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Pascal Fieth* and Alexander K. Hartmann
Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

(Received 8 December 2015; published 19 August 2016)

Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be
achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the
distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small.
For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a
Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only
be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based
rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed
that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution
occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps,
which are much more relevant for practical applications in molecular biology. We study the distributions of scores
over a large range of the support, reaching probabilities as small as 10−160, for global and local (sum-of-pair scores)
multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the
distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the
previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of
pairwise alignments.

DOI: 10.1103/PhysRevE.94.022127

I. INTRODUCTION

One important task in bioinformatics is the analysis of
nucleotide or amino acid sequences, e.g., found in DNA, RNA,
or proteins. A vast amount of sequence data exists and can
be found in large data bases like PDB [1] or UniProt [2]. A
particular important group of methods, widely used for queries
to such data bases, is sequence alignment [3,4]. Naturally
appearing DNA or amino acid sequences are aligned in a
way that is most likely to resemble their actual evolutionary
relationship. Such alignments may contain gaps, where in
the corresponding evolutionary processes insertion or deletion
of genetic material occurred. The degree of similarity, i.e.,
relatedness, is quantified by a so-called (optimum) alignment
score. Different alignment algorithms exist, usually employing
fast heuristics, like BLAST [5].

Since the alignment score is just an integer, one needs
to assess the significance of an alignment. This is achieved
typically via calculating the cumulative probability p(S � SO)
to find a score S bigger than or equal to the observed score SO

within a suitably defined null ensemble of random sequences.
This approach corresponds to the calculation of p-values
within standard hypothesis tests. In most cases, like for
standard database queries, the significance analysis is based on
sequences where the letters are drawn identically and indepen-
dently distributed (i.i.d.) using given probabilities. Therefore,
it is desirable to find the score distribution of alignment scores
for the specified null ensemble. An analytical solution for the
score distribution only exists for the limiting case of gapless
local alignments with infinite sequence lengths [6], which is
not so relevant for biological analysis but of academic interest.
According to this theory, the probability function p(S) follows
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a Gumbel (or extreme-value) distribution:

pG(S) = λ exp[−λ(S − S0) − e−λ(S−S0)]. (1)

For local alignments of sequences of finite length and
with allowing for gaps in the alignment the distribution has
to be analyzed numerically. Simple sampling studies can
easily randomly generate and align, e.g., 106 sequence pairs
in computationally feasible time. This leads to sampling
the distribution in the high probability region with lowest
statistically reliable probabilities still at p ≈ 10−5. Early
numerical studies using such a simple sampling approach
indicated the Gumbel distribution to be a good estimate also
for gapped alignments of finitely long sequences [7]. However,
biological sequences are in most cases very similar to each
other. The relevant alignments, therefore, generally lie in the
high-scoring, extremely low-probability tail of the distribution.
Unfortunately, this tail is not covered by the simple sampling
approach. To obtain results for the low-probability region,
one of us (A.K.H.) applied a statistical mechanics-based
rare-event simulation to the problem of pairwise local sequence
alignment [8]. This work showed that the Gumbel distribution
significantly deviates from the obtained score distribution
in the distribution tails. Subsequent studies indicated that a
Gaussian correction to this distribution suits well to gain a
better description of the score distribution. Interestingly, the
strength of this correction decreases with increasing sequence
length [9]. Below we will show that this Gumbel distribution
with correction factor leads to a better-fitting distribution, but
is still only an incomplete description of the data. Nevertheless,
within an analysis of proteins from the Swissprot database [10],
it was investigated [11] whether using the correct distribution
of scores has an impact evaluating database searches. It was
found that indeed by using a more accurate statistics, obtained
in the low-probability region where the actual score values are
located, the relative relevance of database retrievals changes
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significantly. Thus, having the correct distribution instead
of a rather crude approximation, is not only satisfying with
respect to high scientific standards, but also useful in actual
molecular-biological applications.

These methods only have been used so far for pairwise
local sequence alignment with and without gaps. It is the main
purpose of this work, to extend the application of these meth-
ods to multiple local sequence alignment, where more than
two sequences are compared within one alignment. Multiple
sequence alignments are vastly used for analyzing three or
more sequences with an assumed evolutionary relation. Re-
sulting alignments are among other things used to estimate the
phylogenetic history of sequences or to find highly conserved
protein domains. Similar protein functions can result from
actual evolutionary relation or from convergent evolution,
i.e., similar functions developed in independent branches
of the phylogenetic tree. Significance analyses could help
distinguishing the two cases. Due to the expensiveness of local
multiple sequence alignment, its counterpart global multiple
sequence alignment is much more common. However, local
multiple sequence alignment is especially suited for finding
functionally important regions within whole protein families.

Note that for global sequence alignment no analytical
solution for the score distribution exists. Studies of real
datasets [12] and subsequent studies following essentially a
simple sampling approach [13] suggest the three-parameter �

distribution as a good model:

pγ (S) =
{

λγ (S−μ)γ−1e−λ(S−μ)

�(γ ) S > μ

0 S � μ,
(2)

with the � function �(x), and parameters λ, γ , and a shift
μ. Due to the nature of the studies, the sampled region
was again restricted to the high-probability region of the
score distribution. As a second application of the rare-event
simulation, we studied the score distributions of i.i.d. random
sequences in the low-probability region of pairwise and
multiple global sequence alignments.

