabilities of reaching that
volume before and after the end of the first step of the walk.
The probability of passing the dx vicinity of x during the first
step is f (t,x)dx, where we defined

f (t,x) =
∫ ∞

t

(τ

t

)d

ψ
(
τ,

τ x
t

)
dτ, (6)

with d the dimension of space. Here we observed that the
particle that finished the first step of the walk at time τ > t in
the (τ/t)ddx vicinity of τ x/t was at time t in the dx vicinity of
x. The integral over τ includes all possible times of finishing
the first step of the walk. We find for the PDF, using similar
consideration for arriving at x after finishing the last step of
the walk at x′, that

p(t,x) = f (t,x) +
∫ t

0
dτ

∫
dx′q(t − τ,x′)f (τ,x − x′). (7)

The Fourier-Laplace transform using Eq. (5) gives

p(s,k) = f (s,k)

1 − ψ(s,k)
. (8)

Thus we consider f (s,k), which obeys

f (s,k) =
∫ ∞

0
dτ

∫ τ

0
dt

∫
exp

[
−st − itk · l

τ

]
ψ(τ,l)d l,

(9)

the integration of which gives

f (s,k) =
∫ ∞

0
dτ

∫
d l

ψ(τ,l)(1 − exp[−sτ − ik · l])
s + ik · l/τ

.

(10)

This together with Eq. (8) gives the solution for the Fourier-
Laplace transform of the characteristic function of the position
of the inseparable CTRW walker. We provide below another
form of the solution and some reductions.

We can write p(s,k) using the joint PDF ψ ′(τ,v) of τ

and v instead of ψ(τ,l), which gives a somewhat nicer form.
Introducing the integration variable of velocity v = l/τ and

using ψ ′(τ,v) = τ dψ(τ,vτ ) we write

f (s,k) =
∫ ∞

0
dτ

∫
dv

ψ ′(τ,v){1 − exp[−τ (s + ik · v)]}
s + ik · v

=
〈

1

s + ik · v

〉
v

−
∫

ψ ′(s + ik · v,v)

s + ik · v
dv, (11)

where the averaging is over the statistics of velocity. Similarly
we have

ψ(s,k) =
∫

ψ ′(s + ik · v,v)dv. (12)

We find using Eq. (8) that

p(s,k) =
[〈

1

s + ik · v

〉
v

−
∫

ψ ′(s + ik · v,v)

s + ik · v
dv

]

× 1

1 − ∫
ψ ′(s + ik · v,v)dv

. (13)

For a Lévy walk we have ψ ′(τ,v) = ψ(τ )pv(v). Here pv(v)
and ψ(τ ) are the marginal distributions of v and τ , respectively,

pv(v) =
∫ ∞

0
ψ ′(τ,v)dτ, ψ(τ ) =

∫ ∞

0
ψ ′(τ,v)dv, (14)

where we distinguish functions by their arguments. For
instance, ψ(τ ) is the PDF of the residence time τ but ψ(τ,l) is
the joint PDF of τ and l . The use of ψ ′(τ,v) = ψ(τ )pv(v) in
Eq. (13) gives the Montroll-Weiss equation of the Lévy walk
(see, e.g., [36,37] and references therein)

p(s,k) =
〈

1 − ψ(s + ik · v)

s + ik · v

〉
v

1

1 − 〈ψ(s + ik · v)〉v .

However, this formula does not hold in the l-τ CTRW with
ψ(τ,l) = ψ(τ )p(l), where p(l) = ∫

ψ(τ,l)dτ . We have

f (s,k) =
∫ ∞

0
dτ

∫
d l

ψ(τ )p(l)(1 − exp[−sτ − ik · l])
s + ik · l/τ

=
∫ ∞

0
τ ddτ

∫
dv

×ψ(τ )p(vτ ){1 − exp[−τ (s − ik · v)]}
s + ik · v

, (15)

which does not look reducible to the average over one of the
variables (l or v) only. Similar considerations hold for the l-v
CTRW.

For comparison with the equation provided in [18] we must
consider a different definition of the walk where between the
steps the walker does not move but at the end of the step
instantaneously changes its position by l (this formulation is
closer to the original formulation of the walk on the lattice
and is known as the jump model). In this case q(t,x) does not
change from Eq. (2) but the equation on p(t,x) takes a form
different from that in Eq. (7) because the particle does not
move between the steps. We find

p(t,x) = φ(t)δ(x) +
∫ t

0
dτ q(t − τ,x)φ(τ ), (16)

where φ(t) = ∫ ∞
t

dτ
∫

d l ψ(τ,l) is the probability that the
walk’s step lasts longer than t . The first term above describes
the contribution of the event that the particle did not move at all
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during time t [so x = 0 for these events to contribute p(t,x)]
and the last term describes contributions of events where the
particle came to x at time t − τ and then stopped until time t .
The solution is

p(s,k) = φ(s)

1 − ψ(s,k)
, (17)

which differs from Eq. (7). We observe that φ(s) =
[1 − ψ(s,k = 0)]/s, which gives

p(s,k) = 1 − ψ(s,k = 0)

s[1 − ψ(s,k)]
, (18)

reproducing the equation that can be found in [18] and
references therein. One can derive reductions of this equation
as we did previously in the case where between the steps
the particle moves at constant velocity rather than pauses the
walk. In [9] an analysis of different coupled and uncoupled
velocity models with position interpolation (sometimes called
the creeper model) for different (constant and heavy-tailed)
distributions of the transition length can be found.

III. MODEL AS A DIRECT DESCRIPTION
OF THE EXPERIMENT

We introduce our CTRW model of [20] for the motion of
flow particle tracers in the porous medium. The motion of the
particle consists of a sequence of discrete steps where one step
represents the passing through one pore. The step (pore) has
random length l, which is drawn from the empirically observed
PDF of pore lengths [20]

p(l) = 4

d
exp

[
−4l

d

]
, (19)

where d/4 is the characteristic length of the pore that is
set below to one by the choice of units of length. Particle
velocities in consecutive pores are considered independent if
an acceleration event occurs at the junction between the pores.
Since acceleration events do not occur at all throats then with
finite probability λ the particle does not change its velocity in
the passage between the channels. The observations indicate
that only in about one-tenth of the junctions the particles
undergo strong accelerations (that is, λ ∼ 0.9). Further, we
neglect the time variation of velocity during motion in one
pore. This seems to be of no consequence for the study
of diffusion laws below. Namely, it seems plausible that
the anomalous transport exponent is independent of smooth
variations of velocity inside the pore. Thus the velocity during
one step of the walk is a random constant drawn from the
empirically observed PDF of velocities pv(v).

