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Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal
and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are
like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter
play a vital role in a number of problems across the physical, mathematical as well as biological sciences and,
because they are endowed with novel physical properties, have technological importance. Given the fundamental
as well as practical importance of disordered hyperuniform systems elucidated thus far, it is natural to explore
the generalizations of the hyperuniformity notion and its consequences. In this paper, we substantially broaden
the hyperuniformity concept along four different directions. This includes generalizations to treat fluctuations
in the interfacial area (one of the Minkowski functionals) in heterogeneous media and surface-area driven
evolving microstructures, random scalar fields, divergence-free random vector fields, and statistically anisotropic
many-particle systems and two-phase media. In all cases, the relevant mathematical underpinnings are formulated
and illustrative calculations are provided. Interfacial-area fluctuations play a major role in characterizing the
microstructure of two-phase systems (e.g., fluid-saturated porous media), physical properties that intimately
depend on the geometry of the interface, and evolving two-phase microstructures that depend on interfacial
energies (e.g., spinodal decomposition). In the instances of random vector fields and statistically anisotropic
structures, we show that the standard definition of hyperuniformity must be generalized such that it accounts
for the dependence of the relevant spectral functions on the direction in which the origin in Fourier space
is approached (nonanalyticities at the origin). Using this analysis, we place some well-known energy spectra
from the theory of isotropic turbulence in the context of this generalization of hyperuniformity. Among other
results, we show that there exist many-particle ground-state configurations in which directional hyperuniformity
imparts exotic anisotropic physical properties (e.g., elastic, optical, and acoustic characteristics) to these states
of matter. Such tunability could have technological relevance for manipulating light and sound waves in ways
heretofore not thought possible. We show that disordered many-particle systems that respond to external fields
(e.g., magnetic and electric fields) are a natural class of materials to look for directional hyperuniformity. The
generalizations of hyperuniformity introduced here provide theoreticians and experimentalists new avenues
to understand a very broad range of phenomena across a variety of fields through the hyperuniformity
“lens.”
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I. INTRODUCTION

The characterization of density fluctuations in many-body
systems is a problem of great fundamental interest in the
physical, mathematical, and biological sciences [1–15]. The
anomalous suppression of density fluctuations at very long
wavelengths is central to the hyperuniformity concept, whose
broad importance for condensed matter physics and materials
science was brought to the fore only about a decade ago
in a study that focused on fundamental theoretical aspects,
including how it provides a unified means to classify and
categorize crystals, quasicrystals, and special disordered point
configurations [16]. Hyperuniform systems are poised at an
exotic critical point in which the direct correlation function,
defined via the Ornstein-Zernike relation [17], is long-ranged
[16], in diametric contrast to standard thermal and magnetic
critical points in which the total correlation function is
long-ranged [1–4]. Roughly speaking, a hyperuniform many-
particle system in d-dimensional Euclidean space Rd is one
in which (normalized) density fluctuations are completely
suppressed at very large length scales, implying that the
structure factor S(k) tends to zero as the wave number k ≡ |k|

tends to zero; i.e.,

lim
|k|→0

S(k) = 0. (1)

Equivalently, it is one in which the number variance σ 2
N

(R) of
particles within a spherical observation window of radius R

grows more slowly than the window volume in the large-R
limit, i.e., slower than Rd . Typical disordered systems, such
as liquids and structural glasses, have the standard volume
scaling; that is, σ 2

N
(R) ∼ Rd . By contrast, all perfect crystals

and quasicrystals are hyperuniform with the surface-area
scaling σ 2

N
(R) ∼ Rd−1. Surprisingly, there are a special class

of disordered particle configurations that have the same
asymptotic behavior as crystals. There are hyperuniform
scalings other than surface-area growth. When the structure
factor goes to zero in the limit |k| → 0 with the power-law
form

S(k) ∼ |k|α, (2)
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where α > 0, the number variance has the following large-R
asymptotic scaling [16,18,19]:

σ 2
N

(R) ∼

⎧⎪⎨
⎪⎩

Rd−1, α > 1,

Rd−1 ln R, α = 1, (R → ∞).

Rd−α, 0 < α < 1.

(3)

The exponent α can take any positive real value (including +∞
for a crystal and “stealthy” disordered patterns), the magnitude
of which is a rough measure of short-range order in the
particular hyperuniform system; see Ref. [20] and references
therein for explicit examples of systems with various values
of α.

Disordered hyperuniform systems are exotic states of
matter that lie between a crystal and liquid: They are like
perfect crystals in the way they suppress large-scale density
fluctuations and yet are like liquids or glasses in that they are
statistically isotropic with no Bragg peaks and hence have no
long-range order. In this sense, they can have a hidden order
on large length scales (see Fig. 2 of Ref. [20] for a vivid
example) and, because of their hybrid nature, are endowed
with novel physical properties, as described below. Figure 1
shows a typical scattering pattern for a crystal and another for
a “stealthy” disordered hyperuniform one in which there is a
circular region around the origin in which there is no scattering
and diffuse scattering outside this “exclusion” zone [21,22],
highly unusual for an amorphous material.

We knew only a few examples of disordered hyperuniform
systems (also known as “superhomogeneous” patterns) about
a decade ago [16,23,24]. We now know that these exotic
states of matter can exist as equilibrium and nonequilibrium
phases of both the classical and the quantum-mechanical va-
rieties. Examples include “stealthy” disordered ground states
[20–22,25,26], maximally random jammed particle packings
[27–30], jammed athermal granular media [31], jammed
thermal colloidal packings [32–34], dynamical processes in
ultracold atoms [35], disordered networks with large photonic
band gaps [36], driven nonequilibrium systems [37–42], avian
photoreceptor patterns [43], geometry of neuronal tracts [44],
immune system receptors [45], certain quantum ground states
(both fermionic and bosonic) [46,47], high-density transparent
materials [48], and wave dynamics in disordered potentials
[49]. Hyperuniformity has pointed to new correlation functions
from which one can extract relevant growing length scales as
a function of temperature as a liquid is supercooled below its
glass transition temperature [50,51], a problem of great interest
in glass physics [14,52–56]. Remarkably, the one-dimensional
point patterns derived from the nontrivial zeros of the Riemann
zeta function [57] and the eigenvalues of random Hermitian
matrices [58] are disordered and hyperuniform.

A variety of groups have recently fabricated disordered
hyperuniform materials at the micro- and nanoscales for var-
ious photonic applications [59–61], surface-enhanced Raman
spectroscopy [62], realization of a terahertz quantum cascade
laser [63], and self-assembly of diblock copolymers [64].
Moreover, it was shown that the electronic band gap of
amorphous silicon widens as it tends toward a hyperuniform
state [65]. Recent x-ray scattering measurements indicate
that amorphous-silicon samples can be made to be nearly
hyperuniform [66].

FIG. 1. (Top) Scattering pattern for a crystal. (Bottom) Scattering
pattern for a disordered “stealthy” hyperuniform material [21,22].
Notice that, apart from forward scattering, there is a circular region
around the origin in which there is no scattering, a highly exotic
situation for an amorphous state of matter.

The hyperuniformity concept was generalized to the case
of heterogeneous materials [18], i.e., materials consisting of
two or more phases [67]. Heterogeneous materials abound in
nature and synthetic situations. Examples include composite
and porous media, biological media (e.g., plant and animal
tissue), foams, polymer blends, suspensions, granular media,
cellular solids, and colloids [68]. In the case of two-phase
media (defined more precisely in Sec. II), one relevant
fluctuating quantity is the local phase volume fraction within
a window. The simplest characterization of such fluctuations
is the local volume-fraction variance σ 2

V
(R) associated with a

d-dimensional spherical window of radius R [68–71]. It was
demonstrated that the hyperuniformity condition in the context
of volume-fraction fluctuations in a two-phase heterogeneous
system is one in which the variance σ 2

V
(R) for large R goes

to zero more rapidly than the inverse of the window volume
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[18], i.e., faster than R−d , which is equivalent to the following
condition on the relevant spectral density χ̃

V
(k) (defined in

Sec. II):

lim
|k|→0

χ̃
V
(k) = 0. (4)

This generalization of the hyperuniformity concept has been
fruitfully applied to characterize a variety of disordered
two-phase systems [28,34,72–74] and the rational design of
digitized hyperuniform two-phase media with tunable disorder
[75]. As in the case of hyperuniform point configurations
[16,18,19], it is easily shown that three different scaling
regimes arise in the case of hyperuniform two-phase systems
when the spectral density goes to zero with the power-law form
χ̃

V
(k) ∼ |k|α:

σ 2
V

(R) ∼

⎧⎪⎨
⎪⎩

R−(d+1), α > 1,

R−(d+1) ln R, α = 1, (R → ∞).