The remainder of this work is organized as follows. First,
we will formally define the alignments we studied and state the
alignment algorithms we used. Next, we explain the statistical
mechanics-based large-deviation approach, which allowed us
to sample the alignments distribution of random sequences
over a large range of the support. In the main section, we show
our results, for gapped multiple alignments of two, three, and,
in the case of global alignment, four sequences. The main
results are that again the Gumbel distribution is not sufficient
to model the data and that the distribution for multiple
alignments, even more relevant for practical applications in
molecular biology, cannot be obtained from the pairwise align-
ments results, justifying the present numerically demanding
study. Finally, we present a summary and an outlook.

II. SEQUENCE ALIGNMENTS

Sequence alignment algorithms aim to find the optimal
scoring alignment of two or more sequences. DNA and
amino acid sequences are given by a representing sequence
of letters from an alphabet �. It is |�| = 4 for DNA
sequences consisting only of the four bases. In contrast, there

are 20 different amino acids, leading to |�| = 20 for the
respective sequences. Let �x(i) = x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
Li

∈ �Li be the
ith sequence of length Li in a set of Nseq sequences. A multiple
alignment A is defined as a set of tuples of indices,

A = {(
l
(1)
k ,l

(2)
k , . . . ,l

(Nseq)
k

)}
; k = 1,2, . . . ,K

(3)
1 � l

(i)
k < l

(i)
k+1 � Li.

A pair of letters (x(i)

l
(i)
k

,x
(j )

l
(j )
k

) is called a match if x
(i)

l
(i)
k

= x
(j )

l
(j )
k

.

Otherwise, it is called a mismatch. Note that in each tuple Nseq

letters are joined, so some pairs in this tuple may match while
other pairs may form a mismatch. If l

(i)
k+1 = l

(i)
k + 1 and l

(j )
k+1 =

l
(j )
k + 1 + M with M > 0, i.e., the indices l

(j )
k + 1, . . . ,l

(j )
k +

M do not appear in any tuple, sequence �x(i) is said to have
a gap of length M in respect to sequence �x(j ). Also if l

(k)
1 =

1 + M > 1 or l
(k)
K = Li − M < Li one speaks of a gap of the

kth sequence.
To find the alignment most likely resembling the actual evo-

lutionary relationship, an objective score function S(A,{ �x(i)})
is used. Usually, the score is based on sums of pairwise
scores s(x(i)

l
(i)
k

,x
(j )

l
(j )
k

), which are taken from so-called substitution

matrices given by biologists. Typically, the scores are propor-
tional to log of mutation (mismatch) or conservation (match)
probabilities in evolutionary models. Therefore, scores for
matches are positive, while scores for mismatches are smaller,
usually negative. Two widely used sets of substitution matrices
are the PAM [14] and BLOSUM [15] substitution matrix
sets. Gaps are penalized depending on their lengths with
some length-dependent function g(M). The gap penalties are
intended to model log of probabilities of the occurrence of
insertion or deletion events in evolutionary processes.

To wrap this up, the score of a global pairwise alignment
is the sum over all matches, mismatches, and the penalties of
all gaps g. A multiple alignment is scored by the sum-of-pairs
score, i.e., its score is the sum over all pairwise scores:

S(A,{ �x(i)}) =
∑
i<j

{∑
k

s
[
x

(i)

l
(i)
k

,x
(j )

l
(j )
k

]
−

∑
g

g(Mg)

}
, (4)

where the sum
∑

g runs over all gaps.
The aim of the alignment comparison is that the more

similar two sequences are, the higher the resulting score.
Nevertheless, the score does not depend only on the sequences
but also on the alignment. For example, even for two equal
sequences, one can find alignments with a very small score.
Thus, one is seeking for the optimal alignment AO , which is
the alignment with the maximum score,

Smax({ �x(i)}) = max
A

S(A,{ �x(i)}),
maximized over all possible alignments. In subsequent sec-
tions S is used synonymously with Smax({ �x(i)}). In this work,
affine gap costs,

g(M) = α + β(M − 1), (5)

were used. Thus, a high penalty α can be given for opening a
gap and a smaller penalty β for extending one. Although even
for two sequences there are exponentially many alignments,
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an optimal pairwise global alignment, i.e., Nseq = 2, with
affine gap costs can easily be found in polynomial time by
the algorithm by Needleman and Wunsch [16] with Gotoh’s
extension [17]. For multiple global alignments the progressive
heuristics by Feng and Doolittle [18] was used in this work: All
possible sequence pairs are aligned with pairwise alignment
first. A guide tree is constructed using the different obtained
pairwise scores. Subalignments are then aligned to each other
by aligning the highest-scoring sequence pair, taking into
account the existing alignments. While readily implemented
versions of this algorithm are widely available, those were
not used here. To obtain a more efficient implementation
for our purpose the initial pairwise alignments are obtained
using a full calculation of the dynamic programming matrices.
Nevertheless, during the Monte Carlo steps, they are changed
only partially. Thus, the algorithm could be changed to allow it
to skip the matrix entries that are excluded from change while
still returning the exact pairwise alignments.

