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Interface free-energy exponent in the one-dimensional Ising spin glass with long-range interactions
in both the droplet and broken replica symmetry regions
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The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model
for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state
changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the
exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions.
Numerical work is done to support some of the assumptions made in the calculations and to determine the
behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the
interface free-energy exponent are badly affected by finite-size problems.
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I. INTRODUCTION

The Edwards-Anderson (EA) Hamiltonian [1] is univer-
sally agreed to capture the essence of spin-glass behavior.
However, what is not agreed upon is the nature of its low-
temperature ordered state. There are two main theories. The
first is the replica symmetry breaking (RSB) theory of Parisi
[2–7], which is known to be correct for the Sherrington-
Kirkpatrick (SK) model [8], which is the mean-field or infinite-
dimensional limit of the EA model. It is characterized by a very
large number of pure states that organize into an ultrametric
topology [6]. On the other hand, in the second theory, the
droplet picture, developed in Refs. [9–13], there are only two
pure states. In this picture behavior is dominated by low-lying
excitations or droplets whose (free) energies scale as their
linear dimension � as �θ and have a fractal dimension ds where
d − 1 < ds < d for a d-dimensional system. In contrast, in the
RSB picture there are low-lying excitations that cost an energy
of O(1) and are space filling, that is, ds = d. Despite the
striking differences of the two pictures, it has proven difficult
to establish by either experiment or simulations which holds
for, say, three-dimensional (d = 3) spin glasses.

Much of the effort in this regard has focused on the existence
or absence of the de Almeida–Thouless (AT) line [14] that
separates a spin-glass state in a field from a paramagnetic state.
In the RSB picture for Ising spin glasses (only these will be
discussed in this paper), there is a phase transition in the field
h and temperature T plane separating the paramagnetic phase
from a phase with RSB. In the droplet picture, the application
of a field removes the phase transition to the spin-glass phase,
which then occurs only in zero field, just as for the Ising
ferromagnet. We have argued [15] that there is an AT line
for dimensions d > 6 and that for d � 6 the droplet picture
applies and the AT line is absent. The calculation involved
determining the form of this line in the limit as T → Tc but
what one really needs is to show that for any T < Tc, there is
no transition in a field. An attempt was made to do this using a
1/m expansion for an m-component random field added to the

m-component EA vector model [16], and once again d = 6
emerged as the dimension below which the droplet picture
might be appropriate, but the argument is rather convoluted. A
tentative argument that there might be no AT line when d � 6
was made by Bray and Roberts [17] when they were unable
to find any stable perturbative fixed points in an ε expansion
where d = 6 − ε. Suggestive though these arguments, which
are based on the form of the AT line or the critical exponents
across it, are, they do not get really to the heart of the matter,
which is the nature of the low-temperature phase in spin
glasses. This is controlled by a zero-temperature fixed point,
rather than a critical fixed point. In this paper we focus on this
zero-temperature fixed point and its associated exponent θ .

While we believe that d = 6 is the dimension below which
the low-temperature phase is as described by the droplet picture
and above which for d > 6 by RSB ideas, there is clearly little
chance that numerical studies could be done in such high
space dimensions to confirm this changeover. However, it is
possible to imagine numerical work to confirm the equivalent
changeover in the one-dimensional Ising spin-glass model
introduced by Kotliar et al. [18] given by the Hamiltonian

H = −
∑
i<j

JijSiSj , (1)

where the Ising spins Si = ±1 are distributed on a one-
dimensional ring of length L to enforce periodic boundary
conditions. The interactions Jij are specified by

Jij = c(σ )
εij

rσ
ij

, (2)

where [19]

rij = L

π
sin

(
π |i − j |

L

)
(3)

is the chord between sites i and j . The disorder εij is
chosen according to a Gaussian distribution of zero mean
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and standard deviation unity, while the constant c(σ ) in
Eq. (2) is fixed to make the mean-field transition temperature
T MF

c = 1, where [· · · ]av represents a disorder average so that
[J 2

ij ]av = c(σ )2/r2σ
ij . Here (T MF

c )2 = ∑
j [J 2

ij ]av. We will take
[J 2

ii]av = 0.
The phase diagram of this model in the d-σ plane

has been deduced from renormalization-group arguments in
Refs. [13,19,20]. For d = 1, the model behaves just like the
SK model when 0 � σ < 1/2. For 1/2 < σ < 2/3 the critical
exponents at the spin-glass transition are mean-field-like, but
in the interval 2/3 � σ < 1, the critical exponents are changed
by fluctuations away from their mean-field values. When
σ � 1, Tc(σ ) = 0. There is a convenient mapping between
σ and an effective dimensionality deff of the short-range EA
model [19,21–24]. For 1/2 < σ < 2/3, it is

deff = 2

2σ − 1
. (4)