R−(d+α), 0 < α < 1,

(5)

Given the fundamental as well as practical importance
of disordered hyperuniform systems elucidated thus far, it
is natural to explore further generalizations of the hyper-
uniformity notion and its consequences. In this paper, we
extend the hyperuniformity concept in a variety of different
directions. Before doing so, we make some remarks about
hyperuniformity in two-phase systems in which one phase
is a sphere packing (Sec. III). We then introduce the notion
of hyperuniformity as it concerns local fluctuations in the
interfacial area in disordered two-phase media and apply the
mathematical formulation to sphere packings (Sec. IV). We
demonstrate that surface-area fluctuations are considerably
more sensitive microstructural measures than volume-fraction
fluctuations and hence provide a more powerful approach
to understand hyperuniformity in two-phase systems. Sub-
sequently, we extend the hyperuniformity concept to random
scalar fields (Sec. V). Such phenomena are ubiquitous and
include, but are not limited to, concentration and temperature
fields in heterogeneous media and turbulent flows, laser
speckle patterns, and temperature fluctuations associated with
the cosmic microwave background. Among other results, we
show how a random scalar field can inherit the hyperuniformity
property from an underlying hyperuniform point process. We
also note that the analysis for continuous random fields is
trivially extended to discrete cases derived from experimental
images or computer-simulation studies. We then generalize the
hyperuniformity formalism to treat random vector fields and
find that this extension requires one to broaden the definition
of hyperuniformity to account for the dependence of the
relevant spectral tensor function on the direction in which the
origin is approached (Sec. VI). Mathematically, this means
that the directional-dependent spectral tensor associated with
a hyperuniform vector field is nonanalytic at the origin. This is
to be contrasted with previous definitions of hyperuniformity,
which assumed that the way in which the origin in Fourier
space (scattering pattern) is approached is independent of
direction. Generalizing the definition of hyperuniformity
to account for directionality provides completely new and
potentially exciting avenues for theoretical and experimental
work, including the possibility to design random vector fields

with targeted hyperuniform spectra. Among other results, we
reinterpret and analyze well-known turbulent energy spectra in
the context of this generalization of hyperuniformity. Subse-
quently, the notion of directional hyperuniformity is proposed
in the context of many-particle systems and heterogeneous
media that are statistically anisotropic (Sec. VII). Here we
show that directionality in Fourier space can again play a
pivotal role. In particular, directional hyperuniformity imparts
exotic anisotropic physical properties (e.g., elastic, optical and
acoustic characteristics) to these states of matter. Finally, we
offer concluding remarks and a discussion (Sec. VIII).

II. DEFINITIONS AND BACKGROUND

A. Point configurations

Consider N points with configuration rN ≡ r1,r2, . . . ,rN

in a large region V of volume V in d-dimensional Euclidean
space Rd . Any single-point configuration is specified by its
microscopic density n(r) at position r, which is a random
variable defined by

n(r) =
N∑

j=1

δ(r − rj ), (6)

where δ(r) is a d-dimensional Dirac δ function. The point
process is statistically characterized by the specific probability
density function PN (rN ), where PN (rN )drN gives the proba-
bility of finding point 1 in volume element dr1 about r1, point
2 in volume element dr2 about r2, . . ., and point N in volume
element drN about rN . Thus, PN (rN ) normalizes to unity
and drN ≡ dr1dr2 · · · drN represents the (Nd)-dimensional
volume element. The ensemble average of any function f (rN )
that depends on the point configuration rN is given by

〈f (rN )〉 =
∫
V

∫
V

· · ·
∫
V

f (rN )PN (rN )drN . (7)

The reduced generic density function ρn(rn) (n < N), defined
as

ρn(rn) = N !

(N − n)!

∫
V

· · ·
∫

V

PN (rN )drN−n, (8)

where drN−n ≡ drn+1drn+2 · · · drN . The quantity ρn(rn)drn

is proportional to the probability of finding any n particles
(n � N ) with configuration rn in volume element drn.

For statistically homogeneous media, ρn(rn) is transla-
tionally invariant and hence depends only on the relative
displacements, say with respect to r1,

ρn(rn) = ρn(r12,r13, . . . ,r1n), (9)

where rij = rj − ri . The one-particle function ρ1 is just equal
to the constant number density of particles ρ; i.e.,

ρ1(r1) = ρ ≡ lim
N,V →∞

N

V
. (10)

This limit is referred to as the thermodynamic limit. It
is convenient to define the so-called n-particle correlation
function,

gn(rn) = ρn(rn)

ρn
. (11)
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In the absence of long-range order and when the particles are
mutually far from one another (i.e., rij = |rij | → ∞, 1 � i <

j � N ), ρn(rn) → ρn, and gn(rn) → 1.
The important two-particle quantity

g2(r12) = ρ2(r12)

ρ2
(12)

is usually referred to as the pair correlation function. The total
correlation function h(r12) is defined as

h(r12) = g2(r12) − 1, (13)

which is trivially related to the autocovariance function
associated with the random variable (6), i.e,

1

ρ
〈[n(x) − ρ][n(x + r) − ρ]〉 = δ(r) + ρh(r), (14)

where we have invoked statistical homogeneity.
Spectral representations of direct-space pair statistics of

various types are central to the hyperuniformity concept. We
use the following definition of the Fourier transform of some
function f (r), which can represent a tensor of arbitrary rank
and depends on the vector r in Rd ,

f̃ (k) =
∫
Rd

f (r) exp [−i(k · r)]dr, (15)

where k is a wave vector. When it is well defined, the
corresponding inverse Fourier transform is given by

f (r) =
(

1

2π

)d ∫
Rd

f̃ (k) exp [i(k · r)]dk. (16)

If f is a radial function, i.e., depends on the modulus r = |r|
of the vector r, its Fourier transform is given by

f̃ (k) = (2π )
d
2

∫ ∞

0
rd−1f (r)

J(d/2)−1(kr)

(kr)(d/2)−1 dr, (17)

where k = |k| is wave number or modulus of the wave vector
k and Jν(x) is the Bessel function of order ν. The inverse
transform of f̃ (k) is given by

f (r) = 1

(2π )
d
2

∫ ∞

0
kd−1f̃ (k)

J(d/2)−1(kr)

(kr)(d/2)−1 dk. (18)

We recall the first several terms in the series expansion of Jν(x)
about x = 0:

Jν(x) = (x/2)ν

	(ν + 1)
− (x/2)ν+2

	(ν + 2)
+ (x/2)ν+4

2	(ν + 3)
− O(xν+6),

(19)

which we apply later in the article.
The non-negative structure factor S(k) is the Fourier

transform of the autocovariance function (14) and is trivially
related to h̃(k), which is the Fourier transform of the total
correlation function h(r):

S(k) = 1 + ρh̃(k). (20)

The structure factor is proportional to the scattering intensity.
It is useful to recall the relationship between the local number
variance σ 2

N (R) associated with a spherical window of radius

R for a point configuration [16],

σ 2
N (R) = ρv1(R)

[
1 + ρ

∫
Rd

h(r)α(r; R)dr
]

= ρv1(R)

[
1

(2π )d

∫
Rd

S(k)α̃(k; R)dk
]
, (21)

where

v1(R) = πd/2Rd

	(1 + d/2)
(22)

is the volume of a d-dimensional sphere of radius R, and
α(r; R) is the scaled intersection volume, the ratio of the
intersection volume of two spherical windows of radius R

whose centers are separated by a distance r to the volume of a
spherical window, known analytically in any space dimension
[68,76]. Its Fourier transform is given by

α̃(k; R) = 2dπd/2	(1 + d/2)
[Jd/2(kR)]2

kd
, (23)

which clearly is a non-negative function. Here Jν(x) is the
Bessel function of order ν.

The hyperuniformity condition (1) defined through the
structure factor and relation (21) implies that the number
variance σ 2

N (R) grows more slowly than Rd for large R.
Observe that hyperuniformity requirement (1) dictates that the
volume integral of ρh(r) over all space is exactly equal to −1,
i.e.,

ρ

∫
Rd

h(r)dr = −1, (24)

which can be thought of as a sum rule. Stealthy configurations
are those in which the structure factor S(k) is exactly zero
for a subset of wave vectors, meaning that they completely
suppress single scattering of incident radiation for those wave
vectors. Stealthy hyperuniform patterns [20–22] are a subclass
of hyperuniform systems in which S(k) is zero for a range of
wave vectors around the origin; i.e.,

S(k) = 0 for 0 � |k| � K, (25)

where K is some positive number. An example of a disordered
stealthy and hyperuniform scattering pattern is shown in the
bottom panel of Fig. 1.