Another important alignment method next to global se-
quence alignment is local sequence alignment. Here, from each
sequence a subsequence is chosen and only the subsequences
are aligned. This means for each sequence start- and endpoints
l(i)
s , l(i)

e of the subsequences are subject to optimization as well.
Thus, the optimal local alignment has to maximize the score
over all possible alignments of all possible subsequences. This
is also equivalent to not penalizing gaps at the beginning and
the end of sequences. With the algorithm by Smith and Water-
man [19] this is possible also in polynomial time O(LNseq ) for
a set of Nseq sequences, if each has the length Li = L.

III. METHOD

In the approach used [8], a sequence pair, correspondingly
here a set of K sequences, is viewed as a “state” C of a
physical system with “energy” E = −S. A “temperature”
T is introduced and the states are sampled according to the
rules of the canonical ensemble in statistical mechanics.
Specifically, a Markov chain C0 → C1 → . . . is generated. In
each step t a trial state C ′ is generated from the current state
Ct by randomly choosing and replacing one residue in the
sequence set [20]. The alignment score S(C ′) is calculated and
the trial state accepted, i.e., Ct+1 = C ′, with the Metropolis
probability [21] P (Ct → C ′) = min [1, exp(�S/T )] with
�S = S(C ′) − S(Ct ). If not accepted, the current configuration
is kept, i.e., Ct+1 = Ct . The equilibrium distribution of the
sampled states is known to be Q(C) = P (C) exp (S(C)/T )/ZT

with the partition function ZT = ∑
C P (C) exp [S(C)/T ].

The score distribution, biased by the scale parameter (or
“temperature”) T is then

pT (S) =
∑

{C|S(C)=S}
Q(C)

=
∑

{C|S(C)=S}

exp(S/T )

ZT

P (C)

= exp(S/T )

ZT

p(S).

The unbiased distribution then is p(S) = pT (S)ZT

exp(−S/T ). After rescaling via pR
T = pT exp(−S/T ) only the

correct values for the partition functions ZT remain unknown.
Determining them is possible after covering different probabil-
ity regions, starting with the one for T = ∞. To cover the entire
score range, simulations are done at different temperatures.
The efficiency of simulations is then improved further by using
the parallel tempering technique [22–24], which works as fol-
lows. Simulations of the system are done for NT different tem-
peratures T1 < T2 < · · · < TNT

, i.e., an independent configu-
ration Ci is simulated for each temperature Ti , i = 1, . . . ,NT .
The configurations at neighboring temperatures (Ti,Ti+1) are
swapped in suitably chosen simulation time intervals with
a swap probability Psw(Ci ↔ Ci+1) = min(1, exp[−�β�S])
with �β = 1/Ti+1 − 1/Ti and �S = S(Ci+1) − S(Ci). One
time step t consists here of one Monte Carlo sweep, i.e., a num-
ber of Metropolis steps equal to the total number of residues in
a configuration, and a subsequent sweep of NT − 1 exchange
attempts of randomly selected temperature pairs. To sample
only weakly correlated data, the autocorrelation cS(t) =
{〈S(t0)S(t0 + t)〉 − 〈S〉2}/{〈S2〉 − 〈S〉2} is calculated and a re-
laxation time τ determined for which cS(τ ) = 1/e. Only every
τ th value is considered when sampling the data. Equilibrium is
ensured by starting to sample after an equilibration time t0. To
determine this time, two sets of initial conditions are simulated.
One set of simulations is initialized with randomly generated
sequence sets, i.e., with low-scoring sequence sets. The other
set of simulations is initialized with sets of identical sequences,
only consisting of the letter a with the highest pairwise score
s(a,a) [25], i.e., with maximum scoring sequence sets. The
equilibration time t0 is reached when the average scores of the
different regions have reached the same value within error bars.
Compare Fig. 1, which shows the first 10 000 time steps of the
simulations for the simulations done for Nseq = 3 sequences
of lengths L = 40 for different temperatures T .

Having covered the whole distribution range, it is now
possible to determine the partition functions ZT . Assuming

 0
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S(
t)

t

T=2.95
T=3.25
T=3.60
T=INF

FIG. 1. Equilibration times for different temperatures: First
10 000 Monte Carlo sweeps in the parallel tempering time series
averaged over 30 different realizations for random (bottom branch)
and high-scoring (top branch) initial conditions, respectively. System:
Nseq = 3 sequences of length L = 40, local alignment. A selection of
the used temperatures is shown. At lower temperatures it takes more
time for equilibration.
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for T = ∞ the biased distribution approximates the true
distribution PT (S) ≈ P (S) the partition function, or normal-
ization constant, becomes Z∞ ≈ 1. After rescaling, the other
distributions differ from the unbiased distributions only by
ZT , which can be determined by a shift between neighboring
functions Ti−1,i on the logarithmic scale, log Zi . The shift
between T1 = ∞ and the unbiased distribution is defined
as log Z1 = 0. The consecutive shifts are determined by
minimizing the function

f (log Zi) =
∑

S∈[Ss ,Se]

{[
log pR

Ti
(S) + log Zi

]

−[
log pR

Ti−1
(S) + log Zi−1

]}2
, (6)

in the overlapping score region [Ss,Se] of the two neighboring
distributions. The shifted distributions are then pS

T = pR
T ZT .