Thus, right at the value of σ = 2/3, deff = 6. This mapping
has a precise sense for equations associated with finite-size
critical scaling at least when 1/2 < σ < 2/3. Whereas for the
short-range EA model there is an expression involving the
dimensionality d, the corresponding formula for the Kotliar-
Anderson-Stein (KAS) model is obtained by replacing d by
the effective space dimension deff of Eq. (4) [24].

In Ref. [15] it was shown that the arguments that had led
us to believe that 6 is the lower critical dimension for replica
symmetry breaking, such as the form of the AT line near Tc

and the Bray-Roberts study of the critical exponents across
the AT line, suggested also that σ = 2/3 was the special
value of σ for the KAS model. Thus, we suspect that for
σ < 2/3 there is RSB in the low-temperature phase, while
for 1 > σ � 2/3 there is droplet behavior. The purpose of
this paper is to strengthen these arguments by calculating
the exponent θ of the zero-temperature fixed point. That
we can do this is another advantage of the KAS model. In
the droplet region, it has been realized for many years that
θ = 1 − σ [13,20,25]. We will argue below that θ = 1/6 in
the RSB region, if one defines θ from the variance of the
sample-to-sample free-energy differences between periodic
and antiperiodic boundary conditions. For the EA model θ

and ds in the droplet regime are only known from numerical
studies or simple renormalization-group approximations [26],
in particular that of Migdal and Kadanoff [27].

While, in principle, the KAS model allows one to do
numerical work on systems that might be the analog of
high-dimensional hypercubic systems of the EA model, there
are problems with its use. Finite-size effects are both large
and difficult to understand and deal with. To illustrate this, we
show in Fig. 1 a plot of the exponent μ (which describes
the sample-to-sample variation, i.e., δE ∼ Lμ), δE of the
ground-state energy of the system as a function of σ . The
estimate of μ is obtained by just fitting δE to Lμ, ignoring
any corrections to scaling. Clearly, the data are a long way
from being satisfactorily fitted by this simple form, but if one
is optimistic, one could imagine that as L is increased the
results tend towards the theoretical expectation. However, the
improvement is so slow we worried whether the theoretical
expectation that for the SK limit μ = 1/6 [28] might not be
correct. In Appendix A we therefore have outlined a “rigorous”
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FIG. 1. Estimates of the exponent μ (sample-to-sample variation
of the ground-state energy) as a function of σ , i.e., δE ∼ Lμ. Here
KY denotes results obtained on samples up to L = 256 by Katzgraber
and Young [19]. The expectation for μ is that μ = 1/6 for σ < 1/2
[28] and 1/2 for all σ > 1/2, as the system is now self-averaging
[29] (dashed lines). Finite-size effects make the transition between
these two values for μ spread over a large range of σ . Notice that the
results for μ in the SK model region σ = 0.1 are moving closer to
the theoretical prediction of 1/6 as L increases.

proof that at least μ � 1/5. (We put rigorous in quotes to
indicate that the proof cannot be considered mathematically
rigorous as it involves the use of the replica trick.) In this paper
we need the value of μ as we argue that for all σ < 2/3, θ

takes the SK limit value of μ.

II. INTERFACE FREE ENERGY

One of the key concepts in the droplet picture of spin glasses
is the interface free energy [9–11,13,30] δF and the associated
stiffness exponent θ defined by

δF ∼ �θ , (5)

where � is the length scale of the excitation or droplet (or
region of flipped spins). If θ > 0, the spin-glass state is stable
at finite temperature, whereas if θ < 0, at T = 0 large-scale
excitations cost little energy, so the spin-glass state is unstable
at finite temperature. Thus, the dimension or value of σ at
which θ = 0 determines the lower critical dimension of the
spin glass. In this section we calculate θ analytically first
in the RSB region σ < 2/3 and then in the droplet region
(2/3 � σ < 1) for the KAS model using the replica method
and the formalism of Ref. [31].