Below we derive the PDF of the distance passed by the
particle independently of the concrete form of pv(v). For the
study of the results we use the concrete form of pv(v). One of
the PDFs that was proposed based on spatial averaging of the
Poiseuille profile with the given observed distribution of the
maximal pore velocity is [20]

pv(v) = 	(1 − α,(v/v0)α)
v0	(1 − α + 1/α)

, (20)

where v0 is the characteristic velocity and 	(β,x) is the
incomplete Gamma function 	(β,x) = ∫ ∞

x
exp[−t]tβ−1dt . A

similar velocity distribution was also considered in the solute
transport model based on a CTRW approach in [38]. The
motion is assumed to be only in one direction (the positive
x axis below), so v > 0. This models the motion through
the porous medium under the action of a pressure gradient
or gravity neglecting the more rare reversals of direction of
motion [20]. Below we pick units of time so that v0 = 1.
The moments of the distribution are 〈vk〉 = 	(1 − α + (k +
1)/α)/[(k + 1)	(1 − α + 1/α)], from which the average and
the dispersion can be read. The large-argument asymptotic
form 	(β,x) ∼ xβ−1 exp[−x] implies that the distribution’s
tail obeys

pv(v) ∼ v−α2
exp[−vα]/	(1 − α + 1/α), v � 1. (21)

The physical demand that pv(v) decays at large v as a stretched
exponential limits the range of α to α > 0. If α is not an integer
then the small-argument asymptotic form of 	(β,x) implies at
v 	 1 that

pv(v) ∼ 	(1 − α)

	(1 − α + 1/α)
− vα(1−α)

(1 − α)	(1 − α + 1/α)
. (22)

Integrability at zero demands α(1 − α) > −1, which bounds
the range of possible α from above by [

√
5 + 1]/2. We

conclude that in our model the range of physically relevant
α is 0 < α < [

√
5 + 1]/2.

The case of exponential tail α = 1 [which is not described
by Eq. (22) because α is an integer] is interesting because it
seems to agree with the experiment [20]. In this case the incom-
plete 	 function becomes the exponential integral Ei(x), that is,
pv(v) = −Ei(−v), where −Ei(−x) = ∫ ∞

x
exp[−t]dt/t . We

have

pv ∼ v−1 exp[−v], v � 1

pv ∼ − ln v, v 	 1.
(23)

Finally, the temporal change in the particle position x in nth
step of the walk is given by

xn+1 = xn + ln, tn+1 = tn + τn, τn = ln/vn. (24)

We describe the construction of the particle’s trajectory. The
initial position at time t = 0 is x0 = 0. The motion proceeds
by drawing the initial velocity v0 from the distribution pv(v)
and the step length l0 from the exponential distribution. The
residence time τ0 in this initial pore is then τ0 = l0/v0. The
length is randomly renewed at t = τ0, but the velocity can
remain the same with finite probability λ. The empirically
observed λ is 9/10, so the probability of keeping the velocity
constant is quite high. If the velocity is renewed, which
happens with probability 1 − λ, then its new value is drawn
again from pv(v). The trajectory is built by iterations of the
process.

Persistence of velocity with finite probability implies that
the residence times τi and τi+1 in consecutive channels i

and i + 1 are not independent. We have for the joint PDF
P (τi,τi+1) of τi and τi+1 that

P =
〈
δ

(
li

vi

− τi

)
δ

(
li+1

vi+1
− τi+1

)〉
= (1 − λ)ψ(τi)ψ(τi+1)

+ λ

∫
pvdv

〈
δ

(
li

v
− τi

)
δ

(
li+1

v
− τi+1

)〉
li ,li+1

, (25)
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where independent averaging in the last term describes the
contribution of events where velocity is conserved over li and
li+1. We introduced the PDF of the residence time in one pore
(the definition agrees with the previous section)

ψ(τ ) = 〈δ(l/v − τ )〉l,v = 〈vδ(l − vτ )〉l,v, (26)

where the averaging is over l and v. The first term in Eq. (25)
is a product of functions of τi and τi+1, but the last one given
by [we average over l using p(l)]

λ

∫
v2pvdv exp[−(τi + τi+1)v] (27)

is not. Thus the PDF of τi and τi+1 does not factorize and τi and
τi+1 are dependent. This produces difficulties in the theoretical
study of the model. Fortunately, by redefining the walk’s steps
we can reduce the model to that with independent durations of
consecutive steps.

IV. REDUCTION TO A CTRW WITH INDEPENDENT
STEPS

We redefine the walk’s step as motion between consec-
utive acceleration events. That motion typically includes a
finite number of channels passed at constant magnitude of
the velocity. Thus velocities at different steps of the walk
are independent. The PDF of the value of the velocity during
the step remains pv(v), but the PDF of the pore length
undergoes renormalization. The PDF pt (l) for which the
particle passes the total length l of the pores without changing
its velocity and then changes velocity is formed by the sum
of contributions of events with a different number of passed
pores. We have

pt (l) = (1 − λ)p(l) + λ(1 − λ)
∫ l

0
dl1p(l − l1)p(l1)

+ λ2(1 − λ)
∫ l

0
dl1

∫ l−l1

0
dl2

×p(l − l1 − l2)p(l2)p(l1) + · · · . (28)

We find, by taking the Laplace transform with s, the Laplace
transform variable

pt (s) = 1 − λ

λ

∞∑
k=1

[λp(s)]k = (1 − λ)p(s)

1 − λp(s)
. (29)

In the case of p(l) = exp[−l] we find p(s) = [1 + s]−1, so

pt (s) = 1 − λ

1 + s − λ
,

pt (ltot) = (1 − λ) exp[−(1 − λ)ltot]. (30)

Thus persistence is in essence a matter of the increase of
the effective pore length by [1 − λ]−1 times. In the case of
λ = 9/10 fitting the data of [20] this is an increase of ten
times, so this is a significant effect.

Thus the model reduces to the CTRW with independent
consecutive steps. We did not use this as the original formu-
lation of the model in order to maintain direct relation to the
experiment underlying the model.

Below we rescale the units of length by again setting
d/[4(1 − λ)] equal to one. Thus the PDF of step length below

is exp[−l] and the distribution of velocity is pv(v) with v0 = 1
by the proper choice of units of time. To clarify the role of the
parameters we restore dimensions in the final formulas.

V. POWER-LAW TAIL OF THE RESIDENCE TIME PDF:
POSSIBLE UNIVERSALITY

We consider the statistics of the particle’s residence time
τ = l/v in one pore. The average residence time is

〈τ 〉 =
∫ ∞

0
τψ(τ )dτ =

〈
l

v

〉
= 〈l〉

〈
1

v

〉
. (31)

This diverges if 〈v−1〉 does. Since divergence of 〈v−1〉 would
be typically the case [it holds for distributions with finite
pv(v = 0) and for the distribution (20) independently of
α] then this indicates the possible deficiency of the model
discussed in the conclusion. The divergence of 〈τ 〉 indicates
that ψ(τ ) has a power-law tail. This is demonstrated to be
true below based on observing that ψ(τ ) is the derivative of
the Laplace transform of the velocity’s PDF. The tail has a
universal decay exponent 2 at 0 < α < 1. In the α = 1 case
the τ−2 tail has logarithmic corrections. For α between 1 and
[
√

5 + 1]/2 the tail’s exponent is monotonically decreasing
from 2 at α = 1 to 1 at α = [

√
5 + 1]/2. Thus we deal

with a CTRW where ψ(τ ) has a power-law tail with infinite
〈τ 〉. In a Lévy walk this would imply that dispersion of the
distance passed by the particles grows quadratically in time
independently of α. We will see in following sections that for
our l-v CTRW this is not true. Finally, we demonstrate that
the Laplace transform of the velocity’s PDF is the probability
of not leaving the initial channel during a time equal to the
argument of the transform.

