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Lock-and-key dimerization in dense Brownian systems of hard annular sector particles
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We develop a translational-rotational cage model that describes the behavior of dense two-dimensional (2D)
Brownian systems of hard annular sector particles (ASPs), resembling C shapes. At high particle densities, pairs
of ASPs can form mutually interdigitating lock-and-key dimers. This cage model considers either one or two
mobile central ASPs which can translate and rotate within a static cage of surrounding ASPs that mimics the

system’s average local structure and density. By comparing with recent measurements made on dispersions of
microscale lithographic ASPs [P. Y. Wang and T. G. Mason, J. Am. Chem. Soc. 137, 15308 (2015)], we show that
mobile two-particle predictions of the probability of dimerization Py, €quilibrium constant K, and 2D osmotic
pressure I1,p as a function of the particle area fraction ¢, correspond closely to these experiments. By contrast,
predictions based on only a single mobile particle do not agree well with either the two-particle predictions or
the experimental data. Thus, we show that collective entropy can play an essential role in the behavior of dense
Brownian systems composed of nontrivial hard shapes, such as ASPs.

DOLI: 10.1103/PhysRevE.94.022124

I. INTRODUCTION

Homodimer formation has been observed for many differ-
ent types of molecules, ranging from simple acetic acid [1]
to highly complex proteins [2]. In particular, many kinds of
proteins, such as the structural coat proteins of viruses [3,4],
and functional enzymes, such as organophosphorous hydrolase
[5], form homodimers. In such complex molecular systems,
site-specific interactions between monomers, by mechanisms
such as hydrogen bonding, can play important roles in dimer
formation and stability. By contrast, in Brownian systems
of hard colloidal particles, the core shapes of constituent
particles and entropy maximization essentially determine the
system’s structure and its phase behavior at a certain particle
density [6,7]. For instance, certain particle shapes, which have
shape-complementary convex and concave regions, can form
composite lock-and-key dimer structures [8]. For hard parti-
cles, the simplest type of dimer is the lock-and-key homodimer
composed of two identical monomers that mutually interpen-
etrate, such that the convex portion of one particle enters the
concave portion of the other and vice versa. Because attractions
are absent in hard particle systems, emergent dimer structures
can only be maintained over long times in highly crowded envi-
ronments. In such crowded environments, the osmotic pressure
exerted by neighboring particles inhibits the separation of two
monomers that have interpenetrated to form a dimer.

Recently, lithographic fabrication of monodisperse disper-
sions of microscale annular sector particles (ASPs) [8—12]
and formation of two-dimensional (2D) Brownian systems of
particles at high densities that have effectively hard interac-
tions [13,14] using roughness-controlled depletion attractions
[15-18] have enabled direct visualization of dimerization in
two dimensions [9]. Here, we investigate the degree of dimer-
ization of colloidal ASPs in dense 2D Brownian systems using
a translational-rotational cage model simulation that is similar
to prior cage model simulations of dense Brownian systems of
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hard rhombs [19,20] and hard tri-stars [21]. Using a collision
detection routine that detects when two ASPs overlap, this
simulation enumerates accessible translational and rotational
microstates associated with either one or two mobile ASPs
surrounded by a static cage of ASPs. This cage structure
approximates the average local structure around the central
mobile ASP(s) and sets the system’s overall density, similar to
cage models of hard spheres [22,23]. Once these accessible mi-
crostates have been determined, key thermodynamic properties
of the system can be calculated using basic principles of statis-
tical mechanics [24,25]. This direct cage modeling approach
provides insight into how many local degrees of freedom must
be included in order to obtain reasonably accurate predictions
for the collective behavior of the dense hard particle system;
such insight is not typically provided by many-particle
simulations based on Brownian or molecular dynamics [26].