B. Two-phase media

A two-phase random medium is a domain of space V ⊆ Rd

of volume V that is partitioned into two disjoint regions: a
phase 1 region V1 and a phase 2 region V2 such that V1 ∪ V1 =
V [68]. Denote by ∂V the interface between V1 and V2.

1. Phase statistics

The phase indicator function I (i)(x) for a given realization
is defined as

I (i)(x) =
{

1, x ∈ Vi ,

0, x /∈ Vi .
(26)

The one-point correlation function S
(i)
1 (x) = 〈I (i)(x)〉

(where angular brackets indicate an ensemble average) is
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independent of position x for statistically homogeneous media,
namely, the constant phase volume fraction; i.e.,

φi = 〈I (i)(x)〉. (27)

The two-point correlation function is defined as S
(i)
2 (x1,x2) =

〈I (i)(x1)I (i)(x2)〉. This function is the probability of finding
two points x1 and x2 in phase i and, for homogeneous media,
depends only on the relative displacement vector r ≡ x2 − x1

and hence S
(i)
2 (x1,x2) = S

(i)
2 (r). The autocovariance function

χ
V
(r) associated with the random variable I (i)(x) is given by

χ
V
(r) ≡ S

(1)
2 (r) − φ2

1 = S
(2)
2 (r) − φ2

2 . (28)

The non-negative spectral density χ̃
V
(k), which can be

obtained from scattering experiments [77,78], is the Fourier
transform of χ

V
(r). Higher-order versions of these corre-

lation functions [68,79,80] (not considered here) arise in
rigorous bounds and exact expressions for effective transport
[68,81–88], elastic [68,83,85,86,89] and electromagnetic [90]
properties of two-phase media.

It is known that the volume-fraction variance σ 2
V (R) within a

d-dimensional spherical window of radius R can be expressed
in terms of the autocovariance function χ

V
(r) [69] or of the

spectral density χ̃
V
(k),

σ 2
V

(R) = 1

v1(R)

∫
Rd

χ
V
(r)α(r; R)dr

= 1

v1(R)(2π )d

∫
Rd

χ̃
V
(k)α̃(k; R)dk, (29)

where, as in relation (21), α(r; R) is the scaled intersection
volume of two spherical windows, and α̃(k; R) is its Fourier
transform. The hyperuniformity requirement (4) dictates that
the autocovariance function χ

V
(r) exhibits both positive and

negative correlations such that its volume integral over all
space is exactly zero, i.e.,∫

Rd

χ
V
(r)dr = 0, (30)

which can be regarded to be a sum rule.
We note in passing that realizability conditions for the exis-

tence of hyperuniform autocovariances and spectral densities
of general two-phase media have recently been explored [91].
These conditions restrict the possible class of functional forms
that can be hyperuniform.

2. Interfacial statistics

The interface between the phases of a realization of a
two-phase medium is generally known probabilistically and
is characterized by the interface indicator function M(x) [68],
defined as

M(x) = |∇I (1)(x)| = |∇I (2)(x)|, (31)

and therefore is a generalized function that is nonzero when
x is on the interface. The specific surface s (interface area per
unit volume) is a one-point correlation given by the expectation
of M(x),

s = 〈M(x)〉, (32)

where, because of the assumption of statistical homogeneity,
s is independent of the position x.

One can define a variety of higher-order surface correlation
functions [68], but for our purposes in this paper, we restrict
ourselves to the following two-point correlation function,

Fss(r) = 〈M(x)M(x + r)〉, (33)

which is called the surface-surface correlation function. Note
the definition (33) invokes the statistical homogeneity of the
process. The surface-surface correlation function arises in
rigorous bounds on the effective rate constants for diffusion-
controlled reactions [92,93] and fluid permeability [92,94] of
fluid-saturated porous media. The autocovariance associated
with the random variable M for homogeneous media is given
by

χ
S
(r) = Fss(r) − s2, (34)

which, unlike the dimensionless autocovariance χ
V
(r), has

dimensions of inverse of length squared, independent of the
dimension d. The non-negative spectral density χ̃

S
(k) is the

Fourier transform of χ
S
(r), when it exists.

III. SOME REMARKS ABOUT TWO-POINT STATISTICS
AND HYPERUNIFORM SPHERE PACKINGS

Here we collect various known results scattered throughout
the literature concerning the autocovariance function χ

V
(r)

and spectral density χ̃
V
(k) for two-phase media in Rd in

which one phase is a sphere packing in order to compare them
to corresponding results for the surface-surface correlation
function and the generalization of hyperuniformity to surface-
area fluctuations introduced in the subsequent section.

A particle packing is a configuration of nonoverlapping
(i.e., hard) particles in Rd . For statistically homogeneous
packings of congruent spheres of radius a in Rd at number
density ρ, the two-point probability function S2(r) of the
particle (sphere) phase is known exactly in terms of the pair
correlation function [68,95]; specifically,

χ
V
(r) = ρmv(r; a) ⊗ mv(r; a)+ρ2mv(r; a) ⊗ mv(r; a) ⊗ h(r)

= ρ vint
2 (r; a) + ρ2vint

2 (r; a) ⊗ h(r), (35)

where

mv(r; a) = �(a − r) =
{

1, r � a,

0, r > a,
(36)

is a spherical particle indicator function [96]. �(x) is the
Heaviside step function, and vint

2 (r; a) = v1(a)α(r; a) is the
intersection volume of two spheres of radius a whose centers
are separated by a distance r , where v1(a) and α(r; a) are
defined as in (29), and ⊗ denotes the convolution of two
functions F (r) and G(r):

F (r) ⊗ G(r) =
∫
Rd

F (x)G(r − x)dx. (37)

Fourier transformation of (35) gives the spectral density in
terms of the structure factor [18,68,95],

χ̃
V
(k) = ρ m̃2(k; a) + ρ2m̃2(k; a)h̃(k)

= ρ m̃2(k; a)S(k)

= φα̃(k; a)S(k), (38)
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where

α̃(k; a) = 1

v1(a)
m̃2(k; a) = 1

v1(a)

(
2πa

k

)d

J 2
d/2(ka) (39)

and

φ = ρv1(a) (40)

is the packing fraction.
Using relation (38), it follows that the hyperuniformity

of a sphere packing can only arise if the underlying point
configuration (sphere centers) is itself hyperuniform, i.e.,
χ̃

V
(k) inherits the hyperuniformity property (4) only through

the structure factor, not α̃(k; a); see Ref. [91] for more details.
The stealthiness property, i.e., no scattering at some finite
subset of wave vectors (Sec. II A), is a bit more subtle. Relation
(38) dictates that χ̃

V
(k) is zero at those wave vectors, where

S(k) is zero as well as at the zeros of the function α̃(k; a), which
is determined by the zeros of the Bessel function Jd/2(ka). The
function χ̃

V
(k) will be zero at all of the zeros of α̃(k; a) for any

disordered packing free of any Dirac delta functions (Bragg
peaks), hyperuniform or not.

These results for the pair statistics in direct and Fourier
spaces have been generalized to the case of impenetrable
spheres with a size distribution at overall number density ρ

[68,97]. The Supplemental Material describes these equations
as they concern hyperuniformity [98].

IV. INTERFACIAL AREA FLUCTUATIONS
AND HYPERUNIFORMITY

Here we introduce the idea of hyperuniformity associated
with local fluctuations in the interfacial area of two-phase me-
dia in Rd and derive the relevant formulas. This generalization
provides new tools to analyze a variety of phenomena that
occur in physical and biological systems in which interfaces
play a dominant role. For example, the geometry of the
interface in a fluid-saturated porous medium is crucial in
determining the fluid permeability [92,94] and trapping rate
[92,93] associated with diffusion and reaction in such systems.
Another striking class of examples includes surface-energy
driven coarsening phenomena, such as those that occur in
spinodal decomposition and morphogenesis [99,100].