There are many ways of defining a droplet free-energy cost,
but in this section we will take it to be the interface free energy
defined as the root-mean-square change in the free energy of a
spin glass when the boundary conditions along one direction
(the z direction) are changed from periodic to antiperiodic, i.e.,

δF =
√

�F 2
P,AP. (6)

Here and in the following, the overbar represents averaging
over bond configurations, where �FP,AP = FP − FAP, and FP

and FAP are the free energies with periodic and antiperiodic
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boundary conditions, respectively. Antiperiodic boundary
conditions can be realized by reversing the sign of the bonds
crossing a diameter of the ring in the KAS model. It follows
that �FP,AP = 0.

The basic strategy of Ref. [31] was to replicate the system
with periodic boundary conditions n times and the system with
antiperiodic boundary conditions m times and keep n distinct
from m. Expanding the replicated partition function in powers
of m and n and taking the logarithm, we obtain

− ln Zn
PZm

AP = (n + m)βF − (n + m)2

2
β2�F 2

+ nm

2
β2�F 2

P,AP + · · · , (7)

where �F 2 = F 2
P − FP

2 = F 2
AP − FAP

2
is the (mean-square)

sample-to-sample fluctuation of the free energy, the same for
both sets of boundary conditions P or AP, and F = FP = FAP.
Hence, to find the variance of the interface free energy �F 2

P,AP

(which scales with L as L2θ ), we expand ln Zn
PZm

AP to second
order in the numbers of replicas n and m, separate out the
pieces involving the total number of replicas n + m, and take
the remaining piece, which is proportional to nm.

Using the standard replica field theory [32], we write

Zn
PZm

AP =
∫

Dq exp(−βHrep), (8)

where Hrep is the replica free energy, expressed in terms of the
spin-glass order parameter field qαβ(x). For the short-range
KAS model it is given by

βHrep =
∫

dz

[
−τ

2

∑
α,β

q2
αβ + 1

4

∑
α,β

(∂qαβ/∂z)2

− w

6

∑
α,β,γ

qαβqβγ qγα − y

12

∑
α,β

q4
αβ

]
, (9)

where qαβ is a symmetric matrix with qαα = 0, we have
omitted some irrelevant terms of order q4, and we have set
τ = 1 − T/Tc. The fourth-order term included is the one
responsible for replica symmetry breaking in the SK model.
The coefficients w and y are arbitrary positive parameters.
For the short-range KAS model, the bare propagator is g =
1/(k2 − τ ).

To describe the long-range KAS model we replace the
gradient terms in Eq. (9) by

−1

4

∑
α,β

∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ [qα,β(z) − qα,β (z′)]2

[(L/π ) sin(π (z − z′)/L)]2σ
,

(10)
which on Fourier transforming can be seen to lead to a bare
propagator of the form g = 1/(k2σ−1 − τ ) [33] as k → 0.
[Actually Eq. (10) as it stands generates a numerical factor
of cg(σ ) = −�(1 − 2σ ) sin(πσ ) in front of the k2σ−1 in the
propagator, which can be removed if desired by dividing
Eq. (10) by cg(σ ).] In terms of the original spins Eq. (10)
is just

−1

4

∑
α,β

∑
i,j

[J 2
ij ]av(

T MF
c

)2

(
S

(α)
i S

(β)
i − S

(α)
j S

(β)
j

)2
. (11)

The replica indices go α,β,γ = 1,2, . . . ,n,n + 1, . . . ,n + m.
The order parameter q divides naturally into blocks of size
n and m. From now on, greek indices label the first block
and roman ones the second block, so, for example, qαa means
α ∈ [1,n] and a ∈ [n + 1,n + m] and refers to the respective
entry in the off-diagonal or mixed sector.

Along the z direction, which we take to be a distance along
the circumference of the ring of length L, we impose the
boundary condition that the solution is periodic in the greek
and roman sectors and is antiperiodic in the mixed sectors
reflecting the sign reversal of the bonds across the chosen
diameter of the ring in the one sector with respect to the other:

qαβ (z) = qαβ(z + L),

qab(z) = qab(z + L),

qαa(z) = −qαa(z + L).