ASPs represent an interesting class of shapes that can range
from slender partial rings to pie wedges [27]. Here, we consider
a monodisperse dispersion of uniform ASPs that resemble
partial rings or C shapes. The shape and size of an ASP
can be characterized by the following three parameters: an
inner radius R;, an outer radius R,, and an opening angle
¥, as defined in Fig. 1(a). Thus, the perimeter of an ASP
is set by two aligned concentric circular arcs, each having
an angular range 2w —y, and two radial line segments, each
having a length R, — R;, which connect the ends of the arcs.
If R, is chosen to set a characteristic particle length scale,
then only two parameters completely define this class of ASP
shapes: R;/R, and . For certain ranges of these parameters,
two monomer ASPs have the capacity to dimerize in mutual
lock-and-key configurations. We define mutual lock-and-key
dimerization to occur when a portion of one ASP makes contact
with an imaginary dashed line extending between the ends
of the inner circular arc of the other ASP and vice versa.
Examples of configurations of two proximate ASPs that are
not dimerized are shown in Figs. 1(b) and 1(c). However, in
the example configuration shown in Fig. 1(d), a portion of one
ASP penetrates into the interior cavity of the other ASP and
vice versa, so this is a mutual lock-and-key dimer.
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FIG. 1. Schematics of an annular sector particle (ASP) and the
geometrical condition defining mutual lock-and-key dimerization of
two ASPs. (a) Shape and size parameters characterizing an ASP: R;
and R, are the inner and outer radii, respectively; ¥ is the opening
angle. Coordinates x and y define the center of the ASP with respect
to the origin of a fixed reference frame. 6 is its orientation angle,
with respect to the x axis, based on a ray from the center of the
circular arcs to a point that is midway between the ends of the ASP’s
two arms. (b) Two separate monomer ASPs: no portion of a first
ASP intersects with the imaginary dashed line defining the opening
boundary of the concave interior of a second ASP and vice versa. (c)
Two proximate ASPs: a first ASP does intersect with the imaginary
dashed line of a second ASP, but the second ASP does not contact the
imaginary dashed line of the first ASP. (d) Two proximate ASPs
in a mutually interpenetrating lock-and-key dimer configuration.
Mutually interpenetrating lock-and-key dimerization occurs when a
portion of the perimeter of one ASP intersects with the imaginary
dashed line spanning the inner opening of the other ASP and vice
versa. This geometric definition for dimerization of nonoverlapping
ASPs can be readily determined using a collision detection routine.
This collision detection routine is based on a combination of routines
which detect the intersection of two circular arcs, a line segment with
a circular arc, and two line segments.

In order to understand how the process of dimerization
is influenced by factors such as particle shape and particle
density, we implement a model of either one mobile ASP
or two mobile ASPs within a fixed cage of neighboring
ASPs. In this simulation, the space of accessible positions
and angular orientations (i.e., accessible microstates) of up to
two mobile ASPs is discretized and systematically explored
using a collision detection routine, written in Mathematica
(Wolfram Research). This routine also determines which
accessible microstates of mobile ASP(s) correspond to mutual
lock-and-key dimer configurations of the two central sectors,
using a geometric test criterion [see Figs. 1(b)-1(d)]. These
simulations are executed over a range of particle area fractions
da, a quantity related to the average density of the cage,
and over a range of values of the particle shape parameters
Ri/R, and . This range of shape parameters includes
values which match the parameters of ASPs that have been
studied experimentally. Although dimers of ASPs are known
to have positive and negative chiral senses, here, we model
dimerization having only a single chiral sense since the results
for the mirror image of the dimer cage structure are the
same. Because the model only relies on an average local
short-range structure around a given pair of mobile ASPs,
we show that this model for the cage reasonably describes the
main thermodynamic features of dense systems of ASPs that
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form in racemic proportions and are therefore disordered at
medium and long range. Although the ASPs are strictly hard
particles, dimers can be compressed over a fairly wide range
of ¢ above the dilute limit, and this leads to an interesting
dependence of the equilibrium constant K of the dimerization
reaction as a function of applied 2D osmotic pressure I1,p.

