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Explicit densities of multidimensional ballistic Lévy walks
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Lévy walks have proved to be useful models of stochastic dynamics with a number of applications in the
modeling of real-life phenomena. In this paper we derive explicit formulas for densities of the two- (2D) and
three-dimensional (3D) ballistic Lévy walks, which are most important in applications. It turns out that in the
3D case the densities are given by elementary functions. The densities of the 2D Lévy walks are expressed in
terms of hypergeometric functions and the right-side Riemann-Liouville fractional derivative, which allows us
to efficiently evaluate them numerically. The theoretical results agree perfectly with Monte Carlo simulations.
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I. INTRODUCTION

Starting with pioneering papers [1,2] Lévy walks have
become useful models of anomalous stochastic dynamics.
They have found interesting applications in various real-life
phenomena and complex systems. The commonly quoted
examples are blinking nanocrystals [3], light transport in
optical materials [4], foraging patterns of animals [5–7],
epidemic spreading [8,9], fluid flow in a rotating annulus [10],
and human travel [11,12]. Recently Lévy walks have been
used to describe migration of swarming bacteria [13]. For
more examples we refer to the recent review [14], which is
also a good introduction to the topic.

In the standard formulation of the Lévy walk there is
a strong coupling between the traveled distance and the
duration of the flight [15,16]. In the simplest setting the
Lévy walker performs a motion with constant speed v, and
its trajectories are continuous and piecewise linear. As a
result of the above mentioned coupling we get that the mean
square displacement of the Lévy walk is finite [2], even in
the case of power-law jump distribution (intuitively, long
jumps are penalized by requiring more time to be performed).
This is very different from Lévy flight, which is another
popular model of superdiffusion and has infinite mean square
displacement [15–17].

In this paper we derive explicit probability density functions
(PDFs) of the two- (2D) and three-dimensional (3D) ballistic
Lévy walk limits. In the 3D case the PDF is given by elemen-
tary functions. For the 2D Lévy walk its PDF is expressed
using hypergeometric functions and the Riemann-Liouville
derivative, which can be efficiently evaluated numerically.
Moreover these PDFs solve certain differential equations [18]
with the fractional material derivative [19,20]. The main
idea of this paper is to relate the multidimensional PDF to
a proper one-dimensional (1D) distribution using methods
from Ref. [21] and then apply the formula of Godrèche and
Luck [22] to invert the Fourier-Laplace transform. It should be
underlined that the densities of 1D ballistic Lévy walks have
been recently found by Froemberg et al. [23].
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II. EXPLICIT DENSITIES

Let us recall the formal definition of a d-dimensional
Lévy walk. Consider a sequence of independent, identically
distributed (IID) positive random variables T1,T2, . . ., repre-
senting the consecutive waiting times of the walker. We assume
that the distribution of waiting times is power-law, ψ(t) ∝
t−1−α,α ∈ (0,1). Denote by N (t) = max{k � 0 :

∑k
i=1 Ti �

t} the corresponding process counting the number of jumps up
to time t . Next, let us define the jumps of the walker

Xi = vTiVi , i = 1,2, . . . .

Here V1,V2, . . . is a sequence of IID random unit vectors
distributed uniformly on the d-dimensional sphere Sd . Each
vector Vi governs the direction of ith jump. The constant v is
the speed; for simplicity we assume that v = 1. It is clear from
the definition that the length of each jump ‖Xi‖ is equal to the
length of the corresponding waiting time Ti . Such spatiotem-
poral coupling is typical for Lévy walks. Now, the so-called
undershooting Lévy walk is defined as LULW (t) =∑Nt

i=1 Xi .