Performing averaging in Eq. (26) over l we find

ψ(τ ) = −dp̃v(τ )

dτ
, p̃v(τ ) =

∫ ∞

0
exp[−vτ ]pv(v)dv, (32)

where p̃v(τ ) is the Laplace transform of pv(v). We have for
the distribution (20), using an integral representation of the
incomplete Gamma function,

p̃v(τ ) =
∫ ∞

0

exp[−vτ ]dv

	(1 − α + 1/α)

∫ ∞

vα

exp[−t]t−αdt. (33)

In the case of 0 < α < 1 we can interchange the order of
integrations (t > vα is v < t1/α)

p̃v(τ ) =
∫ ∞

0
exp[−t]t−αdt

∫ t1/α

0

exp[−vτ ]dv

	(1 − α + 1/α)

= 	(1 − α)

τ	(1 − α + 1/α)
−

∫ ∞

0

exp[−t − τ t1/α]t−αdt

τ	(1 − α + 1/α)
.

(34)

The large-τ asymptotic form of the last integral is found by
using the integration variable x = τ t1/α so that t = xατ−α ,

p̃v(τ ) = 	(1 − α)

τ	(1 − α + 1/α)

−
∫ ∞

0

α exp[−xατ−α − x]x−α2+α−1τα2−α−1dx

	(1 − α + 1/α)
.

(35)
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We can set xατ−α in the exponent to zero at large τ so that we
have, at τ � 1,

p̃v(τ ) ∼ 	(1 − α)

τ	(1 − α + 1/α)
− α	(α − α2)τα2−α−1

	(1 − α + 1/α)
. (36)

We find that in the leading order the first term dominates and
the residence time’s PDF has the tail

ψ(τ ) ∼ 	(1 − α)

τ 2	(1 − α + 1/α)
, τ � 1, 0 < α < 1, (37)

confirming that the average residence time is infinite [cf.
Eq. (31)]. We stress that in this case there is a universal τ−2

tail where the exponent is independent of α but the prefactor
depends on α. In the case of α = 1 we find, using the table of
Laplace transforms [39],

p̃v(τ ) = ln(τ + 1)

τ
, ψ(τ ) = (τ + 1) ln(τ + 1) − τ

τ 2(τ + 1)
, (38)

so ψ(τ ) can be written using elementary functions in this
case. We find, by considering large τ , that ψ(τ ) ∼ τ−2 ln τ

with the corresponding divergence of 〈τ 〉. In the case of
1 < α < [

√
5 + 1]/2 we rewrite Eq. (33) as

p̃v(τ ) =
∫ ∞

0

exp[−vτ ]dv

(α − 1)	(1 − α + 1/α)

×
(

exp[−vα]vα(1−α) −
∫ ∞

vα

exp[−t]t−(α−1)dt

)
.

(39)

We have∫ ∞

0
vα(1−α) exp[−vτ − vα]dv = τ−α(1−α)−1

∫ ∞

0
xα(1−α) exp[−x − xατ−α]dx ∼ 	(1 + α(1 − α))

τ 1−α(α−1)
, (40)

where the asymptotic equality holds at large τ . Further, we
observe that for the last term in Eq. (39) the exponent of t is
between 0 and 1, so we can use for integration the technique
used for 0 < α < 1. We find that∫ ∞

0
exp[−vτ ]dv

∫ ∞

vα

exp[−t]t1−αdt ∼ 	(2 − α)

τ
, (41)

which decays faster than the last term in Eq. (40). We
conclude that the tail of the PDF of the residence time at
1 < α < [

√
5 + 1]/2 is described by

p̃v(τ ) ∼ 	(1 − α(α − 1))

(α − 1)	(1 − α + 1/α)τ 1−α(α−1)
, (42)

ψ(τ ) ∼ 	(2 − α(α − 1))

(α − 1)	(1 − α + 1/α)τ 2−α(α−1)
. (43)

Thus ψ(τ ) has a power-law tail. The exponent is continuous at
α = 1, where as α approaches 1 from above the exponent tends
to the value 2 holding at α < 1. When α is increased from
1 to the upper limit [

√
5 + 1]/2 of the range of physically

admissible α the exponent decreases to 1, so ψ(τ ) would
become non-normalizable at α = [

√
5 + 1]/2. Thus, when

1 < α < [
√

5 + 1]/2 we have a normalizable power-law tail
with divergent average.

We conclude that at α > 1 the exponent of the power law is
a nonuniversal, α-dependent number. The value of α = 1 sets
the boundary between the α-independent τ−2 tail and a slower
decaying tail with an α-dependent exponent.

We provide the formulas for the tail with restored dimen-
sions that stress dependences on the experimental parameters.
The PDF of the time between consecutive acceleration events
obeys

ψ(τ ) ∼ d

4(1 − λ)v0τ 2

	(1 − α)

	(1 − α + 1/α)
, 0 < α < 1 (44)

ψ(τ ) ∼ d

4(1 − λ)v0τ 2
ln

(
4(1 − λ)v0τ

d

)
, α = 1. (45)

In the case of 1 < α < [
√

5 + 1]/2 we have

ψ(τ ) ∼ 	(2 − α(α − 1))
(α − 1)	(1 − α + 1/α)τ

(
d

4(1 − λ)v0τ

)1+α−α2

.

The tail describes τ � τtyp, where τtyp = d/[4(1 − λ)v0] is the
typical time between the acceleration events. Below we return
to dimensionless variables unless stated otherwise.

The difference between the cases of finite and infinite
average residence times can be seen by considering the
asymptotic growth of the distance l(t) passed by the particle.
We have

lim
t→∞

l(t)

t
= lim

t→∞
N (t)

t

1

N (t)

N(t)∑
k=1

lk, (46)

where N (t) is the number of the walk’s steps (visited pores)
performed by time t . The law of large numbers implies that∑N

k=1 lk/N becomes 〈l〉 in the limit of large N . Further, if the
average residence time 〈τ 〉 is finite then t/N (t) becomes 〈τ 〉
at large times [40], so

lim
t→∞

l(t)

t
= 〈l〉

〈τ 〉 =
〈

1

v

〉−1

, (47)

where we used Eq. (31). Thus, when 〈τ 〉 is finite (which is
the same as when 〈v−1〉 is finite) we have linear asymptotic
growth of the passed distance with time. In contrast, when
〈τ 〉 = ∞ we find from Eq. (46) that limt→∞ l(t)/t = 0, that
is, the growth is slower than linear [by a logarithmic factor
(see below)]. This somewhat unusual behavior holds because
the particle has a small velocity for anomalously long times.