The results of these cage model simulations are given
in terms of the total number of accessible microstates €2
and the number of accessible dimer microstates Qp for the
mobile ASP(s). These values can be used to compute a variety
of physical quantities of interest, including the probability
of dimerization Pginer, K of the lock-and-key dimerization
reaction, and IT,p of the thermalized system. Predictions of
these quantities are found to match closely with experimen-
tal measurements of ASPs, without introducing adjustable
parameters. Given this success, we extend results of these
cage model simulations to ranges of shape parameters that
have not been explored yet experimentally. Moreover, these
simulation results demonstrate the importance of accounting
for the collective microstates of pairs of mobile ASPs, not
just a single ASP, in order to accurately reproduce certain key
features of the hard ASP system.

II. METHODS

In order to study dimerization in systems of ASPs, a
translational-rotational cage model is implemented in Mathe-
matica, similar to previous simulations used to study colloidal
dispersions of particle shapes such as thombs [20] and tri-stars
[21]. This cage model has been developed to treat either a
single central mobile ASP or, alternatively, a pair of central
mobile ASPs. While the two-ASP calculation requires signifi-
cantly more computational time, it also provides more realistic
predictions because it includes the most basic contribution to
the collective entropy of the system.

At each different value of ¢, we build a static cage
of ASPs that describes the average local structure around
a central pair of ASPs, whether dimerized or not. To do
this, we define and solve a set of equations that equalizes
all spacings between densely configured pairs of ASPs that
are uniformly positioned, oriented, and dilated, as shown in
Fig. 2. Such equalized spacings between ASPs create cage
configurations that approximately maximize the accessible
microstates for cage ASPs if they were allowed to explore
different configurations. At higher ¢, the cage ASPs are all
dimerized, whereas at lower ¢, the cage ASPs are separated
monomers. The cage effectively defines a noncircular central
cavity in which the two central mobile ASPs are located,
and the accessible microstates of these mobile ASPs are
constrained by nonoverlap with regard to each other and
also the cage ASPs. This approach for defining the cage is
taken for computational convenience since such idealized cage
structures, while providing a reasonable approximation of an
average cage structure at a certain density, do not incorporate
the randomness in chirality and orientation of dimerized
ASPs that have been observed in experiments. To reduce
computational time, collision detection between central mobile
ASPs and certain outer cage ASPs (e.g., uppermost two ASPs
and lowermost two ASPs shown in Fig. 2) can be eliminated,
except at lower ¢, towards the dilute limit, in which case
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FIG. 2. Cage configurations limiting motion of the central ASPs
over a range of values of particle area fractions ¢,: Ri/R, = 0.75
and ¢ = 95°. Static cage ASPs are shown in black. Examples of two
central mobile ASPs at ¢4 = 0.263 in (a) a monomer configuration
(green or light gray) and (b) a dimer configuration (red or dark gray).
Example cages generated at ¢5: (c) 0.180, (d) 0.263, and (e) 0.340.

potential collisions with additional outer cage ASPs are also
checked. For most values of ¢ that we consider, collisions of
central mobile ASPs with only the eight cage ASPs closest to
them need to be checked. Two central mobile ASPs can have
a configuration corresponding to either noninterpenetrating
monomers [e.g., Fig. 2(a)] or to mutually interpenetrating
lock-and-key dimers [e.g., Fig. 2(b)]. Examples of cages,
showing the central cavity, at several different ¢o values are
shown in Figs. 2(c)-2(e).