The trajectories of this process are piecewise constant and have
jumps, thus they are not continuous. However, applying simple
linear interpolation on the trajectories of LULW (t), we arrive
at the final definition of the standard Lévy walk L(t):

L(t) =
N(t)∑
i=1

TiVi +
(

t −
N(t)∑
i=1

Ti

)
VN(t)+1. (1)

The trajectories of the Lévy walk L(t) are continuous and
piecewise linear (motion with constant speed). Moreover, due
to the spatiotemporal coupling its mean square displacement
is finite. L(t) is a d-dimensional process, so we can write it as
a vector L(t) = (L1(t), . . . ,Ld (t)). Moreover, the distribution
of L(t) is rotationally invariant; each direction of the motion is
equally possible. It is the consequence of the fact that the jump
directions Vi are uniformly distributed on the d-dimensional
sphere Sd . Therefore to determine the PDF of L(t) it is enough
to determine the PDF of the radius ‖L(t)‖=

√
L2

1(t)+···+L2
d (t). In

what follows we will use two main ideas. The first one concerns
determining the asymptotic PDF of L1(t), the projection of
L(t) on the first axis. The second one is finding the relation
between the asymptotic distributions of ‖L(t)‖ and L1(t).
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The diffusion limit of L(t) has been recently established in Ref. [18]. Let us denote this limit process by X(t), which takes the
form

X(t) =
⎧⎨
⎩

L−
α

[
S−1

α (t)
]

if t ∈ R

L−
α

[
S−1

α (t)
]+ t − G(t)

H (t) − G(t)

{
Lα

[
S−1

α (t)
]− L−

α

[
S−1

α (t)
]}

if t /∈ R,

where L−
α (t) is the left-continuous version of the d-

dimensional α-stable Lévy motion Lα(t) with Fourier trans-
form [17],

E{exp[i〈k,Lα(t)〉]}

= exp

{
t

∫
Sd

|〈k,s〉|α[isgn(〈k,s〉) tan(πα/2) − 1]K(ds)

}
,

where K(ds) is the uniform distribution onSd and 〈 , 〉 denotes
the standard inner product in Rd . Next, Sα(t) is the α-stable
subordinator with Laplace transform [17]

E{exp[−sSα(t)]} = exp{−tsα},
and S−1

α (t) = inf{τ � 0 : Sα(τ ) > t}. Moreover

R = {Sα(t) : t � 0}, G(t) = S−
α [S−1

α (t)],

H (t) = Sα[S−1
α (t)].

Since L(t) is rotationally invariant, so is the limit X(t). In the
following we will derive the explicit PDFs of X(t) in the 2D
and 3D case.

A. 2D case

Denote the PDF of X(t) = (X1(t),X2(t)) by H (x,t),x =
(x1,x2) ∈ R2. It follows from [18] that the Fourier-Laplace
transform of H (x,t) is given by

H (k,s) = 1

s
g

(
ik
s

)
= 1

s

∫
S2

(
1 − 〈 ik

s
,u
〉)α−1

K(du)∫
S2

(
1 − 〈 ik

s
,u
〉)α

K(du)
,

where k = (k1,k2) ∈ R2 is the Fourier space variable, s

is the Laplace space variable, and K(du) is the uniform
distribution on the circle S2. Now we can notice that the
Fourier-Laplace transform of the PDF of X1(t) is equal
to H1(k1,s) = H ((k1,0),s). The marginal distribution of the
uniform distribution on a circle K1(du) has the density [24]

K(du1) = 1

π

1(
1 − u2

1

)1/2 du1; (2)

thus H1(k1,s) = 1
s
g1( ik1

s
), where

g1(ξ ) =
∫ 1
−1(1 − ξu)α−1 1

π(1−u2)1/2 du∫ 1
−1(1 − ξu)α 1

π(1−u2)1/2 du
. (3)

This corresponds to the scaling

H1(x,t) = 1

t
�1

(x

t

)
, (4)

where x ∈ R. Now we are in position to apply the method of in-
verting a joined Fourier-Laplace transform from Refs. [22,23],
which will allow us to get an explicit formula for �1. This
technique is based on a special representation of the function

g1(ξ ) and the Sokhotsky-Weierstrass theorem. We can write
(see Appendix A)

g1(ξ ) = E
1

1 + ξX1(1)
, (5)

and from the Sokhotsky-Weierstrass theorem we get (see
Appendix B)