For most score ranges, several values from the different biased
distributions are available. For each value S of the score
distribution a weighted average over all available data is
calculated:

p(S) = 1∑
T wT (S)

∑
T

wT (S)pS
T . (7)

wT is the inverse relative error of the corresponding distribu-
tion pT (S) before rescaling and shifting:

wT (S) =
√

nT

pT (S)[1 − pT (S)]
, (8)

where nT is the number of used samples for temperature T .
This finally gives values for a wide range of the distribution
p(S) down to regions of very low probabilities.

IV. RESULTS

The rare-event simulations were performed for local and
global alignments. If not mentioned otherwise, the alignments
were calculated using the BLOSUM62 substitution matrices
and gap penalties according to Eq. (5) with (α = 12, β =
1). These values were used in the previous large-deviation
studies [8,9] and therefore allow a direct comparison between
results for pairwise and multiple sequence alignment.

A. Local multiple sequence alignments

Rare-event simulations for local pairwise sequence align-
ments have shown that the Gumbel distribution alone is
not a good description of the score distribution of gapped
local sequence alignments. The introduction of a Gaussian
correction to the Gumbel distribution Eq. (1) improved the
agreement between analytical distribution and data. The
corrected distribution is

pC = pG × exp[−λ2(S − S0)2]

= λ exp[−λ(S − S0) − λ2(S − S0)2 − e−λ(S−S0)]. (9)

The strength of the Gaussian correction is indicated by the fit
parameter λ2 and has been shown to decrease with increasing
sequence length for pairwise alignments. λ2 was observed to
decrease with a power-law for small gap costs and faster than
a power-law for high gap costs. In the case analyzed here (α =

12, β = 1), the decrease is expected to be just in the power-
law region. Subsequently the distributions obtained with the
rare-event simulations for multiple local sequence alignment
of Nseq = 3 sequences will be presented and later on compared
to the results for pairwise alignment.

1. Score distributions for local multiple sequence alignments

Simulations for local multiple sequence alignments of
Nseq = 3 sequences of length L = 40 were performed for
60 different realizations of the driving randomness, each
over 5 × 104 sweeps. The score distribution was obtained
as described in Sec. III. A fit of the Gumbel distribution
without Gaussian correction [cf. Eq. (1)] and with Gaussian
correction [cf. Eq. (2)] was performed. The data and the fits
are shown in Fig. 2. The deviation of the Gumbel distribution
from the data in the tail of the distribution is clearly visible.
The better performance of the fit of the Gumbel distribution
with Gaussian correction is also indicated by the χ2 value per
degree of freedom, χ2/ndf = 1.5 in contrast to the value for
the distribution without Gaussian correction, χ2/ndf = 343.1.
Thus, the behavior for the low-probability tail for pairwise
alignment could be confirmed for the alignment of Nseq = 3
sequences. We performed another fit where the Gumbel
distribution without Gaussian correction was restricted to the
distribution range with P (S) � 10−10, which corresponds to
the interval [Sl = 21,Su = 115]. Simple sampling would only
cover probabilities P (S) > N−1

samples by creating and aligning
Nsamples i.i.d. random sequence sets. Therefore, the restricted
distribution range is still generously large, requiring more
than Nsamples > 1010 samples if it were to be obtained by
simple sampling. The restricted fit agrees with the data in
the high-probability region, visible in the inset. This is also
indicated by a somehow better χ2-value of χ2/ndf = 63.

10-100

10-80

10-60

10-40

10-20

100

 0  100  200  300  400  500  600

Sl Su

LOCAL

P
(S

)

S

Fit: Gumbel+Gauss
Fit: Gumbel, high P

Fit: Gumbel
Nseq=3, L=40

10-10

10-5

1

10 50 100

Sl Su

FIG. 2. The distribution for local alignments of Nseq = 3 se-
quences of length L = 40 as obtained by the rare-event simulation.
Fits of the Gumbel distribution to the whole distribution as well
as constrained to the score range [Sl = 21,Su = 115], i.e., P (S) �
10−10, are shown. Also shown is the better-suited fit of the Gumbel
distribution with a Gaussian correction. The inset shows the high-
probability region.
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FIG. 3. The score distributions for local multiple alignments for
several sequence lengths and the fitted Gumbel distributions with
Gaussian correction. The inset shows the high-probability region.

Of course, the fit now obviously deviates strongly in the
distribution tail. Indeed, the Gumbel distribution with
correction constrained to the same score range still performs
better than without correction (χ2/ndf = 9.45). Over
the complete obtained distribution range this results in a
significant overestimation of λ2 and a strong underestimation
of P (S) in the tail of the distribution. The results of these
fits show that the behavior of the distribution cannot be fully
studied with just a simple sampling approach.