Given two fixed shape parameters R;i/R, and v, as well
as ¢, the cage model simulation for two mobile ASPs
is implemented as follows. First, a spatial configuration
of the cage is defined to match the given ¢5. We then
discretize the six-dimensional space of all possible positions
and orientations of the two central ASPs, which yields a set
of all possible microstates, some of which might be accessible
to the central ASPs without any overlap. For each microstate
in this set, a collision detection algorithm determines whether
this microstate corresponds to a physically accessible state
of the two central ASPs. Here, an accessible state is one for
which the central ASPs do not overlap with each other and
also do not overlap with any cage ASPs. In addition, if a state
is found to be accessible, then it is also tested to determine
if the configuration corresponds to a lock-and-key dimer, as
defined in Fig. 1(d). The typical output of the cage model
simulation, for particular values of R;/R,, ¥, and ¢4, consists
of the total number of accessible microstates €2 and the number
of accessible dimer microstates 2p. The number of accessible
monomer (i.e., nondimer) microstates is simply Qy = Q2 —
Qp. If desired, the entire list of accessible states in the
six-dimensional phase space can also be generated. To preserve
the accuracy of the results while reducing computational time,
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we use a finer discretization of the phase space at larger ¢5 and
a coarser discretization at lower ¢4. The resulting numbers of
microstates are appropriately rescaled with respect to a fixed
six-dimensional volume representing the entire phase space
of microstates, so that the results of simulations executed at
different discretizations can be meaningfully combined.

This two-particle cage model simulation is performed over
a range of shape parameter values for R;/R, from 0.65 to 0.8
and for ¢ from 70° to 120°. For each pair of parameters in this
range, 2 and Qp are computed for values of ¢4 between 0.08
and 0.48. Specifically, the simulation is run for R;/R, = 0.75
and ¥ = 95° in order to compare the simulation results with
experimental data [9] which have been gathered for ASPs with
these shape parameter values. The lower limit of this range of
¢a values is set by the escape of central ASPs from the cage,
and the upper limit is set by the highest packing density above
which overlap of ASPs would always occur.

In addition, for R;/R, = 0.75 and ¥ = 95°, a modified
version of this simulation, having only a single central mobile
ASP, is performed in order to compare with measurements and
results of the two-particle simulations. In this single-particle
version, one central ASP is held at a fixed position and
orientation corresponding to the cage configuration, while
the other central ASP is moved and tested for nonoverlap.
Collision detection is used to determine the numbers of
accessible and dimer microstates based only on the motion
of a single central ASP. This single-particle simulation has a
reduced three-dimensional phase space and runs very rapidly
(time ~N3, where N represents a number of microstates
checked along a given dimension of the phase space). However,
as a consequence of its basic assumptions, the single-particle
simulation does not include collective entropic effects. By con-
trast, the two-particle simulation, which has a six-dimensional
phase space, runs more slowly (time ~N %), but it does include
collective entropic effects at a basic level. For R;/R, = 0.75
and ¥ = 95° using the two-particle simulation, the average run
time to calculate accessible microstates over the entire cage
and classify configurations as monomer or dimer is about 5 h
on a ThinkServer (Lenovo TS140, Xeon E31225v3 quad-core
3.2 GHz, 4 GB RAM) for 15 different values of ¢4.

III. RESULTS AND DISCUSSION

As an example to illustrate accessible microstates of central
ASPs in a cage of immobile ASPs, we show transparency
overlay plots of the accessible monomer and dimer microstates
for a single-particle simulation in Figs. 3(a) and 3(b), re-
spectively. Only some accessible microstates correspond to
mutually interpenetrating lock-and-key configurations. The
requirement of mutual interpenetration is our strict geometrical
definition for dimerization; both particles must have portions
that cross the dashed lines of the other shown in Fig. 1(d). For
two-particle simulations, both central ASPs can move within
the static cage. This two-particle case is difficult to depict
clearly since the transparency overlay plots become smeared
over the entire cage.

Over a range of different shape parameters R;/R, and ,
we have calculated 2 and Qp, respectively, as a function of
¢a. Having determined 2 and Qp, through collision detection,
the equilibrium physical properties of dense 2D Brownian
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FIG. 3. Accessible microstates of a first central mobile ASP (top)
from the single-particle simulation for a fixed position and orientation
of a second central ASP (bottom). Here, R;/R, = 0.75, ¥ = 95°,
and ¢, = 0.263. The location and orientation of the fixed ASP, with
respect to a coordinate system located at the geometric center of
the cage, are given by x = —0.05, y = —0.5, and 6 = 300°, in units
where R, = 1. Transparency overlay plots of accessible microstates
corresponding to (a) monomer configurations (green or light gray)
and (b) dimer configurations (red or dark gray).