�1(x) = − 1

π
lim
ε→0

Im

[
1

x + iε
E

1

1 − X1(1)
x+iε

]
. (6)

Now we combine Eqs. (5) and (6) and get the formula for �1:

�1(x) = − 1

π
lim
ε→0

Im

[
1

x + iε
g1

(
− 1

x + iε

)]
. (7)

This technique can be only applied for a 1D process operating
in a ballistic regime whose Fourier-Laplace transform of PDF
p(t,x) has the scaling

p(k,s) = 1

s
r

(
ik

s

)
. (8)

It was originally developed by Godrèche and Luck [22] for
inverting a double Laplace transform and then generalized by
Froemberg et al. [23] for the Fourier-Laplace transform and
use with ballistic Lévy walks. In our case g is given by Eq. (3).
After some standard transformations we obtain

�1(x) = − 1

π |x| Im
2F1
(
[1 − α]/2,1 − α/2; 1; 1

x2

)
2F1
(− α/2,[1 − α]/2; 1; 1

x2

) (9)

for x ∈ (−1,1) and �1(x) = 0 otherwise. Here 2F1(a,b; c; x)
is the hypergeometric function [25] defined as

2F1(a,b; c; x) =
∞∑

k=0

(a)k(b)k
(c)k

xk

k!
(10)

for |x| < 1 and analytically continued for x > 1. In this series
(a)k = 	[a+k]

	[a] is the Pochhammer symbol. The hypergeometric
functions can be evaluated numerically and are implemented
in most of the mathematical packages including Matlab and
Mathematica. Their use ensures high-precision calculations.

We now relate the PDF HR(r,t) of the radius ‖X(t)‖ to
the already calculated PDF of X1(t) using the method from
Ref. [21]. The rotational invariance of Lévy walk L(t) implies
the rotational invariance of the diffusion limit process X(t).
Therefore to find H (x,t) it suffices to determine HR(r,t).
From the property H (k,s) = 1

s
g( ik

s
) we deduce the scaling

HR(r,t) = 1
t
�R( r

t
). The factorization of X(1) into radial and

directional parts gives us

X(1)
d= ‖X(1)‖V, (11)

where V is a random vector uniformly distributed on a circle,

independent of ‖X(1)‖, and “
d= ” denotes the equality in

022130-2



EXPLICIT DENSITIES OF MULTIDIMENSIONAL . . . PHYSICAL REVIEW E 94, 022130 (2016)

FIG. 1. Density H (x,1) of 2D Lévy walk with α = 0.6 estimated using Monte Carlo methods from 4 × 107 trajectories (a) and obtained
from Eq. (17) (b).

distribution. This implies

P(|X1(1)| � x) = 2

π

∫ 1

0

1

(1 − u2)1/2
P
(
‖X(1)‖ � x

u

)
du

(12)

for x � 0. The differentiation of the above equation yields

�1(x) = 1

π

∫ 1

0

1

(1 − u2)1/2

1

u
�R

(x

u

)
du, (13)

and after some calculations we arrive at

�R(r) = 2π1/2rD
1/2
− {�1(x1/2)}(r2), (14)

where D
1/2
− is the right-side Riemann-Liouville fractional

derivative of order 1/2 [26]:

D
1/2
− {f (x)}(y) = − d

dy

1

π1/2

∫ ∞

y

f (x)

(x − y)1/2
dx. (15)

This fractional derivative can be calculated numerically; for
instance, see Ref. [27] for Matlab code. Combining Eqs. (9)
and (14) gives us

�R(r) = − 2r

π1/2
D

1/2
−

{
1

x1/2
Im

2F1
(
[1 − α]/2,1 − α/2; 1; 1

x

)
2F1
(− α/2,[1 − α]/2; 1; 1

x

)
}

(r2)

if r ∈ (0,1) and �R(r) = 0 otherwise. In Cartesian coordinates H (x,t) can be calculated as