The Laplace transform p̃v(τ ) has a simple physical mean-
ing. We consider the probability density function PK (t) of the
number K of new pores visited by the particle in time t (so if the
particle stays in the initial pore then K = 0). We have K = 0
provided τ0 > t , so P0(t) = ∫ ∞

t
ψ(τ ′)dτ ′ = p̃v(t), where we

used Eq. (32). Thus p̃v(t) is the probability of not leaving
the initial pore during time t . This property can be useful in
the experimental study of the PDF of velocity (provided the
underlying exponential distribution of pore lengths holds).
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VI. PDF OF THE NUMBER OF CHANNELS PASSED
IN A GIVEN TIME

In this section we find the PDF PK (t) of the number of new
channels visited by the particle. Since the length of the channel
does not have large fluctuations obeying exponential statistics,
then PK (t) is quite similar to the propagator P (l,t) giving the
PDF of the distance l passed in time t . However, in contrast
with the propagator found in the following sections, PK (t) is
simpler to find, which can be a useful observation for future
studies.

For K > 0 the particle visits K new pores in time t provided∑K−1
k=0 τk < t but

∑K
k=0 τk > t so that

PK (t) =
〈∫ t

0
dt ′δ

(
K−1∑
k=0

τk − t ′
) ∫ ∞

t

dt ′′δ

(
K∑

k=0

τk − t ′′
)〉

=
∫ t

0
dt ′

∫ ∞

t

dt ′′
〈
δ

(
K−1∑
k=0

τk − t ′
)

δ(τK + t ′ − t ′′)

〉
.

(48)

Since τk are independent we can average over τK , which gives

PK (t) =
∫ t

0
dt ′

∫ ∞

t

dt ′′ψ(t ′′ − t ′)

〈
δ

(
K−1∑
k=0

τk − t ′
)〉

=
∫ t

0
dt ′p̃v(t − t ′)

〈
δ

(
K−1∑
k=0

τk − t ′
)〉

, (49)

where we used Eq. (32). The Laplace transform over t gives

PK (s) = 〈exp[−sτ ]〉K
∫ ∞

0

pv(v)dv

s + v
, (50)

where s is the Laplace transform variable, we used the
independence of τk , and∫ ∞

0
exp[−sτ ]p̃v(τ )dτ =

∫ ∞

0
pv(v)dv

×
∫ ∞

0
exp[−(s + v)τ ]dτ

=
∫ ∞

0

pv(v)dv

s + v
=

〈
1

s + v

〉
. (51)

Finally, we observe, using p̃(τ = 0) = 1,

〈exp[−sτ ]〉 = −
∫ ∞

0
exp[−sτ ]p̃′

v(τ )dτ = 1 −
〈

s

s + v

〉

=
〈

v

s + v

〉
. (52)

We find thus that

PK (s) =
〈

v

s + v

〉K〈
1

s + v

〉
. (53)

Though this formula is derived for K > 0 it is readily checked
by considering the Laplace transform of the previously derived
P0(t) that it holds for K = 0 as well. The normalization
condition

∑∞
K=0 PK (s) = s−1 is readily checked. We conclude

that the distribution of the number of new pores visited by the
particle in time t is

PK (t) =
∫ ε+i∞

ε−i∞

exp[st]ds

2πi

〈
v

s + v

〉K〈
1

s + v

〉
. (54)

This formula relies on the exponential distribution of pore
lengths and can be used for arbitrary distribution of velocity.
For the distribution (20) we find

〈
1

s + v

〉
=

∫ ∞

0

(s + v)−1dv

	(1 − α + 1/α)

∫ ∞

vα

exp[−t]t−αdt =
∫ ∞

0
dt exp[−t]t−α

∫ t1/α

0

(s + v)−1dv

	(1 − α + 1/α)

=
∫ ∞

0

exp[−t]t−α[α−1 ln t − ln s + ln(1 + st−1/α)]dt

	(1 − α + 1/α)
, (55)

which for α = 1 reduces to the definition of 〈(s + v)−1〉 as the
Laplace transform of p̃v(τ ) given by Eq. (38),〈

1

s + v

〉
=

∫ ∞

0

exp[−st] ln(1 + t)dt

t
. (56)

It seems impossible writing PK (t) via elementary functions,
but we can use it to study moments. We find, for Laplace
transform of the average number of new pores visited in
time t ,

〈K〉(s) =
∞∑

K=0

KPK (s) = s−2

〈
1

s + v

〉−1

− s−1, (57)

where we used Eq.(53) and
∑

k kxk = x(1 − x)−2. Similar
formulas can be written for higher-order moments.

We consider the long-time behavior of 〈K(t)〉 that is
determined by the small-s behavior of 〈K〉(s). In models with

finite 〈v−1〉 we have, at small s,

〈K〉(s) = s−2

〈
1

v

〉−1

= 1

s2〈τ 〉 . (58)

We find the long-time behavior

〈K(t)〉 = t

〈τ 〉 , (59)

which reproduces the law of large numbers for N (t)/t

described previously. In the model (20) with infinite 〈τ 〉 the
behavior is less intuitive. We start from the case of α < 1,
where we find from Eq. (55) that, for α < 1,〈

1

s + v

〉
= 	(1 − α) ln(1/s)

	(1 − α + 1/α)
+ ψ	(1 − α)	(1 − α)

α	(1 − α + 1/α)
+ O(s),

(60)
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where ψ	(x) = 	′(x)/	(x) is the digamma function. This can
be confirmed directly from Eq. (22) using the logarithmic
divergence of 〈v−1〉 at small velocities. Thus〈

1

s + v

〉−1

∼ 	(1 − α + 1/α)

	(1 − α) ln(1/s)

[
1 − ψ(1 − α)

α ln(1/s)

]
, α < 1,

(61)

which can be confirmed directly from Eq. (22) using the
logarithmic divergence of 〈v−1〉 at small velocities. We
conclude from Eq. (57) that 〈K〉(s) at small s is

〈K〉(s) = −	(1 − α + 1/α)

	(1 − α)s2 ln s
− 	(1 − α + 1/α)ψ	(1 − α)

α	(1 − α)s2 ln2 s

+O

(
1

s2 ln3 s

)
. (62)

Thus the long-time behavior of 〈K(t)〉 obeys

〈K(t)〉 ∼ −	(1 − α + 1/α)

	(1 − α)

∫ ε+i∞

ε−i∞

ds

2πi

exp[st]

s2 ln s

×
[

1 + ψ	(1 − α)

α ln s

]
+ O

(
t

ln3 t

)
, (63)

where the inverse Laplace transform of 1/s2 ln3 s is propor-
tional to t/ ln3 t (see below). We stress that the integral on the
right-hand side is not the inverse Laplace transform of 1/s2 ln s

because 1/s2 ln s has a simple pole at s = 1 (the residue there
is not counted) (see [41]). We have a rescaling integration
variable by t (we use the same letter for the integration
variable with no ambiguity and rescale the infinitesimal ε

correspondingly) for the first integral,

−
∫ ε+i∞

ε−i∞

ds

2πi

exp[st]

s2 ln s
= t

ln t

∫ ε+i∞

ε−i∞

ds

2πi

exp[s]

s2[1 − ln s/ ln t]

= t

ln t
+ t(1 − C)

ln2 t
+ O

(
t

ln3 t

)
,

(64)

where we performed expansion of the integrand in ln s/ ln t

and used the inverse Laplace transform of ln s/s2 from [39]
with C Euler’s constant. We find, from Eq. (63),

〈K(t)〉 ∼ 	(1−α+1/α)

	(1−α)

[
t

ln t
+ t

ln2 t

(
1−C− ψ	(1−α)

α

)]

+O

(
t

ln3 t

)
, α < 1. (65)

In the leading order we have 〈K(t)〉 ∝ t/ ln t . Thus the average
number of pores visited by the particle in time t grows
slower than linearly with time. This is the manifestation of
the logarithmic divergence of 〈τ 〉 at large τ [cf. Eq. (59)].