systems of ASPs can be computed for different R;/R, and
Y as a function of ¢. The probability of dimerization is
simply Paimer = 2p/ €2, given the assumption of equal a priori
probabilities for each accessible microstate. Experimentally,
this probability can be identified as the fraction of particle pairs
which are dimerized. The equilibrium constant K is defined
by assuming that separated particle pairs are reactants and
dimerized pairs are products. The change in the Gibbs free
energy associated with the dimerization reaction of a pair of
ASPsis AG = —kgT In K, where kg is Boltzmann’s constant
and T is the temperature. For hard particle systems, this free
energy change is entirely entropic: AG = —T AS, where AS
is the entropy change of this reaction. Applying Boltzmann’s
definition of entropy between monomer and dimer states of
the pair yields AS = kg In (Q2p/ QM). After equating these two
expressions for AG of the reaction, K can be simply deduced
as K = Qp/ Q. Because the phase space is six-dimensional,
corresponding to microstates of two particles regardless of
whether or not they have dimerized, this form for K, which
can be determined from the simulation results, is equivalent to
the experimental K determined by the law of mass action,
K =¢ap /cﬁ M using measured area fractions of dimers
¢ap and monomers da M, respectively, at the same depth in
an equilibrated 2D gravitational column. Moreover, the 2D
osmotic pressure I1,p as a function of @, is given by

ks T

3(ln Q)
24, '

0oa

Mop(fa) = ———¢n (1)

Here, A} is the area of a single ASP, and €2 is a function that
depends on ¢4. Thus, the osmotic equation of state ITop(¢a)
can be determined by calculating €2(¢4) from the simulation
and then differentiating with respect to ¢a.

In prior experiments [9,21], if a system of Brownian hard
particles in a 2D column is subject to a uniform gravitational
field, then the two-dimensional osmotic pressure can also be
expressed in terms of an integral that yields the total effective
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FIG. 4. Calculated minimum value of the opening angle Y, of
ASP shapes that can dimerize as a function of R;/R,. In the region
below this curve, dimerization is impossible.

particle mass above a given height z in the column:
ksT [ ’ ’
Mop(@) = —— [ alz)dz/ he). @
p k4

This integral depends on a particular thermal-gravitational
height h, associated with the initial exponential increase in
particle density as a function of depth within the equilibrated
column in the dilute gas-like region. In the prior experiments
[9], TTop has been obtained by extracting s, from a curve fit
of ¢a m(z) and then integrating using Eq. (2). However, some
minor inaccuracy in the experimental 4, could have resulted
from the curve fitting method that was employed since this
value depends on the functional form and the range of z used
in the fit. Here, we refit the experimental data for ¢ m(2)
using a simple exponential form, including only the most dilute
gas-like region, and carefully check the correlation coefficient
to see how it changes for different ranges of z used in the
fit. From this, we determine a more accurate value of i, =
4.35 pm, which is lower than the prior reported value of 7, =
5.6 um [9], which included an additional point at z closer to the
reaction zone; including this extra point reduces the correlation
coefficient, and thus, it should not have been included. Using
the more reliable value of 7y = 4.35 um, we follow the same
procedure in calculating I, for the experiments and use these
values when comparing with the simulation results for ITyp
from Eq. (1). We emphasize that the simulation results for
[Tp(¢a) in Eq. (1) are independent of any value used for A,
in determining an experimental [Typ(¢a).