H (x,t) = 1

2πt‖x‖�R

(‖x‖
t

)
(16)

with ‖x‖ =
√

x2
1 + x2

2 . Therefore

H (x,t) = − 1

π3/2t2
D

1/2
−

{
1

x1/2
Im

2F1
(
[1 − α]/2,1 − α/2; 1; 1

x

)
2F1
(− α/2,[1 − α]/2; 1; 1

x

)
}(‖x‖2

t2

)
(17)

for ‖x‖ < t and H (x,t) = 0 in the opposite case. Figure 1(b) shows H (x,1) for α = 0.6 calculated from Eq. (17). The result is in
agreement with the density pictured in Fig. 1(a) estimated using Monte Carlo (MC) methods from 107 trajectories. The algorithm
for simulating Lévy walks is shown in Appendix C (see also Ref. [28]). The right panel of Fig. 1 shows that H (x,1) → ∞ when
‖x‖ → 1, and MC methods reveal it only after a large number of simulations, which is time-consuming.

B. 3D case

For the 3D process X(t) = (X1(t),X2(t),X3(t)) we use the same procedure as for the 2D case. The notation remains the
same. The random vectors Vi have uniform distribution K(du) on the sphere S3. The Fourier-Laplace transform of H (x,t),x =
(x1,x2,x3), is [18]

H (k,s) = 1

s

∫
S3

(
1 − 〈 ik

s
,u
〉)α−1

K(du)∫
S3

(
1 − 〈 ik

s
,u
〉)α

K(du)
, (18)

where k = (k1,k2,k3) ∈ R3 is the Fourier space variable, s is the Laplace space variable, and 〈 , 〉 denotes the inner product in
R3. Surprisingly enough, applying the same reasoning as in the 2D case we arrive at much simpler results. This is caused by the
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fact that the 1D marginal distribution K1(du1) of K(du) is uniform on the interval [−1,1] [24]. Following the reasoning from
the 2D case we obtain that the distribution �1(x) of X1(1) is expressed in terms of elementary functions

�1(x) = 2(α + 1)

πα
sin(πα)

(1 − x2)α

(1 − x)2α+2 + (1 + x)2α+2 + 2 cos(πα)(1 − x2)α+1

for x ∈ (−1,1) and �1(x) = 0 otherwise. Equation (12) now has the form

P(|X1(1)| � x) =
∫ 1

0
P
(
‖X(1)‖ � x

u

)
du, (19)

and the following relation between �R and �1 holds:

�R(r) = −2r�′
1(r). (20)

Therefore

�R(r) = 8

π

α + 1

α
sin(πα)r(1 − r2)α−1 (1 + r)2+2α(1 + α − r) − (1 − r)2+2α(1 + α + r) − 2r(1 − r2)1+α cos(πα)

[(1 + r)2+2α + (1 − r)2+2α + 2(1 − r2)1+α cos(πα)]2
(21)

for r ∈ (0,1) and �R(r) = 0 in the opposite case. Coming back
to Cartesian coordinates we get

H (x,t) = 1

4πt‖x‖2
�R

(‖x‖
t

)
, (22)

with ‖x‖=
√

x2
1 +x2

2 +x2
3 . Figure 2 presents �R(r) for different

values of α calculated from Eq. (21). We notice that the
theoretical results are in perfect agreement with simulations.
For the Monte Carlo method we generated 105 trajectories of
Lévy walk L(t) with different values of α. Then we plotted
the empirical PDF of 1

t
‖L(t)‖, where the values of t were

108, 106, and 104 for α equal to 0.2, 0.5, and 0.8 respectively.
Recall that the PDF of 1

t
L(t) converges to the PDF of X(1)

when t → ∞. The simulations, done in Matlab 2014a running
on a 2.7 GHz Intel Core i5-5200U CPU, required 2 h 15 min
to complete. The required time increases when we take greater
values of t .

FIG. 2. Density �R(r) of 3D Lévy walk obtained from Eq. (21)
for α = 0.2,α = 0.5, and α = 0.8 (blue lines). Theoretical results are
compared with densities estimated using Monte Carlo methods (red
crosses with error bars).