Figure 3 shows the fit of the Gumbel distribution with
Gaussian correction to the data for local alignment of Nseq = 3
sequences for different sequence lengths. The fit performed as
well as for the example case of L = 40. However, varying the
range of the distribution on which the fit is performed results
in a change of parameter values not accounted for by the
standard error calculated during the fit. Therefore, parameter
fits for every system were performed with varying window
sizes. All windows start at the minimum score Sl for which the
simulations yielded a data point (i.e., this point is fixed for each
system) and ends at a variable score Su � Smax, where Smax

is the maximum possible score, i.e., for two equal sequences
with the highest scoring letter. For the analyzed system sizes
for multiple local sequence alignment with Nseq = 3 the
parameters seemed to converge. Figure 4 exemplarily shows
the parameter curve for λ(Su). For sequence lengths up to
L = 60 it seems reasonable to estimate the parameters by
fitting an exponential function with a constant. For a parameter
g we use g(Su) = gb + C exp(−kSu) with fit parameters gb,
C, and k for an appropriate part of the value curve obtained.
The new fit parameter gb approximates the value against which
parameter g(Su) converges. For L = 80 this approach already
appears less promising. Restricting the window for the fit is
necessary to gain a feasible value for the parameters. Parameter
values were obtained in the way described and are shown in
Table I, including the range of windows chosen, but should
be taken with the according caution. We will see that this
lack of confidence is not the result of expanding the analyses
to multiple sequence alignment. The same analysis of the

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.1  0.2  0.3  0.4  0.5

LOCALλ

Su/Smax

L=40
L=60
L=80

FIG. 4. The fit parameters found for different window sizes
(Smin,Send). Several sequence lengths L for Nseq = 3 are shown.

distributions found for pairwise alignments rather shows that
the fit performs even worse there. The analytical solution [6]
does assume infinitely long sequences. Generally, a decrease
of the parameter λ2, indicating the strength of the Gaussian
correction, can be observed; see Table I. The decrease of λ2

with increasing sequence length indicates that the correction
is partially due to a finite-size effect, disappearing for long
sequences. This decrease has already been found in the study
of pairwise alignment distributions [9] and can be confirmed
here for multiple alignments. As even the corrected function
and the acquisition of its parameters is still quite makeshift, as
visible from the χ2/nfd values shown in Table I, beginning
considerably larger than one, we did not conduct a more
quantitative analysis of the decrease of λ2.

2. Comparison to pairwise alignment

As the simulations for multiple sequence alignment were
computationally expensive, especially in the case of local
alignments, only short sequences up to L = 80 could be
used for score distribution analysis in the present work. For
a better comparison with the data for pairwise alignment,
where mostly longer sequences were studied [9], we have
performed additional simulations for shorter sequences also

TABLE I. Parameters for the fit of the Gumbel distribution with
Gaussian correction to the obtained data for local multiple sequence
alignments (Nseq = 3). Parameter values are convergence values: A
fit was performed for each parameter value as a function of the
window size of the distribution. χ 2 values were calculated for these
convergence values of the parameters in the Gumbel distribution in
respect to the obtained distribution data.

L λ 104λ2 S0
χ2

ndf Sl [Sl/Smax]

40 0.25570(7) 0.968(4) 32.163(4) 8.2 200[0.152]
50 0.25378(5) 0.7441(15) 35.568(4) 7.3 225[0.14]
60 0.25164(6) 0.6045(17) 37.9981(13) 6.7 225[0.114]
80 0.247685(25) 0.4889(4) 41.744(7) 3.7 750[0.284]
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FIG. 5. The fit parameters found for different window sizes
(Smin,Send). Several sequence lengths L for Nseq = 2 are shown.

for pairwise alignments. As we implemented a parallel version
of the algorithm for the MSA simulations, we could also
obtain the distribution of scores over a larger range of the
support, compared to the previous work. We fitted the data to
the Gaussian-corrected Gumbel distribution. Obtained values
are shown in Table I. Restricting the fit to the range of the
support, which was addressed in the previous work where
known, reproduces the parameter values found before. But
when we extended the distribution range for the fit further, it
yielded different parameter values. Figure 5 shows the fit value
of λ for Nseq = 2 for different window sizes. This resulted in
a small but visible linear decrease of the parameter value,
showing that in fact even the corrected Gumbel distribution is
not sufficient to describe the obtained data over a large range
of the support. The lower boundary of the window, Sl , was
varied as well, eliminating small S values. The linear decrease
of parameters could be observed for varying Sl while fixing
Su = Smax as well as for varying Su again, but with different,
higher, boundaries Sl . Furthermore, χ2 values were obtained
for actually performing the fit to the whole support obtained
and are shown together with parameter values in Table II. They
also indicate that the fit of the corrected Gumbel distribution
does not perform as well for pairwise local sequence alignment
as for multiple local sequence alignment.

TABLE II. Parameters for the fit of the Gumbel distribution with
Gaussian correction to the obtained data for local pairwise sequence
alignments (Nseq = 2). As no convergence of parameter values were
observed, all values, including χ 2, are given as obtained by fitting
over the whole range of the support for which data has been obtained.