A. Local specific-surface fluctuations

While the global specific surface defined by (32) is a fixed
constant, the specific surface on a local scale determined by
an observation window clearly fluctuates, as in the case of
the local phase volume fraction. Here we derive an explicit
expression for the variance associated with the local specific
surface and the corresponding hyperuniformity condition. For
simplicity, we consider a d-dimensional spherical window of
radius R centered at position x0 (see Fig. 2) for statistically
homogeneous two-phase media. The associated local dimen-
sionless specific surface τ

S
(x0; R) within a window of radius

R centered at position x0 is specified explicitly by

τ
S
(x0; R) = 1

sv1(R)

∫
M(x)w(x − x0; R)dx, (41)

FIG. 2. A schematic indicating a circular observation window of
radius R that is centered at position x0 in a disordered two-phase
medium; one phase is depicted as a blue (darker) region and the other
phase as a white region. The phase volume fractions or interfacial
area within the window will fluctuate as the window position x0 is
varied.

where v1(R) is given by (22), M(x) is the interface indicator
function defined by (31), s is the specific surface given by (32),
and w is the corresponding window indicator function defined
by

w(r; R) =
{

1, |r| � R,

0, |r| > R.
(42)

Notice that in the limit R → ∞, the dimensionless ran-
dom variable τ

S
(x0; R) tends to unity. The variance σ 2

S (R)
associated with fluctuations in dimensionless specific surface
is defined by

σ 2
S

(R) ≡ 〈
τ 2

S
(x0; R)

〉 − 〈τ
S
(x0; R)〉2

= 〈
τ 2

S
(x0; R)

〉 − 1, (43)

where we have used the fact that the ensemble average
〈τ

S
(x0; R)〉 = 1, which is independent of the window position

x0 because the system is statistically homogeneous.
Substitution of (41) into (43) yields

σ 2
S

(R) = 1

s2v2
1(R)

[ ∫
Fss(r)w(x1 − x0; R)

×w(x2 − x0; R)dx1dx2

]
− 1, (44)

where r = x2 − x1. Using the definition of the scaled intersec-
tion volume of two windows of radius R,

α(r; R) = 1

v1(R)

∫
Rd

w(x1 − x0; R)w(x2 − x0; R)dx0, (45)

and the identity [16]

1

v1(R)

∫
Rd

α(r; R)dr = 1 (46)
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leads to the desired relation for the local specific-surface
variance,

σ 2
S

(R) = 1

s2v1(R)

∫
Rd

χ
S
(r)α(r; R)dr, (47)

where χ
S
(r) is the autocovariance function associated with

the interface indicator function [cf. (34)], r = |r|, and we
have invoked statistical homogeneity. The alternative Fourier
representation of the surface-area variance that is dual to
the direct-space representation (47) is trivially obtained by
applying Parseval’s theorem to (47), provided that the spectral
density χ̃

S
(k) exists:

σ 2
S

(R) = 1

s2v1(R)(2π )d

∫
Rd

χ̃
S
(k)α̃(k; R)dk. (48)

A two-phase system is hyperuniform with respect to
surface-area fluctuations if the spectral density χ̃

S
(k) obeys

the condition

lim
|k|→0

χ̃
S
(k) = 0, (49)

which implies the sum rule∫
Rd

χ
S
(r)dr = 0. (50)

This hyperuniformity property is equivalent to requiring
that the surface-area variance σ 2

S (R) for large R goes to
zero more rapidly than R−d , which is the same condition
as that for the volume-fraction variance discussed in the
Introduction. Using precisely the same analysis as for point
configurations [16,18,19], it is simple to show that three
different hyperuniform scaling regimes arise from (48) when
the surface-area spectral density goes to zero with the power-
law form χ̃

S
(k) ∼ |k|α:

σ 2
S

(R) ∼

⎧⎪⎨
⎪⎩

R−(d+1), α > 1,

R−(d+1) ln R, α = 1, (R → ∞).

R−(d+α), 0 < α < 1,

(51)

Note that these scaling forms are exactly the same as those for
volume-fraction fluctuations [cf. (5)].

B. Sphere packings

Here we make some remarks about hyperuniformity asso-
ciated with specific-surface fluctuations in the case of sphere
packings. To do so, we first must collect some known results
for their interfacial two-point statistics. In the special instance
of packings of congruent spheres of radius a in Rd at number
density ρ, the autocovariance function χ

S
(r) is known exactly

in terms of the pair correlation function [68,101],

χ
S
(r) = ρ ms(r; a) ⊗ ms(r; a)

+ ρ2ms(r; a) ⊗ ms(r; a) ⊗ h(r), (52)

where

ms(r; a) = ∂mv(r; a)

∂a
= δ(r − a) (53)

is an interface indicator function for a sphere, δ(r) is a radial
Dirac delta function, and m(r; a) is defined by (36). Note
that the first term on the right side of relation (52), which has

support in the interval [0,2a], generally possesses an integrable
singularity at the origin [102]. Fourier transformation of
(52) gives the corresponding spectral density in terms of the
structure factor [68,102],

χ̃
S
(k) = ρ m̃2

s (k; a)S(k), (54)

where m̃s(k; a) is the Fourier transform of the radial Dirac δ

function (53) given by

m̃s(k; a) = ∂m̃v(k; a)

∂a
=

(
2πa

k

)d/2

kJd/2−1(ka). (55)

The global specific surface s, defined generally by (32), is
given by

s = ρm̃s(k = 0; a) = ρs1(a) = dφ

a
, (56)

where

s1(a) ≡ ∂v1(a)

∂a
= dπd/2ad−1

	(1 + d/2)
(57)

is the surface area of a d-dimensional sphere of radius a.
Thus, since m̃s(k; a) is a positive well-behaved function in the
vicinity of k = 0, it immediately follows from expression (54)
that if the underlying point process is hyperuniform and/or
stealthy, then the spectral density χ̃

S
(k) inherits the same

hyperuniformity property (49). More generally, relation (54)
requires that the spectral density χ̃

S
(k) is zero at those wave

vectors where S(k) is zero (or stealthy) and at the zeros of the
function m̃s(k; a).

To compare volume-fraction and surface-area fluctuation
statistics to one another, we consider an example where these
quantities can be calculated exactly for a sphere-packing model
as density increases up to a hyperuniform state. Specifically,
we consider d-dimensional sphere packings corresponding to
a certain g2-invariant process introduced by Torquato and
Stillinger [16]. A g2-invariant process is one in which a
chosen non-negative form for the pair correlation function
g2 remains invariant over a nonvanishing density [103]. The
upper limiting “terminal” density is the point above which
the non-negativity condition on the structure factor [cf. (20)]
would be violated. Thus, whenever the structure factor attains
its minimum value of zero at k = 0 at the terminal or critical
density, the system, if realizable, is hyperuniform. In Ref. [16],
a variety of hyperuniform g2-invariant processes in which the
number variance σ 2

N
(R) grows like the window surface area

(i.e., Rd−1) were exactly studied in arbitrary space dimensions.
For our purposes, we use the “step-function” g2-invariant

process, namely, a g2(r) that is defined by the unit step
function �(r − D), where D = 2a is the sphere diameter.
It is noteworthy that large particle configurations in one,
two, and three dimensions that achieve the step function
g2(r) for densities up to the terminal density ρc have been
numerically constructed [104,105]. Interestingly, the “ghost”
random-sequential-addition packing is an exactly solvable
model with an identical terminal density ρc = [2dv1(D/2)]−1

and a pair correlation function that is very nearly equal to a step
function and indeed exactly approaches the step function in the
large-d limit [106]. The structure factor for the step-function
g2-invariant process in the density range 0 � ρ � ρc is exactly
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given by

S(k) = 1 − 	(1 + d/2)

(
2

kD

)d/2(
ρ

ρc

)
Jd/2(kD), (58)

where ρc = [2dv1(D/2)]−1 is the terminal density at which
the packing is hyperuniform [16] with a small-k asymptotic
scaling given by

S(k) = 1

2(d + 2)
(kD)2 + O((kD))4. (59)

For ρ < ρc, the packing is not hyperuniform. Substitution
of (58) into relations (38) and (54) yields for this model in
d dimensions the associated spectral densities for the phase
volumes and interface, respectively,

χ̃
V
(k) = ρ

(
πD

k

)d

J 2
d/2(kD/2)

×
[

1 − 	(1 + d/2)

(
2

kD

)d/2(
ρ

ρc

)
Jd/2(kD)

]
(60)

and

χ̃
S
(k) = ρ

(
πD

k

)d

k2J 2
d/2−1(kD/2)

×
[

1 − 	(1 + d/2)

(
2

kD

)d/2(
ρ

ρc

)
Jd/2(kD)

]
.

(61)

(Note that formula (60) was reported and studied elsewhere
[91].) At the terminal density ρc, these spectral functions also
go to zero quadratically in k in the limit k → 0 such that

χ̃
V
(k) = 1

2(d + 2)4dv1(1)
(kD)2 + O((kD))4 (62)

and

χ̃
S
(k) = d2

2(d + 2)4d−1v1(1)
(kD)2 + O((kD))4, (63)

but the latter has a coefficient that grows quadratically faster
in the dimension relative to that in the former.