III. CONCLUSIONS

Concluding, in this paper we derived the explicit formulas
for the densities of 2D and 3D ballistic Lévy walk limits.
The results have a simple form, especially in the 3D case.
The methods presented here can be successfully applied to
different types of Lévy walks operating in a ballistic regime.
Furthermore, the same techniques allow us to calculate the
PDF of d-dimensional Lévy walks where the number of
dimensions d is arbitrary. We believe that our result will prove
useful in practical applications of Lévy walks. In particular it
should simplify the verification procedure and estimation of
the parameters of the model and give deeper understanding of
the properties of Lévy walks.
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APPENDIX A: FOURIER-LAPLACE TRANSFORM OF THE
SCALING FUNCTION g1

The Fourier-Laplace transform of H1(x,t) is defined as

H1(k,s) =
∫ ∞

−∞

∫ ∞

0
e−ikx−stH1(x,t) dt dx (A1)

=
∫ ∞

−∞

∫ ∞

0
e−ikx−st 1

t
�1

(x

t

)
dt dx. (A2)

The substitution y = x
t

yields

H1(k,s) =
∫ ∞

−∞

∫ ∞

0
e−(iky+s)t�1(y)dt dy (A3)

=
∫ ∞

−∞

1

iky + s
�1(y)dy = 1

s

∫ ∞

−∞

1
ik
s
y + 1

�1(y)dy

(A4)

= 1

s
E

1
ik
s
X1(1) + 1

, (A5)

justifying Eq. (5).
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APPENDIX B: APPLICATION OF
SOKHOTSKY-WEIERSTRASS THEOREM

The density �1(x) can be written as

�1(x) = Eδ[x − X1(1)]. (B1)

The Sokhotsky-Weierstrass theorem assures us that

lim
ε→0

1

x ± iε
= 1

x
∓ iπδ(x) (B2)

which implies

δ(x) = − Im lim
ε→0

1

x + iε
. (B3)

From Eqs. (B1) and (B3) we obtain

�1(x) = − Im lim
ε→0

E
1

x − X1(1) + iε
(B4)

= − lim
ε→0

Im

[
1

x + iε
E

1

1 − X1(1)
x+iε

]
, (B5)

which proves Eq. (6).

APPENDIX C: NUMERICAL SIMULATION OF
MULTIDIMENSIONAL Lévy WALKS

Below we present the algorithm for simulation of trajecto-
ries of L(s) on a time interval [0,t].

(1) Simulate the sequence of IID random variables Ti

for i = 1,2, . . . ,N (t) + 1 where Ti have a one-sided positive
α-stable distribution and N (t) = max{k � 0 :

∑k
i=1 Ti � t}.

For generating Ti one can use the following procedure [17]:

Ti = sin[α(V + π/2)]

[cos(V )]1/α

{
cos[V − α(V + π/2)]

W

}(1−α)/α

,

(C1)

where the random variable V is uniformly distributed on
(−π/2,π/2) and W has an exponential distribution with mean
one. Moreover V and W are assumed to be independent.

(2) Simulate the sequence of IID random vectors Vi

independent from Ti for i = 1,2, . . . ,N (t) + 1 where Vi are
uniformly distributed on a circle (2D case) or a sphere (3D
case). For the 2D case we generate

Vi = [cos(U ), sin(U )], (C2)

where U has a uniform distribution on a interval (0,2π ). For
the 3D case we generate

Vi = 1√
Z2

1 + Z2
2 + Z2

3

[Z1,Z2,Z3], (C3)

where Zi are independent and have a normal distribution
N (0,1). Alternatively one can use rejection sampling.

(3) Set

N

(
kt

n

)
= max

{
k � 0 :

k∑
i=1

Ti � kt

n

}
(C4)

for k = 0,1,2, . . . ,n.
(4) Finally L( kt

n
) for k = 0,1,2, . . . ,n is calculated directly

from its definition given by Eq. (1):

L
(

kt

n

)
=

N( kt
n )∑

i=1

TiVi +
⎛
⎝t −

N( kt
n )∑

i=1

Ti

⎞
⎠VN( kt

n )+1. (C5)
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