Geometry limits the range of values of R;/R, and ¥
over which dimerization of two separate monomer ASPs is
physically possible while keeping both ASPs in the plane
while translating and rotating them. Dimerization can readily
occur when the opening angle is large and the aspect ratio is
sufficiently slender. Thus, at large v and R;/R,, dimerization
is possible, but as ¥ is reduced or as the annular sector becomes
thicker, corresponding to smaller R;/R,, dimerization is
prohibited. These restrictions are quantified in Fig. 4, which
displays the minimum value of i for which dimerization is
possible, given a particular value of R;/R,. This value {y;, has
been computed by numerically sampling the space of possible
relative positions of two annular sectors for given values of v
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FIG. 5. Predictions from the two-particle cage model simulation
of the dimerization probability Pgimer- (2) Paimer as @ function of ¢4 at
fixed ¢ = 100°: R;/R, = 0.65 (blue diamonds), R;/R, = 0.7 (red
squares), Ri/R, = 0.75 (black circles), and R;/R, = 0.8 (orange
triangles). (b) Pgmer as a function of ¢, at fixed Ri/R, = 0.75:
¥ =70° (blue diamonds), ¢ = 90° (red squares), and ¥ = 110°
(black circles).

and R;/R,. Here, we consider dimerization to be physically
possible if, in this space of relative positions, there exists an
unbroken path between a undimerized configuration and a
dimer state. This criterion excludes cases where the annular
sectors would have to intersect one another in order to reach
the dimer configuration since these states are not physically
realizable without lifting one of the annular sectors temporarily
out of the plane. Although the simpler test for dimerization
displayed in Fig. 1(d) is used for the actual enumeration of
microstates in the cage model, the calculation of i, offers a
definitive geometrical bound on the range of shape parameters
for which the cage model remains meaningful.

Computed values of Pginer using the two-particle simulation
over a range of Rj/R, and ¢ are displayed in Fig. 5. This
probability is sensitive to changes in the slenderness of the
ASPs, determined by R;/R,, as shown in Fig. 5(a). As R;/R, is
increased towards unity, corresponding to increasingly slender
ASPs, dimerization can occur more readily at lower ¢4. The
thickness of the ends of the arms of ASPs relative to the
opening angle is thus a key parameter related to insertion
and dimerization; this controls the changes in ¢4 associated
with the rise in Pgine in Fig. 5(a). By contrast, in Fig. 5(b), we
show that Pgimer(¢pa) for fixed Ri/ R, = 0.75 is not as sensitive
to values of ¥ over a limited range that corresponds to C
shapes. In this case, the differences between the curves are not
as large, but the transition from low values of Pyipmer to high
values is much sharper for ¥ = 70° than for ¢ = 110°.

For R;/R, = 0.75 and ¢ = 95°, near values that corre-
spond to experiments [9], computed values of Pgimer, K, and
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FIG. 6. Results of cage model simulations and experimental data
as functions of ¢4 . (a) Probability of dimerization Py, €xperiments
(black circles), two-particle simulations (red squares), and one-
particle simulations (blue diamonds). (b) Equilibrium constant K
of the dimerization reaction [same symbols as in (a)]. (c¢) Scaled 2D
osmotic pressure I1,p [same symbols as in (a)]. Line: fit to numerical
results using Eq. (3) (see text).

[T,p from two-particle simulations are plotted as functions
of ¢a in Figs. 6(a), 6(b), and 6(c), respectively. We also
show experimentally measured values of these quantities [9].
Figure 6(a) includes the values of Pyiyer determined by the
one-particle simulation, in which one of the two central ASPs
is fixed in position and orientation. We find good agreement
between the experimental data and the two-particle simulation
results for Pgimer and K for R; /R, = 0.75 and ¥ = 95°. Small
differences between experiment and simulation are noticeable
at ¢ greater than 0.28 for Pgimer and at ¢ greater than 0.34
for K. These differences at high ¢4 arise primarily because
a small but non-negligible population of monomers becomes
trapped in the experimental system, whereas the simulation
assumes complete dimerization in the local cage. In the
experimental system, diffusion of isolated trapped monomers
in the crowded environment of dimers is extremely slow,
and this kinetically inhibits further dimerization reactions of
monomers that could lead to perfect dimerization. Moreover,
the one-particle simulation performs poorly compared to the
two-particle simulation in predicting the probability of dimer-
ization, as shown by the larger departure from the experimental
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data in Fig. 6(a). Similar disagreement of the one-particle
simulations in comparison with two-particle simulations and
experiments is also observed for K and II,p. By contrast,
the two-particle simulations of K and Il,p nearly match
the experimental results without any adjustable parameters
over a large range of ¢, as shown in Figs. 6(b) and 6(c),
respectively. At the highest ¢4 = 0.36 shown, the two-particle
simulation of K is much higher than the experimental K; this
is predominantly a consequence of trapped monomers in the
experiments, which causes a reduction in the experimental
K. In Fig. 6(c), we have not reported simulated values of
[Tp at ¢pa = 0.34 and ¢, = 0.36 because the discretization
chosen for the simulations was not sufficiently fine to provide
a large ensemble of accessible microstates. In addition, corner
rounding, a consequence of diffraction in the experimental
lithographic production of the particles, can cause the area
fraction associated with the divergence in I1,p to be different
in the experiments than in the simulations, where no corner
rounding is present. Thus, overall, the two-particle simulations
agree reasonably well with experimental results, except at
very high ¢4, where trapped monomers are present in the
experiments. This indicates that it is necessary to consider
two mobile central ASPs, not a single central mobile ASP,
in a static cage in order to obtain a reasonable representation
of the entropy of the system. Consequently, we focus only
on two-particle simulation results for the remainder of this
section.