In the α = 1 case the behavior of 〈K(t)〉 resembles the
α < 1 case. The asymptotic form of 〈[s + v]−1〉 at small s is
found by observing that Eq. (56) implies

d

ds

〈
1

s + v

〉
= −

∫ ∞

0
exp[−st] ln(1 + t)dt

= exp[s]

s
Ei(−s) ∼ ln s

s
+ C

s
+ · · · , (66)

where we used the integral from [42] and the asymptotic
equality is written at small s. We conclude that (the integration
constant is negligible)〈

1

s + v

〉
∼ ln2 s

2
+ C ln s. (67)

Comparing this with Eq. (60) we see that divergence of
	(1 − α) at α = 1 causes more singular behavior of the
average at small s. We have〈

1

s + v

〉−1

∼ 2

ln2 s
− 4C

ln3 s
, α = 1. (68)

We find, for the long-time behavior of 〈K(t)〉,

〈K(t)〉 ∼ 2
∫ ε+i∞

ε−i∞

ds

2πi

exp[st]

s2 ln2 s

[
1 − 2C

ln s

]
, α = 1, (69)

with a correction of order t/ ln4 t . We use that∫ ε+i∞

ε−i∞

ds

2πi

exp[st]

s2 ln2 s
= t

ln2 t

∫ ε+i∞

ε−i∞

ds

2πi

exp[s]

s2[1 − ln s/ ln t]2

= t

ln2 t
+ 2(1 − C)t

ln3 t
+ O

(
t

ln4 t

)
.

(70)

We find from Eq. (69) that

〈K(t)〉 ∼ 2t

ln2 t
+ 4t

ln3 t
+ O

(
t

ln4 t

)
, α = 1. (71)

Thus the leading-order growth t/ ln2 t is logarithmically slower
than in the α < 1 case [cf. Eq. (65)].

In the calculations performed we kept the next-order term
beyond the leading-order one. This is because this is needed for
the calculation of dispersion below and because the series is in
1/ ln t , where ln t is never too large so higher-order corrections
can be necessary for comparison with observations. In the
α > 1 case the situation is different and there is no need
to go beyond the leading-order calculation. Using t−α =
[t1−α]′/(1 − α) we write Eq. (55) in the form〈

1

s + v

〉
=

∫ ∞

0

exp[−t]t1−α ln(1 + t1/α/s)dt

(1 − α)	(1 − α + 1/α)

−
∫ ∞

0

exp[−t]t1/α−αdt

α(s + t1/α)(1 − α)	(1 − α + 1/α)
. (72)

The first integral has logarithmic divergence at small s but the
second diverges as a power law. When s is small that integral
is determined by small t . Introducing an infinitesimal fixed
parameter ε (which disappears from the final answer) we can
write this integral asymptotically as∫ ε

0

t1/α−αdt

α(s + t1/α)
= sα−α2

∫ ε1/α/s

0

xα−α2
dx

1 + x
∼ sα−α2

×
∫ ∞

0

xα−α2
dx

1 + x
= sα−α2

	(1 + α − α2)	(α2 − α). (73)

We conclude that〈
1

s + v

〉
∼ sα−α2

α|	(α − α2)|	(α2 − α)

	(1 − α + 1/α)
, α > 1. (74)
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Combining this with Eqs. (57) and (72) we find

〈K(s)〉 ∼ 	(1 − α + 1/α)

sα−α2+2α|	(α − α2)|	(α2 − α)
, (75)

〈K(t)〉 ∼ t1+α−α2
	(1 − α + 1/α)

	(α − α2 + 2)α|	(α − α2)|	(α2 − α)
, α > 1.

(76)

We find the power-law growth with an α-dependent exponent.
This is in contrast with α < 1, where the law of growth
is α independent. The growth law’s exponent decreases
monotonically when α increases from 1 to [

√
5 + 1]/2. We

have linear growth in time of the average number of visited
pores when α → 1. In contrast, the exponent tends to zero
when α → [

√
5 + 1]/2, so in this limit the average number of

visited pores almost does not grow with time. This is because
of the high probability of very low velocities: The PDF has
integrable singularity at v = 0, becoming nonintegrable in the
α → [

√
5 + 1]/2 limit.

We consider the dispersion of the number of visited pores
determined by the second moment

〈K2〉(s) =
∞∑

K=0

K2PK (s)

= 2

s3

〈
1

s + v

〉−2

− 3

s2

〈
1

s + v

〉−1

+ 1

s
, (77)

where we used
∞∑

k=0

k2xk =
∞∑

k=0

k(k − 1)xk + x

(1 − x)2
= x(x + 1)

(1 − x)3
. (78)

It can be seen readily from Eqs. (61), (68), and (74) that for all
α the small-s divergence of the first term in Eq. (77) is stronger
than that of the rest of terms, so

〈K2〉(s) ∼ 2

s3

〈
1

s + v

〉−2

. (79)

We find from Eqs. (61), (68), and (74) that the leading-order
behavior at small s is

〈K2〉(s) ∼ 2	2(1 − α + 1/α)

	2(1 − α)s3 ln2 s
, α < 1 (80)

〈K2〉(s) ∼ 8

s3 ln4 s
, α = 1. (81)

In the case of α > 1 we find

〈K2〉(s) ∼ 2	2(1 − α + 1/α)

s2α−2α2+3α2	2(α − α2)	2(α2 − α)
. (82)

To find the corresponding time dependences we observe
that rescaling the integration variable in the inverse Laplace
transforms puts in the integrands ln t instead of ln s in the
leading order at large t . We find

〈K2(t)〉 ∼ t2	2(1 − α + 1/α)

	2(1 − α) ln2 t
∼ 〈K(t)〉2, α < 1 (83)

〈K2(t)〉 ∼ 4t2

ln4 t
∼ 〈K(t)〉2, α = 1 (84)

〈K2(t)〉 ∼ 2t2α−2α2+2	2(1 − α + 1/α)

α2	2(α − α2)	2(α2 − α)	(2α − 2α2 + 3)

∼ 2	2(α − α2 + 2)〈K(t)〉2

	(2α − 2α2 + 3)
, α > 1. (85)

We observe that in the case of α > 1 both the second moment
and dispersion of K(t) grow as a power law in time. That
law changes from t2 growth at α close to one to linear
growth in time at α = [

√
3 + 1]/2 (superdiffusion). When

α increases from [
√

3 + 1]/2 to [
√

5 + 1]/2 the power-law
exponent decreases from one to zero (subdiffusion).