(12)

At mean-field level, there is the following stable solution for
ln Zn

PZm
AP:

− ln Zn
PZm

AP = βHrep{qSP}, (13)

where

qSP =
(

Q
(n)
αβ 0

0 Q
(m)
ij

)
(14)

is independent of the spatial coordinates. It is natural that
the diagonal blocks are the same as the regular Parisi
ansatz because ordering in the system with periodic boundary
conditions, say, should not be affected by there being another
completely independent copy with different boundary condi-
tions. Choosing the mixed greek-roman sector to vanish seems
to be consistent with the standard interpretation [34] of RSB
in short-range systems, namely, that changing the boundary
conditions changes the system everywhere. More precisely the
surface of the domain wall separating the regions that flip from
the regions that do not flip is space filling. In this situation, one
can reasonably expect zero overlap between configurations
with different boundary conditions. However, in the droplet
regime, where there is but one state and its time reversed,
we still expect that the thermal average of the off-diagonal
term remains zero. Our numerical work is consistent with this
assumption.

At mean-field level the solution is identical to the customary
mean-field solution but for an (n + m)-times replicated system
(n + m being finite) without boundary condition changes. We
can therefore immediately use the result from Ref. [35] that
on the mean-field level, there is no term of order (n + m)2, let
alone of order nm, and thus the interface energy vanishes to
this order.

We now turn to the loop expansion about the saddle point,
which we expect to be valid for σ < 2/3. The first correction is
due to Gaussian fluctuations around the saddle-point solution.
They are given by

− ln Zn
PZm

AP = βHrep{qSP} + 1

2

∑
k

I (k2σ−1), (15)

where

I (k2σ−1) =
∑

μ

dμ ln(k2σ−1 + λμ). (16)
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Here λμ are the eigenvalues of the Hessian, evaluated at the
saddle-point solution and dμ are their respective degeneracies.
These are the same as for a system of size n + m without
boundary condition changes because the saddle-point solution
is the same. Only the nature of the k vectors changes for
the terms involving eigenvalues whose corresponding eigen-
vectors f are nonzero exclusively in the mixed sector (i.e.,
fαβ = fij = 0): The wave vectors have to respect the imposed
boundary conditions, which implies k = (2nd + 1)π/L (with
nd ∈ Z) in the mixed sector as opposed to k = 2ndπ/L in the
greek or roman sectors.

Following Refs. [31,35], it is convenient to introduce the
function

J (k2σ−1) := ln

(
k2σ−1 + x2

1w
2

2y

)

− 4w(4yk2σ−1 + wx1)

4yk2σ−1
√

4yk2σ−1 + w2x2
1

× tan−1 wx1√
4yk2σ−1 + w2x2

1

,

where x1 is the breakpoint of the Parisi q function. This is
because the quadratic terms in n and m in I are of the form

(n + m)2

2
JP(k2σ−1) + nm[JAP(k2σ−1) − JP(k2σ−1)].

The subscripts P and AP on J mean that J must be taken as 0
when the argument is not of the required type, i.e., periodic or
antiperiodic.

We can now identify the term that gives rise to the interface
free energy. Comparison with Eq. (7) shows

β2�F 2
P,AP =

(∑
AP

−
∑

P

)
J (k2σ−1)

= 2
∞∑

r=1

{
J

[(
(2r + 1)π

L

)2σ−1]

− J

[(
(2r)π

L

)2σ−1]}
+ �f 2

SKL2μ, (17)

where the subscripts on the sums indicate the nature of the
allowed k vectors, as made explicit in the second part of
Eq. (17). The sum over k has been changed from ±∞ to 1 to ∞
with the sum multiplied by a factor of 2. The term �f 2

SKL2μ in
Eq. (17) comes from the k = 0 term in

∑
P, which is nominally

divergent as k → 0.
In Ref. [31] we made an attempt at using finite-size ideas to

regularize this divergence, but did it incorrectly. It was pointed
out, correctly however, that the diverging term is identical to
the variance of the sample-to-sample fluctuations of the free
energy of the SK model containing L spins, �f 2

SKL2μ, with
�FSK an L independent term. Since that paper was written,
this variance has become better understood. Parisi and Rizzo
[28] argued that μ = 1/6. Aspelmeier [36,37] has shown that
at least μ � 1/4. In Appendix A the bound is strengthened;
μ � 1/5. We will take it that μ = 1/6.