L λ 104λ2 S0
χ2

ndf

30 0.3243(4) 12.2506(13) 12.755(29) 21.2
40 0.31857(18) 9.175(7) 15.096(19) 26.5
50 0.30084(2) 7.597(5) 15.50(3) 34.5
60 0.29452(12) 6.3636(27) 16.675(23) 40.9
80 0.2824(12) 4.8321(17) 17.42(4) 43.4

Thus, instead of comparing parameters of fitted distribu-
tions, we rather compare the data itself. This requires some
scaling to get rid of sequence-length dependencies. The results
in Ref. [26] indicate that for lengths (L,L′) of a sequence pair,
by rescaling the S axis with Smax and by rescaling the log
probabilities by log p(Smax|L,L′) the curves for different pairs
of sequence lengths fall approximately on top of each other.
This means

log p(S|L,L′)
log p(Smax|L,L′)

≈ f (S/Smax), (10)

where f (.) is a universal function of the relative score Q =
S/Smax. Thus, for sequence lengths L̂,L̂′ and a different score
Ŝ but with the same relative score Q, i.e., Ŝ = S/SmaxŜmax,
one obtains

log p(S|L,L′) ≈ log p

(
SŜmax

Smax

∣∣∣L̂,L̂′
)

log p(Smax|L,L′)
log p(Ŝmax|L̂,L̂′)

.

(11)

Figure 6 shows selected distributions for Nseq = 2 and Nseq =
3 with rescaled score- and probability axes. The distributions
for pairwise alignments coincide in the low-probability region
as well as the distributions for multiple alignments. There
is only a deviation in the small region of high probabilities,
which disappears with increasing sequences length. There is,
however, an overall difference between pairwise and multiple
alignments. The distributions do not coincide and the curvature
is significantly stronger for Nseq = 3. Thus, the deviation from
the Gumbel distributions is stronger for multiple alignments
and distributions of scores for multiple alignments cannot be
estimated easily from the data obtained for pairwise alignment
distributions. Nevertheless, the knowledge of one distribution
of arbitrary length L makes it possible to estimate distributions
for other sequence lengths L′ also for multiple alignment of
Nseq = 3 sequences. The same can be expected for Nseq > 3.
But a more precise analysis would require more simulation
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FIG. 6. The distributions for various L and Nseq with rescaled
scores and probabilities. The distributions coincide for low probabili-
ties and identical number of sequences Nseq but differ among pairwise
and multiple alignments. Inset: High probability region in which the
distributions deviate from each other (even for same Nseq).
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work for multiple sequence alignments with more sequences.
These analyses could potentially yield a method to estimate
the distributions for Nseq > 3 by readily obtained distributions
with less sequences. Nevertheless, for an actual study the
numerical demand for the alignment of even more sequences
appears to be too high. Here, the implementation of a good
working heuristics for multiple local sequence alignments with
gaps would be helpful.

B. Global multiple sequence alignments

We could adopt the large-deviation approach easily to
global pairwise and multiple sequence alignment with and
without gaps. We below first present the analysis of the
high-probability tail for pairwise sequence alignment and
compare it to previous simple sampling results. Furthermore,
we expanded the method to multiple sequence alignment and
compare to the results for pairwise sequence alignment.

1. Pairwise global sequence alignments

We are not aware of any previous large-deviation study
for multiple or for pairwise global alignment. Here we first
show our results for pairwise global alignment. For a direct
comparison to the results of Pang et al. [13], simulations
were performed for alignments with identical gap costs of
(α = 7,β = 1); see Fig. 7. First we performed a fit of the �

distribution Eq. (2), which was found in Ref. [13] to fit the
data well, to the high-probability region P (S) > 10−3 of the
obtained distributions. For pairwise alignment of sequences
of lengths L = 50, 100, 200, we obtained parameters similar
to the sampling results [13], as shown in Table III. As
visible in Fig. 7, this fit does not match the data in the
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FIG. 7. The alignment score distribution as obtained with the
rare-event simulations for the global alignment of Nseq = 2 sequences
of length L = 100, here with gap costs (α = 7,β = −1) for direct
comparison with Ref. [13]. Shown are the fits of the � distribution
with and without Gaussian correction as well as the fit of the
� distribution to the high-probability region (P (S) > 10−3, S =
[Rmin = −40 : Rmax = 23]) only. Inset: high-probability region.

TABLE III. Parameters for the fit of the Gamma distribution to
the obtained data for global multiple sequence alignments as found
in [13] and as found with the large-deviation simulations with the fit
restricted to P (S) > 10−3.

L Pang [13] high P (S)

50 γ 41.00 33(6)
λ 0.63 0.60(5)
μ −84.60 −66(5)
χ2

ndf 1.43
100 γ 49.16 48(6)

λ 0.55 0.57(4)
μ −115.44 −95(5)
χ2

ndf 1.05
200 γ 52.24 59(12)

λ 0.44 0.50(5)
μ −153.25 −123(12)
χ2

ndf 0.74

tail of the distribution. Extending the fit to regions with
lower probabilities yielded significantly different parameter
values. Nevertheless, this leads to a strong deviation in the
high-probability region. For a more elaborate study one could
also obtain data for the low-scoring side of the distributions
(by means of negative “temperatures” in the large deviation
simulations). Nevertheless, the results indicate that the as-
sumption of scores distributed according to the � distribution is
somewhat flawed. Thus, we also applied a Gaussian correction,

pgc(S) =
{

λγ (S−μ)γ−1e−λ(S−μ)

�(γ ) eλ2S
2

S > μ

0 S � μ,
(12)

with the � distribution Eq. (2) and the Gaussian correction
with the parameter λ2 indicating its strength. Figure 7 shows
the fits of the different distributions. Clearly, the � distribution
with the Gaussian correction covers the distribution best over
the whole probability range.