We find from Eqs. (83) and (84) that finding the disper-
sion σ 2(t) = 〈K2(t)〉 − 〈K(t)〉2 at α � 1 demands next-order
corrections. Thus

lim
t→∞

〈K2(t)〉 − 〈K(t)〉2

〈K(t)〉2
= 0, α � 1. (86)

In contrast, for α > 1, we find

lim
t→∞

〈K2(t)〉 − 〈K(t)〉2

〈K(t)〉2
= 2	2(α − α2 + 2)

	(2α − 2α2 + 3)
, α > 1.

(87)

We consider finding the leading-order behavior of σ 2(t) at
large t . For α = 1, using Eq. (68),

〈K2〉(s) ∼ 2

s3

[
2

ln2 s
− 4C

ln3 s

]2

∼ 8

s3 ln4 s
− 32C

s3 ln5 s
. (88)

We use that∫ ε+i∞

ε−i∞

ds

πi

exp[st]

s3 ln4 s
= 2t2

ln4 t

∫ ε+i∞

ε−i∞

ds

2πi

exp[s]

s3[1 − ln s/ ln t]4

(89)

= t2

ln4 t
+ 2(3 − 2C)t2

ln5 t
+ O

(
t2

ln6 t

)
,

(90)

where we used the inverse Laplace transform of ln s/s3

from [39]. Thus

〈K2(t)〉 = 4t2

ln4 t
+ 24t2

ln5 t
+ O

(
t2

ln6 t

)
. (91)

We conclude, using Eq. (71), that

〈K2(t)〉 − 〈K(t)〉2 = 8t2

ln5 t
+ O

(
t2

ln6 t

)
, α = 1. (92)

Thus the normalized dispersion obeys

〈K2(t)〉 − 〈K(t)〉2

〈K(t)〉2
∼ 2

ln t
, α = 1, (93)

providing details on the limit (86) at α = 1. In the case α < 1,
using Eq. (61),

〈K2〉(s) ∼ 2	2(1 − α + 1/α)

	2(1 − α)s3 ln2 s

+ 4ψ	(1 − α)	2(1 − α + 1/α)

α	2(1 − α)s3 ln3 s
.
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We use∫ ε+i∞

ε−i∞

ds

πi

exp[st]

s3 ln2 s
= t2

ln2 t

∫ ε+i∞

ε−i∞

ds

πi

exp[s]

s3[1 − ln s/ ln t]2

= t2

ln2 t
+ (3 − 2C)t2

ln3 t
+ O

(
t2

ln4 t

)
.

(94)

We find that

〈K2(t)〉 = 	2(1 − α + 1/α)

	2(1 − α)

×
[

t2

ln2 t
+ t2

ln3 t

(
3 − 2C + 2ψ	(1 − α)

α

)]

+O

(
t2

ln4 t

)
. (95)

We find, using Eq. (65), that

σ 2 = 	2(1 − α + 1/α)t2

	2(1 − α) ln3 t

(
1 + 4ψ	(1 − α)

α

)
.

(96)

Thus the normalized dispersion obeys

〈K2(t)〉 − 〈K(t)〉2

〈K(t)〉2
∼ 1

ln t

(
1 + 4ψ	(1 − α)

α

)
, α < 1,

(97)

providing the description of the limit (86) in the α < 1 case.
The law (86) tells us that the variance of K(t)/〈K(t)〉 is

zero in the t → ∞ limit. Thus, using Chebichev’s inequality,
we find that the limit in probability holds:

lim
t→∞

K(t)

〈K(t)〉 = 1, α � 1. (98)

In other words, the probability of finite deviations of
K(t)/〈K(t)〉 from 1 decays to zero at large times.

We conclude that there is a qualitative difference between
the α � 1 and α > 1 cases. In the α > 1 case both the first and
the second moment of the number of visited pores grow as a
power law without logarithmic corrections. Dispersion of the
passed distance grows proportionally to the square of the mean
passed distance. The growth law describes superdiffusion at
1 < α < [

√
3 + 1]/2 and subdiffusion at [

√
3 + 1]/2 < α <

[
√

5 + 1]/2. The variable K(t)/〈K(t)〉 has finite fluctuations
of order one. [It is plausible that the PDF of K(t)/〈K(t)〉 has a
finite t → ∞ limit in this case. The study of this question can
be done on the basis of Eq. (54) but is beyond the scope of this
work.] In sharp contrast, at α < 1 dispersion grows slower
than the square of the mean passed distance, implying that
the probability of fluctuations of K(t)/〈K(t)〉 decays in the
t → ∞ limit, so Eq. (98) holds. The dispersion grows ballis-
tically (quadratically in time) with logarithmic correction. Up
to that correction this growth is quite similar to a Lévy walk
with infinite 〈τ 〉. This similarity does not hold for α > 1.

VII. ANOMALOUS DIFFUSION

In this section we find the first and second moments of l(t)
in the limit of large times. Since in our CTRW the PDF of l(t)

vanishes for l < 0, then it is useful to use the double Laplace
transform in t and l, which is real function of its arguments,

P (s,p) =
∫ ∞

0
dt

∫ ∞

0
dl exp[−st − pl]P (t,l), (99)

where P (t,l) is the PDF of l(t). We use that P (s,p) =
p(s,−ip), where p(s,k) is provided by the Montroll-Weiss
equation (13). We observe that in our model the joint PDF of
τ and l is given by ψ ′(τ,v) = exp[−vτ ]vpv(v). This implies
that ψ ′(s,v) = vpv(v)/[s + v], which used in Eq. (13) gives

P (s,p) =
〈

1

s + (1 + p)v

〉〈
s + pv

s + (1 + p)v

〉−1

. (100)

Here and below the averages are over statistics of velocity v.
The moments are obtained by differentiating P (s,p). We find
for the Laplace transform of the average distance

〈l〉(s) = −∂P (s,p)

∂p
(p = 0) = ω(s)

s2
, (101)

where we introduced the frequency-dependent velocity

ω(s) =
〈

1

s + v

〉−1[
1 −

〈
s

s + v

〉]
. (102)

If the particle velocity would not fluctuate v = v0 then we
would find 〈l〉(s) = v0s

−2 recovering the Laplace transform of
〈l〉(t) = v0t (here we restore dimensions for clarity). However,
if there are finite fluctuations of velocity then the law 〈l〉(t) =
〈v〉t that could be thought valid does not hold. If the velocity
has a finite moment of order −1 then the small-s behavior of
ω(s) and the corresponding long-time behavior of 〈l(t)〉 are
described, respectively, with