Because J (k2σ−1) ≈ −πw/4yk2σ−1 for small k, the term
in the sum in Eq. (17) is well approximated by

−πw

4y
2

∞∑
r=1

[
1[ (2r+1)π

L

]2σ−1 − 1[ (2r)π
L

]2σ−1

]
= CL2σ−1,

where C = [1 − 4−σ (−4 + 4σ )ζ (2σ − 1)]πw/(2π2σ−1y).
This gives

β2�F 2
P,AP = �f 2

SKL2μ + CL2σ−1. (18)

Provided that μ = 1/6, the right-hand side of Eq. (18) is
dominated by the first term. It is overtaken by the second
term only when σ > 2/3, but when σ > 2/3 one is in the
droplet region and the calculation of the interface free energy
β2�F 2

P,AP takes a quite different form, as we will discuss
below.

In the EA d-dimensional version of the calculation, which
was summarized in Ref. [38], there was a similar change at
d = 6 dimensions. For the EA model the system is of length
L in the z direction, the direction in which the change is made
from periodic to antiperiodic boundary conditions, and it is
periodic and of length M in the transverse d − 1 dimensions,
so N = LMd−1. Then, for d > 6,

β2�F 2
P,AP = �f 2

SKN2μ + L2f (L/M). (19)

The term ∼L2f (L/M) is the analog of the term L2σ−1 for
the KAS model and is subdominant to the term of order N1/3

(if μ = 1/6) until the dimensionality d is lowered to 6. This
term depends on the shape of the system L/M and has the
aspect-ratio scaling form expected for the interface free energy
in dimensions d � 6. The leading term in N1/3 depends only
on the total number of spins N and arises because the domain
walls are space filling for d > 6, with ds = d. The interchange
between the term in N1/3 and its leading correction is one of
the reasons that we suspect that 6 is the dimension below which
RSB behavior changes to droplet behavior. For the KAS model,
it is one of the reasons why we believe that RSB behavior does
not occur in the spin-glass phase for σ � 2/3.

The key assumption used in our calculation is that in
the greek-roman sector Qαa = 〈qαa(z)〉 = 0. This assumption
allowed us to expand about a spatially uniform solution. In
Appendix B we give the numerical details of the simulations
that were done to directly test this assumption. We study the
three overlap functions P π,π (q), P π,π (q), and P π,π (q). Thus,
the overlap q between the spin S

(π)
i in the system with periodic

boundary conditions and the spin S
(π )
i at the same site i in the

system with antiperiodic boundary conditions is defined as

q = 1

L

L∑
i

S
(π)
i S

(π )
i . (20)

The distribution of this overlap is P π,π (q) and together with the
similarly defined overlap distributions P π,π (q) and P π,π (q) is
shown in Figs. 2 and 3 for a variety of system sizes L and σ

values. We refer to the last two distributions as the diagonal
contributions [after bond averaging P π,π (q) = P π,π (q)] and
P π,π (q) as the off-diagonal contribution. In replica language,
the overlap defined in Eq. (20) relates to that in the mixed
greek-roman sector qαa . Our crucial assumption was that
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FIG. 2. Spin overlap distributions for three values of σ as a
function of L at T = 0.2Tc. The distributions include P π,π (q),
P π,π (q), and P π,π (q). The diagonal distributions have substantial
peaks close to ±1, with decreasing qEA as L increases, while the
off-diagonal distributions P π,π (q) peak only at q = 0, becoming
increasingly localized towards the center as L increases for the system
sizes studied. Note that in the third panel, P π,π (q) appears to saturate
to a non-δ function. In all panels the systems sizes increase from
bottom to top as seen from the center of the distribution for the cases
where there is a central peak; otherwise, it is as seen from the peaks
at large values of |q|.
Qαa(z) = 〈qαa(z)〉 = 0. One might have expected that in the
mixed sector Qαa(z) is an odd function interpolating at one
end of the system from +qEA to −qEA at the other end in
order to satisfy the boundary conditions. However, if that
were the situation, the off-diagonal distribution P π,π (q) would
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FIG. 3. Spin overlap distributions for L = 400 for various values
of σ at T = 0.2Tc. The diagonal distributions are those with peaks
close to ±1, while the off-diagonal distributions P π,π (q) have peaks
only at q = 0 and become increasingly localized towards the center as
σ decreases. For the distributions with a peak at the center, the values
of σ increase with decreasing peak height. For the distributions with
large support for |q| large the values of σ increase for increasing peak
height.