2. Multiple global sequence alignments

The results for the multiple global alignment of Nseq = 3
sequences of length L = 40 are shown in Fig. 8. Included
are the distributions obtained with the progressive heuristics
as well as with the computationally much more expensive
exact algorithm. The significant difference in the low-scoring
region of the distributions is clearly visible. In the high-scoring
region the heuristics seems to work better, i.e., approaches
the exact optimum alignments, which is visible in the better
consensus between the two probability distributions. Shown
are also fits to the (uncorrected) � distribution. The distribution
fits only well for the distribution obtained with the heuristics,
but not for the distribution obtained with the exact algorithm,
i.e., the Gaussian correction does not seem to be necessary
for multiple alignments of Nseq > 2 sequences when using
the heuristics. For Nseq = 2 the correction was found to be
necessary in any case. But for pairwise alignment, there is
only one possible pair of sequences to be aligned, which is
done by the dynamic programming algorithm. The true optimal
alignment is found. In contrast, when using the heuristics, for
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FIG. 8. Distributions obtained for the global alignment of Nseq =
3 sequences of length L = 40 with the exact algorithm and the
heuristics. The lines show the fit of the uncorrected � function against
the data. The inset shows the high-probability region, in which both
distributions differ significantly from each other and the fit for exact
alignments deviates significantly from the data.

Nseq > 2 sequences the first sequence pair is aligned with the
dynamic programming algorithm. The following sequences
are aligned to this initial alignment. If the sequences are
very dissimilar, the initial alignment does not reflect the
structure of the multiple alignment very well. This means,
especially in the low-scoring region scores lower than the
true optimal scores are found with progressive alignment.
The different behavior in the high-probability region between
pairwise and multiple alignments is one possible explanation
for the difference in parameter behavior. Generally, the exact
algorithm is computationally too expensive for multiple se-
quence alignment and the heuristics is used. It should be noted
that for the score statistics this use of the heuristics renders
the Gaussian correction unnecessary. Further observations for
global multiple sequence alignment were made for the case of
using the heuristics if not stated otherwise.

3. Comparison of pairwise and multiple sequence alignment

Figure 9 shows the values of fit parameter λ2 for different
sequence lengths and different number of sequences. The
most obvious observation to be made is that for Nseq = 2 the
λ2 values are positive, i.e., correcting the curvature of the
distribution to lower probabilities, converging strongly toward
zero. For multiple alignments of Nseq > 2, however, λ2 values
are relatively close to 0. This is compatible with the fact that a �

distribution without Gaussian correction seems to fit the data
well when using the heuristics. Thus, when obtaining score
distributions for significance analysis of sequence alignments,
one actually needs to simulate multiple alignments explicitly,
including large-deviations techniques. It is not possible to
deduce the distributions from the (large-deviation) results of
pairwise alignment.

The behavior of the parameter γ as function of sequence
length is shown in Fig. 10 for the three cases Nseq = 2, 3,
and 4. While the correction parameter λ2 decreases with
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FIG. 9. The parameter λ2 as found for the distributions of global
alignment for different sequence lengths L and different number of
sequences Nseq. Drawn lines are guides for the eye.

sequence length or is basically zero anyway, the parameter
γ increases. For γ → ∞ the � distributions converges to
the normal distribution. Thus, for long enough sequences, the
distribution of global alignment scores converges to a normal
distribution. This can be understood in the following way:
Neglecting gaps, which is in particular true for very large
scores, the pairwise scores can approximately assumed to be
i.i.d. random numbers. The overall sequence score is a sum
over these values. For L → ∞ the central limit theorem holds,
resulting in a Gaussian distribution.

Same as for local sequence alignments, the probability dis-
tributions can be rescaled according to Eq. (11). The rescaled
distributions are found in Fig. 11. Again, for identical number
of sequences, the distributions coincide again for different
sequence lengths L in the low-probability region. Again,
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FIG. 10. The parameter γ as found for the distributions for global
alignment of different sequence lengths L and different number of
sequences Nseq.
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there is a significant difference between the distributions for
different number of sequences Nseq, indicating that indeed
significance analysis for multiple sequence alignments cannot
be based on the results for pairwise alignments, i.e., dedicated
multiple sequence alignment studies have to be performed
explicitly, as is done in this work. Note that the initial deviation
for higher probabilities seems more distinct than for local
alignments, but it should be kept in mind that the sequence
lengths shown for global alignments differ more than for local
alignments, because more data was available.

The strong difference of the resulting distribution of
pairwise and multiple alignments could be influenced by the
use of a heuristics for multiple alignments. For small sequence
length, we were able to compare the results of both algorithms.
Figure 12 shows the rescaled distribution obtained for L = 40
for pairwise alignment and in case of multiple sequence
alignment with Nseq = 3 the rescaled distributions obtained
with the heuristics as well as with the exact algorithm. The
distributions obtained from heuristics and exact algorithm,
respectively, differ only in a small region, while the results
from pairwise and multiple alignment differ everywhere. Thus,
the different development of distributions does not seem to be
a result of the application of a heuristics.