Figure 3 shows the two spectral functions, χ̃
V
(k) and χ̃

S
(k),

for the step function g2-invariant packing process in three
dimensions at the terminal density ρc = 3/(4π ), as obtained
from (38), (54), and (58) with a = D/2. Figure 4 depicts the
associated local variances for the same system, as obtained
from these spectral functions and relations (29) and (48).
Notice that the surface-area spectral function exhibits stronger
and longer-ranged correlations compared to the volume-
fraction spectral function, indicating that the former is a
more sensitive microstructural descriptor. Figure 4 depicts the
corresponding local variances for the same system. Similarly,
while the corresponding local variances decay like R−4 for
large R, the surface-area variance does so at a slower rate
relative to the volume-fraction counterpart.

The aforementioned results for the surface-area pair statis-
tics were generalized to the case of sphere packings with
a continuous or discrete size distribution [68,97]. These
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FIG. 3. Comparison of the two hyperuniform spectral functions
χ̃

V
(k) (lower curve) and χ̃

S
(k) versus wave number k for a sphere

packing corresponding to the step-function g2-invariant process in
three dimensions at the hyperuniform terminal density ρc = 3/(4π )
[16]. Here D is the diameter of a hard sphere.

results are collected in the Appendix in order to describe the
conditions under which they are “multihyperuniform.”

V. RANDOM SCALAR FIELDS AND HYPERUNIFORMITY

Here we generalize the hyperuniformity concept to random
scalar fields in Rd . Such fields can arise in a variety of
physical contexts, including concentration and temperature
fields in heterogeneous and porous media [68,107] as well as
in turbulent flows [108,109], laser speckle patterns [110–113],
and temperature fluctuations associated with the cosmic mi-
crowave background [5,114]. Other examples include spatial
patterns that arise in biological and chemical systems that have
been theoretically described by, for example, Cahn-Hilliard
[99] and Swift-Hohenberg equations [100]. In what follows,
we derive the relevant equations to quantify hyperuniform
scalar fields, present illustrative calculations, and remark on
two-phase media that result from level cuts.
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FIG. 4. Comparison of the volume-fraction variance σ 2
V

(R)
(lower curve) and surface-area variance σ 2

S
(R) versus window sphere

radius R for a sphere packing corresponding to the step-function
g2-invariant process in three dimensions at the hyperuniform terminal
density ρ = 3/(4π ) [16]. Here D is the diameter of a hard sphere.
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A. Local field fluctuations

Consider a statistically homogeneous random scalar field
F (x) in Rd that is real valued with an autocovariance function

ψ(r) = 〈[F (x1) − 〈F (x)1〉][F (x2) − 〈F (x2)〉]〉, (64)

where we have invoked the statistical homogeneity of the field,
since r = x2 − x1, which is a d-dimensional vector. We assume
that the associated spectral density ψ̃(k) (Fourier transform
of the autocovariance) exists. The hyperuniformity condition
is simply that the non-negative spectral density obeys the
small-wave-number condition

lim
|k|→0

ψ̃(k) = 0, (65)

which implies the sum rule∫
Rd

ψ(r)dr = 0. (66)

The local variance associated with fluctuations in the field,
denoted by σ 2

F
(R), is related to the autocovariance function or

spectral function in the usual way:

σ 2
F

(R) = 1

v1(R)

∫
Rd

ψ(r)α(r; R)dr,

= 1

v1(R)(2π )d

∫
Rd

ψ̃(k)α̃(k; R)dk. (67)

While the main focus of this section is continuous random
scalar fields, it should be noted that when simulating random
fields on the computer or when extracting them from experi-
mentally obtained images, one must inevitably treat discrete
or digitized renditions of the fields. The “pixels” or “voxels”
(smallest components of the digitized systems in 2D and 3D
dimensions, respectively) take on grayscale intensities that
span the intensity range associated with the continuous field.
Thus, the discrete versions of relations (64) and (67) are to be
applied in such instances; see, for example, Ref. [115].

B. Random fields derived from point configurations

Now we prove that a class of fields derived from underlying
hyperuniform point configurations are themselves hyperuni-
form. Consider a general ensemble of point configurations
of N points in a large region of volume V in Rd . Let
K(x; C) represent a non-negative dimensionless scalar kernel
function that is radial in x and sufficiently localized so that its
Fourier transform exists. Here C represents a set of parameters
that characterizes the shape of the radial function. Following
Blumenfeld and Torquato [115], the random scalar field F (x)
is defined as a convolution of the microscopic density and the
kernel, i.e.,

F (x) =
∫
Rd

n(x′)K(x − x′)dx′ =
N∑

i=1

K(x − ri), (68)

where we have stopped indicating the explicit dependence
of the kernel on the parameter set C. It is seen that the
effect of the kernel is to smooth out the point “intensities.”
Ensemble averaging (68) and using the definition (7) yields

the expectation of the field,

〈F (x)〉 =
〈

N∑
i=1

K(x − ri)

〉

=
∫

V

∫
V

· · ·
∫

V

N∑
i=1

K(x − ri)PN (rN )drN

=
∫

V

ρ1(r1)K(x − r1)dr1

= ρ

∫
Rd

K(x)dx, (69)

where in the last line we have invoked the statistical homo-
geneity of the field and hence have taken the thermodynamic
limit. Similarly, the autocorrelation function associated with
the field is given by

〈F (x)F (x + r)〉 =
〈

N∑
i=1

K(x − ri)K(x + r − ri)

〉

+
〈

N∑
i =j

K(x − ri)K(x + r − rj )

〉

= ρK(r) ⊗ K(r)

+ ρ2K(r) ⊗ K(r) ⊗ h(r) + 〈F 〉2, (70)

where h(r) is the total correlation function for the point con-
figuration defined by (13). Thus, the autocovariance function
ψ(r), defined generally by (64), is given by

ψ(r) = ρK(r) ⊗ K(r) + ρ2K(r) ⊗ K(r) ⊗ h(r). (71)

Fourier transforming (71) yields the corresponding non-
negative spectral density

ψ̃(k) = ρK̃2(k)S(k), (72)

where K̃(k) is the Fourier transform of the kernel K(x) and
S(k) is the ensemble-averaged structure factor [cf. (20)].
We see from (72) that if the underlying point process is
hyperuniform, i.e., S(k) tends to zero in the limit |k| → 0
and K̃(k) is well-behaved at k = 0, the spectral density obeys
the hyperuniformity condition (65).

As a simple example, consider the Gaussian kernel function

K(r) = exp[−(r/a)2], (73)

where a is a characteristic length scale that is proportional
to the standard deviation of the Gaussian. The corresponding
Fourier transform is given by

K̃(k) = πd/2ad exp[−(ka)2/4]. (74)

Consider the hyperuniform structure factor (58) for the step-
function g2-invariant packing. Substitution of (58) into relation
(38) yields the associated spectral density for this model in d

dimensions:

ψ̃(k) = ρπd/2ad exp[−(ka)2/4]

×
[

1 − 	(1 + d/2)

(
2

kD

)d/2(
ρ

ρc

)
Jd/2(kD)

]
. (75)
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FIG. 5. The spectral function ψ̃(k) versus wave number k for
the three-dimensional Gaussian field derived from the step-function
g2-invariant packing for a nonhyperuniform case (ρ = ρc/2) and the
unique hyperuniform instance (ρ = ρc). Here ρc = 3/(4π ) and a =
D, where D is a hard-sphere diameter.

Substituting this expression into (72) with ρ = ρc and expand-
ing the spectral density in powers of k2 about the origin yields

ψ̃(k) = πd/2ρca
d

2(d + 2)
k2 + O(k4). (76)

Note that this scalar field is hyperuniform such that ψ̃(k) goes
to zero quadratically in k as the wave number tends to zero,
independent of the space dimension d.

Figure 5 shows this spectral function ψ̃(k) in the spe-
cial case of three dimensions at the hyperuniform terminal
density as well as at a nonhyperuniform case. The scaled
corresponding variances, obtained from relations (67) and
(75), are shown in Fig. 6. Note that since σ 2

F
(R) for the

nonhyperuniform case must decay like R−3 for large R, the
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FIG. 6. Comparison of the field variance σ 2
F (R) [multiplied by

(R/D)3] versus window sphere radius R/D for the three-dimensional
Gaussian field derived from the step-function g2-invariant packing
for a nonhyperuniform case (ρ = ρc/2) and the hyperuniform case
(ρ = ρc). Here ρc = 3/(4π ) and a = D, where D is a hard-sphere
diameter.

product R3σ 2
V

(R) asymptotes to a constant value. By contrast,
the product R3σ 2

F
(R) for ρ = ρc decays like R−1 for large R,

as it should for this three-dimensional hyperuniform random
scalar field.