have peaks near ±qEA, just like the peaks of the diagonal
distributions. However, the only peak in the off-diagonal
distribution occurs at q = 0 and for all values of σ there are
no signs of peaks at ±qEA. We believe that this confirms our
fundamental assumption.

We find it useful to examine the second moment of P π,π (q),
which equals 〈q2〉, where

q2 = 1

L2

∑
j,i

S
(π)
j S

(π )
j S

(π)
i S

(π )
i . (21)

Let us examine the situation at zero temperature. Let τi =
S

(π)
i S

(π )
i = ±1. Then τi = +1 if at site i the spins associated

with periodic and antiperiodic boundary conditions are par-
allel; τi = −1, if these spins are antiparallel. A sequence in
which the τi are of the same sign will be called an island. Then

q2 =
(

1

L

∑
i

τi

)2

. (22)

For the one-dimensional KAS model with long-range inter-
actions, a droplet may consist of disconnected pieces, i.e.,
islands, so a fractal dimension ds could be defined if the
number of islands scales as Lds . In the RSB region we expect
that ds = d = 1. If one changes the boundary conditions from
periodic to antiperiodic, one does not generate a single reversed
domain but instead a number of order Lds islands. The islands
have a distribution of sizes. In the RSB region (σ < 2/3)
we expect that the number of these islands varies as L/L0,
where L0(σ ) is the root-mean-square size of the islands, which
seems to increase with σ . This breakup into islands arises to
reduce the energy by taking advantage of particular features
of the bonds Jij and the existence of many states in the
RSB region. Because islands are only a feature of long-range
one-dimensional systems, they have not been studied in the
literature. In the EA model with short-range interactions, the
droplets are simply connected.

The first moment of P (q) equals 〈q〉 and is zero [the func-
tions are symmetric, so P (q) = P (−q)]. Thus, the average
value of τi is zero and there are as many positive τi values as
negative τi values. For any given ground state, the average of
τi might not be zero. However, if one averages over the ground
state and the states obtained by flipping all the spins in (say) the
system with periodic boundary conditions, the average value
of τi will be zero.

The second moment can be estimated by noting that the
sum in Eq. (22) is a sum of L/L0 terms random in sign and
of magnitude L0, so the sum is of order

√
L/L0 L0. Hence,

q2 = L0/L. Assuming that the distribution of q is Gaussian,

P π,π (q) =
√

L

2πL0
exp

[
−Lq2

2L0

]
. (23)

Thus, in the limit of L → ∞, P π,π (q) = δ(q). The peak
P π,π (0) is expected to vary as ∼√

L/L0. It is shown in Fig. 4
and seems to be consistent with these arguments at least for
the data for σ = 0.1 and 0.55, which lie in the RSB region.

In the droplet region the data in Figs. 2 and 3 imply that
〈q2〉 is nonzero as L → ∞. Again, P π,π (q) is a function of
q centered at the origin and of nonzero width, so the peak
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FIG. 4. Parisi overlap P π,π (0) as a function of
√

L for three
representative values of σ at T = 0.2Tc. Note that P π,π (0) grows
approximately linearly in

√
L in the RSB regime, but seems to level

off in the droplet or scaling regime (σ > 2/3).