ω(s) ∼
〈

1

v

〉−1

, 〈l(t)〉 ∼ t

〈
1

v

〉−1

, (103)

in agreement with Eq. (47). In the case of divergent 〈v−1〉 the
growth of 〈l(t)〉 is not linear in time. We consider the model in
the long-time limit. It can be seen readily from the asymptotic
forms of 〈[s + v]−1〉 given by Eqs. (61), (68), and (74) that
independently of α we have

1 −
〈

s

s + v

〉
= 1 + o(s), (104)

implying by Eq. (102) that ω(s) ∼ 〈[s + v]−1〉−1 at small s.
We find, using this in Eq. (101) and comparing with Eq. (57),
that in the long-time limit

〈l(t)〉 ∼ 〈K(t)〉. (105)

Thus the average distance passed becomes asymptotically
equal to the average number of visited pores. This agrees with
the intuitive formula 〈l(t)〉 = 〈K(t)〉〈l〉 (the average passed
distance is the average number of passed pores times the
average length of the pore) using that the average length of the
pore 〈l〉 is 1. This relation holds because strong fluctuations of
l have exponentially small probability, so setting l equal to its
average is valid.

022132-11



ITZHAK FOUXON AND MARKUS HOLZNER PHYSICAL REVIEW E 94, 022132 (2016)

The second moment of the distance passed by the particle
is found,

〈l2〉(s) = ∂2P (s,p)

∂p2
(p = 0)

= 2s−2

〈
1

s + v

〉−1〈
v2

[s + v]2

〉[
1 + ω(s)

s

]
. (106)

We observe that〈
v2

[s + v]2

〉
= 1 − s2

〈
1

(s + v)2

〉
− 2s

〈
v

(s + v)2

〉

= 1 − d

ds

〈
s2

s + v

〉
. (107)

Using the small-s behavior of 〈[s + v]−1〉 given by
Eqs. (60), (68), and (74), we find that the last term vanishes at
s = 0 so that, independently of α,〈

v2

[s + v]2

〉
∼ 1. (108)

Thus, using the small-s behavior of ω(s), we can write

〈l2〉(s) ∼ 2

s3

〈
1

s + v

〉−2

, (109)

which holds independently of α. Comparing this with Eq. (79)
we find

〈l2(t)〉 ∼ 〈K2(t)〉. (110)

This agrees with the 〈l2〉 = 〈K2〉〈l2〉, where 〈l2〉 = 1 [cf. the
discussion of Eq. (105)]. Thus, at least as far as the large-time
growth of the first two moments of l(t) is concerned, we can
use K(t) instead of l(t) and transfer the results from Sec. VI.
This is done in the last section.

VIII. DISCUSSION

In this section we summarize the main results and discuss
their implications. We also provide the average and dispersion
of l(t), which are direct consequences of the considerations of
the previous section.

We solved the CTRW model of transport in a porous
medium. This model was introduced on the basis of exper-
imental observations and we believe that it can realistically
capture many properties of the motion. We demonstrated
that though the original model introduces a dependence of
velocity at consecutive steps of the walk (with finite probability
velocity conserved), we can reduce the model to a CTRW
with independent steps by a redefinition of the step. Using
an exponential distribution of pore lengths observed in the
experiment, this redefinition of the step has the effect of an
increase of the effective length of the step by a factor that
characterizes the probability of velocity conservation at the
junction. This increase factor has the empirically observed
value of order 10, so this point of our modeling is significant.

The decorrelation of velocity beyond a critical length that
is much larger than the typical pore length lc seems to be true
for a real porous medium. Indeed, consider the correlation
function 〈v(0)v(l)〉 that describes correlation of velocities of
the tracer particle at points separated by the distance l passed

along the trajectory. Here v is a certain component of the tracer
velocity. This correlation function does not decay fast when
l ∼ lc because the velocity at consequent pores is strongly
correlated. However, for large l the correlation function decays.
It is plausible that this decay is fast so the correlations can be
neglected beyond a finite correlation length. This length is then
at least an order of magnitude larger than lc, which is what we
found in our model.

The reduced CTRW obtained in our model is separable: The
length and velocity of the step are independent. Our solution
assumes an exponential distribution of step lengths and an
arbitrary distribution of the step velocities. We demonstrated in
our derivation of the Montroll-Weiss equation that derivations
can be performed for other than exponential distributions of
the pore length. Study of the dependence of the anomalous
diffusion’s properties on the form of the PDF of the step’s
length is left for future work.

We considered a family of velocity statistics labeled by
the parameter α. That family derives from the assumption
of a Poiseuille profile in the channel [20]. The parameter
characterizes the probability of small velocities that determine
near trapping of particles in the pore (the parameter gives
also the stretched exponential tail of the velocity PDF). The
resulting probability density function of the step duration has
a power-law tail with an exponent smaller than or equal to 2,
so 〈τ 〉 = ∞. The main reason for this power-law tail is the
independence of the length and velocity of the step, which
makes τ proportional to the inverse velocity up to factor of
length having but small fluctuations. It is this proportionality
that underlies the anomalous scaling that we derived.

Inverse proportionality of τ and velocity implies that
transport on long time scales is determined by the probabilities
of small velocities. Qualitatively, the flow at some junctions has
no uniquely defined direction of motion, producing stagnation-
type regions where the particle spends anomalously long
times. These regions trap particles for long times, forming an
anomaly in transport at long times (cf. with island formation
of anomalous transport in Hamiltonian systems [43]).

Our solution demonstrates a clear difference between the
cases where the PDF of the velocity pv(v) has a finite value
at zero velocity α < 1 and integrable power-law singularity
1 < α < [1 + √

5]/2 (α = 1 is the boundary case with loga-
rithmic divergence). The average passed distance obeys

〈l(t)〉 ∼ t	(1 − α + 1/α)

	(1 − α) ln t
, α < 1

〈l(t)〉 ∼ 2t

ln2 t
, α = 1

〈l(t)〉 ∼ t1+α−α2
	(1 − α + 1/α)

	(α − α2 + 2)α|	(α − α2)|	(α2 − α)
,

(111)

where the last formula holds at 1 < α < [1 + √
5]/2.

The results (111) fit those obtained previously for the l-τ
CTRW. In the case where ψ(τ ) ∼ τ−1−β , with 0 < β < 1,
it was found in [2,44] that 〈l(t)〉 ∝ tβ . This was found for
the mean position 〈l〉 of the propagating packet of carriers
of current in amorphous semiconductors where the mean
flow is an electric current [2]. However, in our model at
1 < α < [1 + √

5]/2 the tail of ψ(τ ) is proportional to τ−1−β ,
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with β = 1 + α − α2, so we have the same link between the
decay exponent of ψ(τ ) and the growth exponent of 〈l(t)〉 in
Eq. (111). Furthermore, the t/ ln t growth of 〈l(t)〉 is the same
as that found in the l-τ CTRW of [11].