C. Level cuts of random fields

In the random-field approach to modeling the microstruc-
ture of random media, the interface between the phases is
defined by level cuts of random fields [115–120]. There is
great flexibility in the choice of the random field F (x) and
hence in the class of microstructures that can be produced.
This approach is particularly useful in modeling bicontinuous
media (two-phase media in which each phase percolates),
such as microemulsions [116], carbonate rocks [119], Vycor
glass [119], amorphous alloys [120], and aerogels [121]. It
is noteworthy that the use of level cuts of random fields
to create disordered hyperuniform two-phase or multiphase
heterogeneous systems has heretofore not been carried out and
thus represents a fruitful area for future research. To derive a
hyperuniform two-phase medium from a thresholded random
field F (r), the field must possess the special correlations
required to yield an autocovariance function χ

V
(r) that satisfies

the sum rule (30).

VI. DIVERGENCE-FREE RANDOM VECTOR FIELDS
AND HYPERUNIFORMITY

It is natural to generalize the hyperuniformity concept for
scalar fields to random vector fields. In order to narrow the
enormous possibilities in this substantially broader context,
we focus primarily on divergence-free random vector fields,
but the basic ideas apply to more general vector fields.
Excellent physical examples within this class of fields occur in
heterogeneous media, including divergence-free heat, current
or mass flux fields, divergence-free electric displacement
fields associated with dielectrics, divergence-free magnetic
induction fields, and divergence-free low-Reynolds-number
velocity fields [68,107]. Incompressible turbulent-flow fields
provide yet other very well-known set of examples [108,109].
Here we derive the relevant equations to quantify hyperuniform
vector fields, present illustrative calculations, and make contact
with turbulent-flow spectra.

Consider a statistically homogeneous divergence-free
(solenoidal) random vector field u(x) in Rd that is real valued
with zero mean, i.e.,

∇ · u(x) = 0, (77)

where

〈u(x)〉 = 0. (78)

Taking the Fourier transform of (77) yields

k · ũ(k) = 0 for all k, (79)

where ũ(k) is the Fourier transform of u(x). A key quantity is
the autocovariance function �ij (r) (i,j = 1,2, . . . ,d) associ-
ated with the vector field u(x), which is a second-rank tensor
field defined by

�ij (r) = 〈ui(x)uj (x + r)〉, (80)
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where we have invoked the statistical homogeneity of the field.
The divergence-free condition (77) implies

∂�ij (r)

∂ri

= 0 (81)

and

∂�ij (r)

∂rj

= 0, (82)

where the second equation follows from the symmetry
property �ij (r) = �ji(−r) and Einstein indicial summation
notation is implied. Taking the Fourier transforms of (81) and
(82) yield the identities

ki�̃ij (k) = kj �̃ij (k) = 0 for all k, (83)

where �̃ij (k) is the spectral density tensor, i.e., the Fourier
transform of the autocovariance tensor (80). The real-valued
spectral density tensor is positive semidefinite; i.e., for an
arbitrary real vector a,

ai�̃ij (k)aj � 0 for all k. (84)

From the theory of turbulence of an incompressible fluid
[108,109], it is well known that if an arbitrary divergence-free
vector field u(x) is also isotropic, then the spectral density
tensor must take the general form

�̃ij (k) =
(

δij − kikj

k2

)
ψ̃(k), (85)

where δij is the Kronecker δ or identity tensor and ψ̃(k) is a
non-negative scalar radial function of the wave number k =
|k|. A random vector field is isotropic if all of its associated
n-point correlation functions are independent of translations,
rotations, and reflections of the coordinates. Note that the trace
of �̃ij (k) is trivially related to ψ̃(k), i.e.,

�̃ii(k) = (d − 1)ψ̃(k), (86)

and so we see that

�̃ii(k = 0) = (d − 1)ψ̃(k = 0) =
∫
Rd

�ii(r)dr (87)

and

�ii(r = 0) = (d − 1)

(2π )d

∫
Rd

ψ̃(k)dk. (88)

Now if the radial function ψ̃(k) is continuous but positive
at k = 0 (not hyperuniform), it immediately follows from the
form (85) that the spectral tensor can only be hyperuniform
in certain directions. For example, the component �̃11(k) is
zero for k = k1 (all wave vectors along the k1 axis) and the
component �̃12(k) is zero whenever k1 = 0 or k2 = 0. The
fact that the value of �̃11(k) depends on the direction in
which the origin is approached means that it is nonanalytic
at k = 0. On the other hand, if ψ̃(k) is hyperuniform and
continuous at k = 0, then each component of �̃ij (k) will
inherit the radial hyperuniformity of ψ̃(k), and hence is
independent of the direction in which the origin is approached.
For example, consider the situation in which ψ̃(k) admits the
small-wave-number expansion

ψ̃(k) = a1|k|α + o(|k|α), (89)

where α is a positive constant and o signifies higher-order
terms. Note that whenever α is a noninteger or odd integer,
ψ̃(k) is a nonanalytic function at the origin due to a derivative
discontinuity. (An analytic radial function would admit an
expansion in even powers of the wave number only.) For any
α > 0, substitution of (89) in (85) reveals that the spectral
tensor is radially hyperuniform near k = 0 such that it vanishes
as |k|α .

We conclude that we need an even more general hyper-
uniformity concept in the case of a spectral tensor, namely,
one in which hyperuniformity depends on the direction in
which the origin is approached in Fourier space. Let kQ

represent a d-dimensional unit vector emanating from the
origin k = 0. We say that the field is hyperuniform for a
particular component i = I and j = J of the spectral tensor
of a vector field (isotropic or not) in the direction kQ if

lim
t→0

�̃IJ (tkQ) = 0, (90)

where t is a scalar parameter. Note that there are many different
unit vectors (directions) for a particular spectral tensor that
can satisfy this condition, whether this set is countable or
it is uncountable because these unit vectors can occur in a
continuous range of directions. Moreover, if the condition
applies independent of the direction of the unit vector, then it
reduces to the standard spectral definition of hyperuniformity.

To illustrate the hyperuniformity concept in the context of
a divergence-free isotropic vector field, let us consider the
hyperuniform radial function

ψ̃(k) = c(d)(ka) exp[−(ka)2], (91)

where

c(d) = 	(d/2)ad

2dπd/2	[(d + 1)/2]
. (92)

This is a valid (non-negative) spectral function in any di-
mension with an associated autocovariance function ψ(r)
such that ψ(r = 0) = 1. For visual purposes, we examine
the two-dimensional outcome when (91) is substituted into
the spectral tensor (85). Figure 7 shows three components
of this symmetric tensor and the radial function ψ̃(k). The
hyperuniformity property in a compact region around the
origin for all components is readily visible.

It is instructive to place some well-known results from
the theory of isotropic turbulence in the context of the
generalization of hyperuniformity to divergence-free random
vector fields. For three-dimensional incompressible turbulent
flow with an isotropic velocity field, the radial function
ψ̃(k) appearing in (85) is simply related to the so-called
energy spectrum of the velocity field, E(k), via the expression
ψ̃(k) = E(k)/(4πk2). Thus, we see from the analysis given
above that if E(k) goes to zero faster than k2 in the limit k → 0,
then each component of the spectral tensor �̃ij (k) will inherit
the radial hyperuniformity of ψ̃(k), and hence is independent
of the direction in which the origin is approached. An example
of such energy spectra is one due to Batchelor [108], where
E(k) ∼ k4 or ψ̃(k) ∼ k2 in the small wave-number limit. Note
that the corresponding radial autocovariance function ψ(r)
decays to zero for large r exponentially fast. On the other
hand, if the energy spectrum goes to zero like k2 or slower in
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FIG. 7. Spectral patterns for the tensor components of a
divergence-free isotropic vector field in R2 generated from the radial
function (91) with d = 2, depicted in the bottom panel. Note that
unlike the non-negative 11 and 22 components, the 12 component
can be both positive and negative, and so its color map indicating
zero intensity (darkest shade) is different from those for the diagonal
components.