The two-dimensional osmotic pressure varies linearly as a
function of ¢ for low particle area fractions in the limiting
case of an ideal gas, and it diverges at a maximum packing area
fraction. This suggests the following functional form for the
curve fit of IT,p(¢a), where adjustable parameter f sets the
overall scale and the parameter ¢4 (, a critical area fraction,
sets the divergence point:

foa

Map(@a)/(ksT/Ap) = T onfbne

3)

We fit the numerical results for the 2D scaled osmotic equa-
tion of state using this equation, as shown in Fig. 6(c), yielding
very good agreement. Moreover, the fit parameter value of
the divergence in the osmotic pressure, ¢ . = 0.47 = 0.01,
is close to the experimental value ¢ . = 0.455 previously
reported [9]. Because we have used a thermal-gravitational
height hy = 4.35 um here that is based on a more appropriate
fit to the first few points of the initial rise of the measured
monomer area fraction ¢ m(z) [9], the coefficient associated
with the linear rise of the osmotic equation of state from the
fit here is f = 2.5+ 0.1. This value is the same for both
scaled numerical and scaled experimental results. However,
corresponding to the different s, used here, this coefficient
is about 30% higher than f = 1.79 reported in the prior
experimental work. Regardless of the experimental difficulty
in precisely determining A, the shapes of the numerical and
experimental scaled osmotic equations of state agree well over
a wide range of particle area fractions.

To show the dependence of K on the scaled IT,p from the
two-particle simulations, we determine their values for each
¢a in Figs. 6(b) and 6(c) and plot the results in Fig. 7. For
107! < K < 10%, we find that K exponentially increases with
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FIG. 7. Two-particle simulation results showing the dependence
of the equilibrium constant K of the dimerization reaction as a
function of the scaled 2D osmotic pressure I1,p. Solid line: fit using
Eq. (4).

scaled IT,p, so we fit this to
K = exp[(ITop — Map eq)/ T3], 4

yielding fit parameter values of scaled ITypeq = 1.5 0.1
and IT5, = 0.36 = 0.06 (i.e., in units of kg7T/A}). For larger
values of scaled IT,p beyond the range shown that are closer
to the divergence in the scaled Il,p(¢a), we find that the
simulated K departs from this simple exponential dependence
and grows even more rapidly as the number of accessible
monomer microstates approaches zero. This simulated ex-
ponential dependence matches experimental measurements
well over the range shown [9]. While our simulations reveal
In K ~ Ilyp for the ASP-pair dimerization reaction over a
substantial range of scaled I1,p, confirming prior experimental
observations, this result could also be equivalently written as
an exponential factor in a Poynting pressure correction to the
fugacity of nonideal hard ASP particles in a dense system
[28]. The capacity of the hard ASPs to form interpenetrating
lock-and-key dimer structures that are still compressible
below close-packing densities is an interesting feature of this
system.