We observe that for finite pv(v = 0) the average passed
distance obeys the expected (the average velocity is finite)
linear growth in time up to logarithmic corrections. In contrast,
in the case of diverging pv(v = 0) the growth obeys a power
law with an exponent smaller than one. This slowing of the
growth is because of the increase of trapping probability. At
the upper limit [1 + √

5]/2 of physically admissible α the
normalization of the PDF would diverge at zero velocity and
〈l(t)〉 would not grow at all, describing a trapped particle. [We
observe that in a real medium some of the particles can stick to
the boundaries producing the cδ(v) term in pv(v) with c < 1.]

The difference between the cases of finite and infinite
pv(v = 0) continues to be strong when dispersion is consid-
ered. We find that

〈l2(t)〉 − 〈l(t)〉2

〈l(t)〉2
∼ 1

ln t

(
1 + 4ψ	(1 − α)

α

)
, α < 1

〈l2(t)〉 − 〈l(t)〉2

〈l(t)〉2
∼ 2

ln t
, α = 1

〈l2(t)〉 − 〈l(t)〉2

〈l(t)〉2
∼ 2	2(α − α2 + 2)

	(2α − 2α2 + 3)
, α > 1.

(112)

The law of large numbers implies that for α � 1 the fluctua-
tions of normalized distance l(t)/〈l(t)〉 decay with time, so the
limit in probability

lim
t→∞

l(t)

〈l(t)〉 = 1 (113)

holds. We find

lim
t→∞

l(t)	(1 − α) ln t

	(1 − α + 1/α)t
= 1, α < 1

lim
t→∞

l(t) ln2 t

2t
= 1, α = 1.

(114)

This can be considered as a form of ergodic theorem that holds
instead of the finiteness of the long-time limit of l(t)/t . The
considered limits hold in probability [see the discussion of
Eq. (98)].

In contrast, in the α > 1 case l(t)/〈l(t)〉 has the order of
one fluctuation. It seems plausible that in this case the PDF
of l(t)/〈l(t)〉 has a finite t → ∞ limit, but the corresponding
study is beyond our scope here. The result agrees with the
one obtained in the l-τ CTRW, where it was found that for a
ψ(τ ) ∼ τ−1−β tail with 0 < β < 1 one has [2,44]

〈l2(t)〉 − 〈l(t)〉2

〈l(t)〉2
∼ 2	2(1 + β)

	(1 + 2β)
− 1, (115)

where in our case β = 1 + α − α2 (the difference of the −1
term from the result of [2] seems to be a typographical error).
Based on the proved universality of the laws of growth of the
average and dispersion in the l-τ CTRW, it seems reasonable
that the l-v CTRW also has universal behavior. Thus it seems
plausible that anomalous diffusion exponents of the real porous
medium could be predicted based on the tail of ψ(τ ). The
long tail is caused by stagnation points at junctions and/or the

nonslip boundary conditions on the walls of the medium, so
it could be universal (in the idealized model the tail would be
τ−2; cf. [11]). Thus, in experimental studies it becomes crucial
to determine the tail of ψ(τ ) and whether the tail’s exponent
is universal or several values are possible. In fact, the results
of [19] indicate that several values are possible. It seems clear
that the behavior of pv(v) at small v will play a significant role
in future studies of transport in a porous medium.

The laws described imply, for the growth of dispersion in
the α < 1 case, that the dispersion σ 2

l (t) = 〈l2(t)〉 − 〈l(t)〉2

obeys

σ 2
l (t) ∼ t2

ln3 t

(
1 + 4ψ	(1 − α)

α

)
	2(1 − α + 1/α)

	2(1 − α)
. (116)

This law of growth of dispersion proportional to t2/ ln3 t was
observed in the τ -l CTRW model of tracer motion in the porous
medium considered in [11]. In that model the distribution
of τ was considered to have a τ−2 tail as in our case. The
distribution of (vector) length of the step was considered to
be fast decaying. These features of distributions of duration
and length of the step hold in our case for α < 1 as well.
The difference is that in our model l and v are independent
rather than l and τ . Despite this difference the dispersion grows
identically in the two models.

The dispersion in the α = 1 case reads

〈l2(t)〉 − 〈l(t)〉2 ∼ 8t2

ln5 t
, (117)

and when α > 1,

σ 2
l (t) = 2t2+2α−2α2

	2(1 − α + 1/α)

	(2α − 2α2 + 3)α2	2(α − α2)	2(α2 − α)
. (118)

In the case of α = 1 the τ−2 tail has a logarithmic correction
that introduces a logarithmic correction to the t2/ ln3 t law that
holds for the τ−2 tail. In the case α > 1 the power law is slower
than τ−2 and the dispersion grows as a power law. It would be
of interest to check if in the τ -l model of [11] the use of the
α > 1 power law for ψ(τ ) would produce the same growth of
dispersion.

We demonstrated that on long-time scales the behaviors of
the number of pores visited by the particle and the length of
the passed distance coincide. This is because the pore length
does not have strong fluctuations. This can be useful in further
studies because the number of visited pores is simpler to study.

Our model is solved for an arbitrary distribution of
velocities. It seems plausible that porous media occurring
in nature can be modeled with power-law behavior at small
velocities pv(v) ∼ v−δ , where δ has a finite number of possible
values depending on the formation history of the material. If
the medium was formed by a (self-similar) fracturing process
then we can expect a nontrivial δ different from zero. In
contrast, if the material was formed by gradual accumulation of
randomly sized grains, pv(v) ∼ const could describe the case
(corresponding to a τ−2 tail of the PDF of residence times).
Once we know the form of pv(v) at small v we can predict,
based on our solution, the anomalous transport exponents.

We disregarded the spatial geometry of the medium:
Only the magnitude of the passed distance was considered.
This leaves out of the study how much the tracer particle
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progressed along the major direction of the flow. The study of
the corresponding correction factor (tortuosity) demands the
introduction of the vector length of the step or the distributions
of the corresponding projections of length and velocity. This
study is left for future work.

We described three types of separable CTRWs of which
two were used for the description of the tracer motion in the
porous medium: the l-v model (for instance, considered in
this paper) and l-τ model (for instance, considered in [11]).
It is a characteristic property of our model that the average
residence time in the channel is infinite once 〈v−1〉 diverges.
This holds unless pv(v = 0) = 0. Both cases of finite and
vanishing pv(v = 0) = 0 seem to be relevant in practice [19].
It seems though, from preliminary observations, that neither l

and v nor τ and l can be considered independent. We thus think
that the consideration of an inseparable CTRW is needed for
further progress. This will complicate the theory significantly,
necessitating the use of a Fourier-Laplace transform of the
propagator of an inseparable walk provided in Sec. II. Further

refinement of the use of a CTRW for the description of tracer
motion in the porous medium is also needed to include the
possibility of anomalously long “corridors” (or “preferential
pathways”) where the particle can pass anomalously long
distances during one step of the walk. These corridors seem to
be observed in experiments. This would demand introduction
of the corresponding increased probability of a large step
length in p(l). Our work thus presents a step in the use
of CTRWs for the description of tracer motion in a porous
medium and provides meaningful directions for possible
refinements extending the range of practical applications.
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