FIG. 8. (Top) A targeted scattering pattern showing a lemniscate
region around the origin in which the scattering intensity is exactly
zero (darkest shade). This “stealthy” pattern clearly shows that
hyperuniformity depends on the direction in which the origin k = 0
is approached. (Bottom) A statistically anisotropic ground-state
configuration of 10 000 particles that corresponds to the unusual
scattering pattern shown in the top panel, which is generated using the
collective-coordinate optimization procedure [21,25,26] in a square
simulation box under periodic boundary conditions.

the limit k → 0, then the value of the spectral tensor will be
hyperuniform only in special directions. An example within
the class of energy spectra is one due to Saffman [122], where
E(k) ∼ k2 or ψ̃(k) ∼ constant in the small wave-number limit.
Here �̃ij (k) is nonanalytic at k = 0. Of course, the significance
of energy spectra in turbulence vis a vis hyperuniformity was
previously not discussed.

VII. STRUCTURAL ANISOTROPY
AND HYPERUNIFORMITY

Other classes of disordered systems in which “direc-
tional” hyperuniformity is relevant include many-particle and
heterogeneous systems that are statistically anisotropic, but
otherwise statistically homogeneous; see Figs. 8 and 9 for two
illustrations. In such cases, the spectral function conditions
(1), (4), and (49) should be replaced with the following ones,
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FIG. 9. Schematic illustration of a statistically homogeneous and
anisotropic nematic liquid crystal configuration. An appropriately
shaped window that occupies region � is also shown. Here x0 denotes
both the centroidal position and orientation of the window, the latter of
which is chosen generally from a prescribed probability distribution
that depends on the specific structure of interest.

respectively,

lim
t→0

S(tkQ) = 0, (93)

lim
t→0

χ̃
V
(tkQ) = 0, (94)

lim
t→0

χ̃
S
(tkQ) = 0, (95)

where the vector kQ is defined in Sec. VI.
Are structurally anisotropic configurations associated with

such exotic spectral functions realizable? To vividly demon-
strate that the answer to this question is in the affirmative,
the collective-coordinate optimization scheme [21,25,26,123]
is employed to produce a many-particle system that is
hyperuniform in only certain directions in Fourier space.
This powerful procedure by construction enables the structure
factor to be constrained to take exact targeted values at a subset
of wave vectors. Whenever the structure factor is constrained
to be exactly zero for this subset of wave vectors, the resulting
configuration exactly corresponds to the classical ground state
of a long-ranged but bounded pair interaction [124]. For
example, one can target stealthy and hyperuniform structure
factors that vanish in a spherical region around the origin
(as in Fig. 1) such that the associated disordered particle
configurations are statistically homogeneous and isotropic
ground states [21,25,26]. Targeted anisotropic structure factors
have been attained that correspond to statistically anisotropic
ground-state structures with directional pair interactions
[123], but none of the specific targets computed there were
hyperuniform. Here we target a lemniscate region around
the origin k = 0 in Fourier space in which scattering is
completely suppressed; i.e., this entire region is stealthy, but
hyperuniform in only certain directions (see the top panel of
Fig. 8). The corresponding disordered ground states are due

FIG. 10. Anisotropic structure factor of a colloidal ferrofluid
in the plane in which the particle chains align, as obtained from
Fig. 6 of Ref. [126]. Dark and light regions indicate low and high
intensities, respectively. Note that depending on the direction in which
the origin is approached, the structure factor can exhibit effective
hyperuniformity.

to directional long-ranged pair interactions that are stronger
in the horizontal direction than in the vertical direction, and
hence are characterized by like-linear “filamentary” chains of
particles that run more or less horizontally. Such an example
is shown in the bottom panel of Fig. 8.

These ground states are characterized by directional-
dependent physical properties, including optical, acoustic,
and elastic behaviors. Interestingly, although such anisotropic
ground-state configurations cannot support shear (for similar
reasons as in their isotropic counterparts [26]), they are
generally elastically anisotropic because the stress tensor
is asymmetric, as will be detailed in a future study. In
particular, the asymmetry of the stress tensor is associated
with internal force couples that resist out-of-plane torques.
While such behavior is known to occur in liquid crystals
and predicted by continuum elastic theories [125], our results
are distinguished because the asymmetry of the stress tensor
arises from a microscopic statistical-mechanical model of
interacting structureless (point) particles. To our knowledge,
such a microscopic model has heretofore not been identified.

Many-particle systems that respond to external fields are
often characterized by anisotropic structure factors and hence
provide a class of systems where directional hyperuniformity
can potentially arise. Huang, Wang, and Holm [126] have
carried out molecular dynamics simulations of colloidal
ferrofluids subjected to external fields that capture the salient
structural features observed in corresponding experimental
systems as measured by the structure factor. Structural
anisotropy arises in these systems due to the formation of
particle chains that tend to align in the direction of the applied
magnetic field. Figure 10 shows an anisotropic structure factor
taken from Ref. [126]. It is apparent that, depending on the
direction in which the origin is approached, the structure factor
can exhibit effective hyperuniformity.
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We can generalize the expressions for the number variance
for point configurations and variances for a structurally
anisotropic two-phase medium by replacing spherical win-
dows with an appropriately shaped nonspherical window
occupying region � with an orientation distribution that
maximizes sensitivity to direction. This general formulation
was given in Ref. [16] for point configurations, but no explicit
calculations were presented. Figure 9 schematically depicts a
statistically homogeneous, anisotropic nematic liquid crystal
configuration of particles, and an appropriate window shape
and orientational distribution to distinguish “directional”
fluctuations associated with either the centroidal positions,
volume fraction, or interfacial area of the particles. It is clear
that window sampling in the direction indicated in Fig. 9 will
produce fluctuations that are different from those obtained by
sampling in the orthogonal direction.

Note that the volume-fraction formulas for the
autocovariance χ

V
(r) and spectral density χ̃

V
(k) for

sphere packings presented in Sec. III apply as well to the more
general class of packings of oriented nonspherical particles
by a simple replacement of the spherical particle indicator
function (36) with the following one for a nonspherical
particle that occupies a region ω,

mv(r; a) =
{

1, r ∈ ω,

0, r /∈ ω,
(96)

where the vector r emanates from the particle centroid and the
vector a represents the set of parameters that defines the shape
of the particle. For example, for a d-dimensional ellipsoid,
this is given explicitly by

mv(r; a) =
{

1,
r2

1

a2
1

+ r2
2

a2
2

+ · · · + r2
d

a2
d

� 1,

0, otherwise,
(97)

where ri (i = 1,2, . . . ,d) is the ith the Cartesian component
of r and a1,a2, . . . ,ad are the semiaxes of the ellipsoid. Of
course, the structural anisotropy for configurations of oriented
particles of general shape is reflected in a total correlation
function h(r) or an autocovariance χ

V
(r) that depends not

only on the magnitude but direction of r. Observe also that the
calculation of h(r) and χ

V
(r) for the special case of oriented

ellipsoids is greatly simplified by exploiting the fact that an
ellipsoid is an affine scale transformation of a sphere [127,128].

Similarly, the surface-area formulas for the autocovariance
χ

S
(r) and spectral density χ̃

S
(k) for sphere packings presented

in Sec. IV B still apply to packings of oriented nonspherical
particles when the radial functions ms(r; a) are replaced with
the appropriate vector-dependent interface indicator function
for a particle ms(r; a), which is a generalized function that
has measure only on the particle surface. As in the case of
anisotropic point configurations, the variances for both volume
fraction and surface area, σ 2

V
(R) and σ 2

S
(R), for sphere pack-

ings using spherical windows of radius R can be generalized to
allow for anisotropic packings of nonspherical particles with
an appropriately shaped nonspherical window [16].

VIII. CONCLUSIONS AND DISCUSSION

We have generalized the hyperuniformity concept in four
different directions: (1) interfacial-area fluctuations in hetero-

geneous materials; (2) random scalar fields; (3) divergence-
free random vector fields; and (4) statistically anisotropic
many-particle systems and heterogeneous media. These gen-
eralizations provide theoreticians and experimentalists new re-
search avenues to understand a very broad range of phenomena
across a variety of fields through the hyperuniformity “lens.”

The surface-area variance σ 2
S

(R) and associated spectral
density function χ̃

S
(k) could play a new and major role

in characterizing the microstructure of two-phase systems,
including fluid-saturated porous media, physical properties
that intimately depend on the interface geometry, such as
reaction rates and fluid permeabilities [68], and evolving
microstructures that depend on interfacial energies (e.g.,
spinodal decomposition). It should not go unnoticed that
the hyperuniformity concept for two-phase media specified
by the volume-fraction and surface-area variances σ 2

V
(R)

and σ 2
S

(R), respectively, are fluctuations that describe two
of the Minkowski functionals [129]. In the case of sphere
packings, we showed that the surface-area spectral function
exhibits stronger and longer-ranged correlations compared
to the volume-fraction spectral function, indicating that the
former is a more sensitive microstructural descriptor.