IV. CONCLUSION

Predictions based on the two-particle simulations agree well
with experimental measurements made on a 2D Brownian
system of ASPs, so a translational-rotational cage model
containing two central mobile ASPs adequately captures
the primary physical properties over a substantial range of
¢a. By contrast, a cage model containing only a single
mobile ASP surrounded by a fixed cage does not accurately
predict the experimental results. This is an important finding,
considering that single-particle translational-rotational cage
models have proven to be useful for predicting structures
that match experimental measurements reasonably well for
other shapes, such as squares, tri-stars, and rhombs [14,19,21].
Therefore, when treating Brownian systems of shapes that
can interpenetrate to a significant degree, such as hard ASPs,
in order to obtain accurate results using a cage model, a
collective form of entropy that goes beyond a single-particle
entropy serves as a reasonable starting point. Even so, the
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two-particle simulation still contains assumptions that do not
exactly reflect the disordered racemic systems of ASPs that
have been observed in the experiments. For instance, we have
assumed that a perfectly regular dimer lattice is an appropriate
cage and that equal spacing between the perimeters of all of
the ASPs in the cage reasonably approximates an average local
state. This approximation could lead to differences between
the predictions and experiments, especially at larger values of
¢a. Moreover, because all cage ASPs are fixed and do not
fluctuate in the two-particle simulations, we have considered
only the six-dimensional phase space of two central mobile
ASPs. This assumption of static cage ASPs represents an
approximation that neglects other collective contributions to
the system’s entropy. Our results, based on an assumed local
cage structure, could potentially be improved by considering
an ensemble of cage structures that more closely mimic the
randomness and variety in the chirality and orientation of cage
ASPs seen in experiments. Ensemble averaging over many
different random cage configurations at the same density could
improve predictions of the model towards lower ¢5. Even
the equations connecting the physical quantities Pgimer, K,
and IT,p to the numbers of accessible microstates €2 and Qp
are only strictly valid at thermodynamic equilibrium, and the
experimental system contains defects and disorder that indicate
the possibility of a state of the system that is not entirely its
global minimum-energy ground state. The success of the two-
particle cage model of ASPs at reproducing the experimental
data without any adjustable parameters suggests that this
simplified model accurately captures many key features of
the observations, despite these identifiable differences.

Given the success of the two-particle cage model in
describing the physical behavior of a real 2D Brownian system
of ASPs, simulation results using this two-particle cage model
for other values of R;/R, and i serve as a predictive guide
for future experiments on ASPs over a wider range of shape
parameters. The predictions that we have presented here,
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which span a limited range of R;/R, and i, have been
chosen to correspond to ranges in which the dominant behavior
of dimerization is assumed to be present. The cage model
that we have presented does not account for other nondimer
polymorphs of ASPs, such as polymeric chains, that have also
been observed microscopically [9]. More complex modeling
approaches would be required to account for a wider polymor-
phic diversity in reaction products, beyond simple dimers.
Many exciting future directions based on this work can be
anticipated. For instance, microstates corresponding to single
penetration [Fig. 1(c)] could also be determined as a function
of R;/R, and v, and the population of single-penetration
configurations could be compared to those of nonpenetrating
and mutually interpenetrating configurations as a function of
¢a. In addition, if one considers ASPs having ¥ & {/yin, One
could explore systems for which ¢ becomes just large enough
to allow dimerization; the behavior of this system should
approach that of disks when yr drops well below ;. Like-
wise, reactions yielding different kinds of local polymorphs,
such as chains in addition to dimers, over a broader range of
Ri/R, and ¥ could be predicted through simulation and also
explored experimentally. Numerically studying the impact of
the effective size and shape of the central cavity resulting from
a variety of disordered cages, each of which is consistent with
the same ¢4, could also reveal how sensitive or insensitive the
two-particle predictions are to the exact geometries of the
cages. Comparisons between the two-particle cage model
results and other forms of simulation, such as molecular
dynamics or Brownian dynamics, could also be made to
determine higher-order contributions to the collective entropy.
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