C. Comparison of local and global alignments

Finally, the score distributions of local and global sequence
alignment can be compared. For mostly dissimilar sequences
the selection of best-scoring subsequences can increase the
alignment score. Since the probability of the sampling of
a specific sequence set is independent of the alignment
algorithm, dissimilar sequence sets would score higher in local
sequence alignment, where no negative scores S are possible.
This means that the low-scoring region of the distribution for
local alignments should be skewed toward higher alignment
scores compared to the distribution of global alignments. This
can be observed in a comparison of score distributions with the
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FIG. 12. Distributions obtained for global alignment of Nseq = 2
and Nseq = 3 sequences of length L = 40 (with the exact algorithm
as well as with the heuristics for Nseq = 3). The log(P ) values
are rescaled with Eq. (11) and the scores with S/Smax. The inherit
difference between Nseq = 2 and Nseq = 3 is obviously not based the
use of an heuristics. The inset show the high-probability region, in
which all three obtained distributions differ. In the case of Nseq = 3
this difference is small compared to the exact algorithm and is due to
the bad performance of the heuristics in the low-scoring region.

different alignment types for the same sequence set properties,
as shown in Fig. 13. Here, as an example, the obtained
distributions for Nseq = 3 sequences of length L = 60 are
shown. As can be seen, the maximum of the distribution for
global alignments is found for negative scores, the maximum
for local alignments is positive (as local alignments can only
have scores S > 0).

On the other hand, most high-scoring global alignments,
which have only few negative scoring residue-pairings or
gaps, would not yield better scores by selecting (smaller)
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FIG. 13. Obtained distributions for local as well as global
alignment of Nseq = 3 sequences of length L = 60. The inset shows
the high-scoring region, where both distributions approach each other.

022127-9



PASCAL FIETH AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 94, 022127 (2016)

subsequences. This means that in the high-scoring region,
many sequence sets yield the same score in local and global
alignment. Therefore, the distributions of local and global
sequence alignment can be expected to agree for higher scores.
This can exactly be seen in Fig. 13. This agreement might
allow us to estimate statistics of computationally expensive
local alignments in the high-scoring region by means of the
cheaper global alignment. However, for practical applications
in molecular biology, local alignment results typically in scores
that are located in the intermediate region, where it differs
from global alignments. Thus, knowing the distribution of
random-sequence scores for global alignment alone would not
be sufficient to estimate the local-alignment score distribution
here.

V. SUMMARY AND OUTLOOK

We have studied the distribution of scores of multiple
sequence alignments in the ensemble of i.i.d. random protein
sequences. The statistical mechanics-based large deviation
simulations used here allowed us to numerically measure
the distribution of alignment scores in the biologically most
relevant region of small probabilities, e.g., ∼ 10−100. Data for
these low-probability regions was not available before.

Analysis of the distribution for multiple local sequence
alignment showed that the Gumbel distribution alone does
not describe the data as found previously for pairwise align-
ments [9]. Further analysis showed that the suggested Gaussian
correction improves the behavior but still is not sufficient
to describe the whole distribution. Nevertheless, the results
indicate that for a known distribution for a certain number
of sequences Nseq and fixed sequence lengths L, distributions
for other sequence lengths but the same Nseq can be found by
rescaling.

Also for pairwise global sequence alignment, where previ-
ously only simple-sampling results were available, we could
obtain the distribution of scores over a large range of the
support. We could reproduce the previous simple-sampling
results [13] only by restricting the fits to the high-probability
region. Extending the analysis to the low-probability region
showed significant deviations of the � distribution fit from
the data. Again, a Gaussian correction improves the fit of the
distribution. The comparison between multiple and pairwise

global alignments revealed different characteristics of the fit
parameters. While the parameter λ2, indicating the strength
of the Gaussian correction, was found to be positive but
decreasing with sequence length for pairwise alignments, it
was almost negligible (actually slightly negative) for multiple
alignments, also converging toward zero. The application of
fast heuristics seems to be the reason for this difference
in behavior, because the behavior for multiple alignment
was comparable to the behavior of pairwise alignment when
using the progressive heuristics. However, in the biologically
relevant low-probability region the heuristics performs well
and for small sequence length the distributions found with the
exact algorithm and the heuristics do not differ.

It is interesting to note the behavior in the limit of
infinitely long sequences, which is for biological applications
not so relevant but of fundamental interest, in particular
with respect to the analytical results. Similar to previous
studies for pairwise alignments, in this limit the distribution
of scores are compatible with standard distributions: For long
sequences the score distribution of local alignments appears
to converge to the Gumbel distribution, the score distribution
of global alignments to a normal distribution. Since in many
actual applications, multiple alignments with more than ten
sequences are not uncommon, simulation of sequence sets
with a higher number of sequences (Nseq > 4) appears sensible
in future studies. Nevertheless, due to the computational
complexity of the exact algorithm, which depends strongly
on Nseq, this requires the design and implementation of faster
algorithms, e.g., in particular efficient heuristics for multiple
local sequence alignment.

Also it would be desirable, to extend these alignment sim-
ulations to more refined ensembles of random sequences, e.g.,
for biologically more specific ensembles like transmembrane
proteins [11], or sequences with correlations.
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