Little is known about the hyperuniformity of random scalar
fields and its potential significance. Now that we know what to
look for in such contexts, exploration of this uncharted territory
may prove to be profitable. For example, one could imagine
designing random scalar fields to be hyperuniform (e.g., laser
speckle patterns) for photonics applications [111,113].

Our generalization of the hyperuniformity concept to
random vector fields is the most encompassing to date. This
setting generally involves a spectral density tensor, which,
of course, contains random scalar fields as special cases.
Even the restricted class of divergence-free vector fields
that we focused on here revealed the need to extend the
“isotropic” hyperuniformity notion, since the spectral tensor
is nonanalytic at zero wave vector; i.e., it depends on the
direction in which the origin in Fourier space is approached.
Among other results, we placed well-known energy spectra
from the theory of isotropic turbulence in the context of this
generalization of hyperuniformity. More generally, our work
provides a motivation to design random vector fields with
targeted directional hyperuniform spectra, which heretofore
has never been considered.

Structurally anisotropic many-particle and heterogeneous
systems can also possess directional hyperuniformity. To
illustrate the implications of this generalization, we pre-
sented a disordered directionally hyperuniform many-particle
configuration that remarkably is the ground state associated
with a bounded anisotropic pair potential; see Fig. 8. These
filamentarylike ground-state configurations will be character-
ized by directional-dependent physical properties, including
optical and elastic behaviors. Interestingly, such anisotropic
ground-state configurations generally will possess internal
force couples that resist out-of-plane torques, which will be
shown in detail elsewhere. Based on our previous investiga-
tions using disordered isotropic ground-state configurations
to produce disordered dielectric network solids with large
isotropic band gaps [36,60], we expect that one can design
directional hyperuniform ground-state configurations to yield
disordered network solids that can be tuned to have photonic
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and acoustic band gaps with widths that are relatively uniform
for a continuous range of directions and no band gaps for
a different continuous range of directions. Such tunability
could have technological relevance for manipulating light
and sound waves in ways heretofore not thought possible.
Moreover, materials made of dense disordered scatterers that
are directionally hyperuniform can be designed to be trans-
parent in selected directions, as a recent study of traditional
hyperuniform systems would suggest [48].

Directional structural hyperuniformity raises the interesting
possibility that there may exist disordered many-particle
systems in equilibrium that at positive temperature T are
incompressible in certain directions and compressible in other
directions, a highly unusual situation. To understand this
proposition, it is useful to recall the well-known fluctuation-
compressibility theorem for a single-component many-particle
system in equilibrium at number density ρ and temperature T ,

ρkBT κT = lim
|k|→0

S(k), (98)

where κT is the isothermal compressibility. We see that in
order to have a hyperuniform system at positive T , the
isothermal compressibility must be zero; i.e., the system must
be incompressible [19,20]. A well-known model that exhibits
such behavior is the one-component plasma [130]. However,
if the system possesses directional structural hyperuniformity,
relation (98) no longer applies. Therefore, one must first
generalize this fluctuation-compressibility theorem to account
for directional elastic responses of the system to different
components of stress due to nonanalyticities of the spectral
density at the origin. While (98) has been extended to treat
crystals under certain restrictions [131], to our knowledge,
there is currently no known generalization of (98) that accounts
for the anisotropic elastic response of a disordered equilibrium
system to directional stresses due to nonanalytic spectral den-
sities. Such a generalization of the fluctuation-compressibility
theorem would enable one to quantify the directions in which
the aforementioned hypothesized disordered system is incom-
pressible or compressible. This represents an intriguing area
for future research. In particular, this possibility challenges
experimentalists to search for such exotic states of matter.

Finally, we note that the hyperuniformity concept has
recently been generalized to spin systems, including a ca-
pability to construct disordered stealthy hyperuniform spin
configurations as ground states [132]. The implications and
significance of the existence of such disordered spin ground
states warrant further study, including whether their bulk
physical properties and excited states, like their many-particle
system counterparts, are singularly remarkable and can be
experimentally realized.
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APPENDIX: MULTIHYPERUNIFORMITY
AND SURFACE-AREA FLUCTUATIONS IN

POLYDISPERSE SPHERE PACKINGS

Both the autocovariance function and the associated spec-
tral density for packings of hard spheres with a continuous
or discrete size distribution were previously obtained [68,97].
We collect these results here to show that when each sub-
packing associated with each component is hyperuniform,
the entire packing is hyperuniform, which has been termed
multihyperuniformity in the case of a point configuration [43].
(The Supplemental Material collects analogous expressions
for χ

V
(r) and χ̃

V
(k) [98].)

In the case of a continuous distribution in radius, R is
characterized by a probability density function f (R) that
normalizes to unity, ∫ ∞

0
f (R)dR = 1. (A1)

Let us denote the size average of a function G(R) by

〈G(R)〉R ≡
∫ ∞

0
f (R)G(R)dR. (A2)

The specific surface and the autocovariance function are given,
respectively, by

s = ρ〈s1(R)〉R (A3)

and

χ
S
(r) = ρ〈ms(r;R) ⊗ ms(r;R)〉R

+ ρ2〈〈ms(r;R1) ⊗ ms(r;R2) ⊗ h(r;R1,R2)〉R1〉R2 ,

(A4)

where h(r;R1,R2) is the appropriate generalization of the total
correlation function for the centers of two spheres of radii R1

and R2 separated by a distance r . Note that generally h is not
symmetric with respect to interchange of the components, i.e.,
h(r;R1,R2) = h(r;R2,R1). Fourier transformation of (A4)
gives the corresponding surface-area spectral density

χ̃
S
(k) = ρ〈m̃2

s (k;R)S(k;R)〉R
+ ρ2〈〈m̃s(k;R1)m̃s(k;R2)h̃(k;R1,R2)〉R1〉R2

− ρ2〈m̃2
s (k;R)h̃(k;R)〉R, (A5)

where

S(k;R) = 1 + ρh̃(k;R) (A6)

is the non-negative structure factor for particles of radius R.
While the first term on the right side of relation (A5) must
be non-negative for all k, the remaining two terms together
can be negative for some k. The hyperuniformity condition is
obtained by evaluating (A5) and setting it equal to zero [133];
i.e.,

χ̃
S
(0) = 0 = ρ〈s2(R)S(0;R)〉R

+ ρ2〈〈s(R1)s(R2)h̃(0;R1,R2)〉R1〉R2

− ρ2〈s2(R)h̃(0;R)〉R. (A7)

One can obtain corresponding results for spheres with
M different radii, a1,a2, . . . ,aM , from the continuous case
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[68,134] by letting

f (R) =
M∑
i=1

ρi

ρ
δ(R − ai), (A8)

where ρi is the number density of type-i particles, respectively,
and ρ is the total number density. Thus, from the relations
above and (A8),

s =
M∑
i=1

ρis1(ai), (A9)

χ
S
(r) =

M∑
i=1

ρiv
int
2 (r; ai)

+
M∑
i=1

M∑
j=1

ρiρj ms(r; ai) ⊗ ms(r; aj ) ⊗ h(r; ai,aj ),

(A10)

and

χ̃
S
(k) =

M∑
i=1

ρim̃
2
s (k; ai)S(k; ai)

+
M∑

i =j

ρiρj m̃s(k; ai)m̃s(k; aj )h̃(k; ai,aj ). (A11)

It immediately follows that at the origin k = 0 we have

χ̃
S
(0) =

M∑
i=1

ρis
2(ai)S(0; ai)

+
M∑

i =j

ρiρj s(ai)s(aj )h̃(0; ai,aj ). (A12)

When the spatial patterns associated with each component
of a polydisperse packing are themselves hyperuniform [i.e.,
the first term on the right side of (A12) is zero], it follows
that the second term must be identically zero, and hence
the polydisperse packing is multihyperuniform with respect
to surface-area fluctuations. The proof follows in exactly the
same way as for multihyperuniformity of polydisperse sphere
packings with respect to volume-fraction fluctuations [91] and
hence is not presented here explicitly.

Note that any decoration of a crystal in which each
component is arranged in a periodic fashion is multihyperuni-
form. By contrast, constructing disordered multihyperuniform
polydisperse packings is considerably more challenging. The
photoreceptor mosaics in avian retina are such examples
offered by nature [43].

Examining the structure factor S(k) of the point configu-
rations derived from the centers of spheres in a polydisperse
packing could lead one to incorrectly conclude that the packing
is not hyperuniform. One way to ascertain hyperuniformity in
this case is through a packing’s phase spectral density χ̃

V
(k)

[28,31,72,73]. Another way is through surface-area spectral
density χ̃

S
(k) via the equations given in this appendix.
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