P π,π (0) remains finite in the droplet region. Therefore, there
seems to be a simple test for determining whether the system
has RSB behavior or not. If there is RSB behavior, P π,π (0)
diverges with the system size, whereas in the droplet region
it stays finite. Simulations of the three-dimensional EA model
suggest that it stays finite [39]. Our numerical work shows that
in the KAS model the change from RSB to droplet behavior
might occur somewhere between σ = 0.55 and σ = 0.75, but
finite-size effects make it hard to pin down the change more
precisely and we have failed to find any method of analysis
that even hints at a sharp feature at σ = 2/3. It might be
that L0 diverges as σ → 2/3, so that 〈q2〉 joins smoothly to
its expected finite form for σ � 2/3. We tried to determine
whether L0 has this feature, but failed to see it clearly, probably
because of finite-size issues. We do emphasize, however, that
the window 0.55 � σ � 0.75 corresponds for a hypercubic
system to space dimensions between approximately 4 and 10.

In the RSB region the loop expansion, i.e., the expansion
about the mean-field solution, is well controlled (but tech-
nically challenging). Unfortunately, such a perturbative ap-
proach completely fails in the droplet region as the terms in the
expansion about the state of assumed replica symmetry appear
to break replica symmetry. This problem might be overcome by
going to all orders in the expansion [40]. However, we can get
the exponent θ within our formalism by using Eq. (11) for the
bending energy and using the arguments in Refs. [10,13,25].
It is useful to set ταa

i = S
(α)
i S

(a)
i = ±1, so that ταa

i = +1 if
the spins S

(α)
i and S

(a)
i are parallel and −1 otherwise. Then, by

flipping (say) half the ταa
i spins, one can see that the variance

of the replicated bending energy scales as mnL2−2σ , just as
already argued in Refs. [10,13,25]. In that case

θ = 1 − σ. (24)

We believe that Eq. (24) applies only in the droplet region, i.e.,
σ � 2/3. However, in the region σ < 2/3 where we expect
〈q2〉 to be of order L0/L, the presence of so many islands (of
order L/L0) of finite size L0 and the correlations between

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

θ

σ

KY
L = 400
L = 1000

FIG. 5. Estimates of the exponent θ as a function of σ . Here KY
denotes results obtained on samples up to L = 256 in Ref. [19] by
Katzgraber and Young. The dashed line denotes the droplet regime
prediction for θ = 1 − σ . We expect this to apply for 2 > σ � 2/3.
When σ < 2/3 we predict that θ = 1/6 and the horizontal dashed line
shows this prediction. Notice that the result for θ in the SK model
region (σ = 0.1) is moving closer to the theoretical prediction of 1/6
as L increases, albeit very slowly.

them must allow the system to reduce the free-energy variance
associated with the transition from periodic to antiperiodic
boundary conditions from this estimate of L2(1−σ ) to the
smaller value of L1/3.

For σ � 1, the exponent θ is no longer positive and there
will be no finite-temperature spin-glass phase [25]. However,
the short-range EA model value for θ is −1 [10] and so the
crossover to the short-range behavior occurs above σ = 2
when the long-range interactions become irrelevant at the
zero-temperature fixed point [13,20].

III. CONCLUSION

We have predicted for the one-dimensional KAS model
that in the RSB region (σ < 2/3) θ = 1/6, while in the region
2/3 � σ < 2, θ = (1 − σ ). Notice that at the borderline of the
RSB region and droplet region at σ = 2/3, θ is predicted to
be discontinuous, as shown in Fig. 5.

This discontinuity seems to be a feature of the KAS
model only. For the d-dimensional EA model where 6 is the
borderline dimension, there is evidence that θ is continuous
at six dimensions as it approaches unity in six dimensions
(see Refs. [41,42] for numerical evidence on this question).
If it tends to unity approaching six dimensions from below,
it merges with the value of θ expected from RSB as the
dimension d approaches 6 from above, as given in Eq. (19).
In addition, θ and μ have been studied as a function of σ

via numerical simulations. This was first done by Katzgraber
and Young (KY) [19,43], with results that are not very close
to the predictions made here. No discontinuity in θ was
reported at σ = 2/3. We believe that the discrepancies are
due to finite-size effects [24], which are surprisingly large
in the KAS model. The data produced in the present study
allows us to reach larger sizes than those previously studied by
KY, who studied L � 256. The larger sizes that we studied,
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L = 400 and L = 1000, do give results somewhat closer to
our theoretical expectations, but the movement towards them
is slow. In the droplet region the finite-size effects are probably
of the same origin as those that make the Parisi overlap
P π,π (q = 0) nonzero, contrary to the arguments of droplet
theory, i.e., the system sizes studied are just not large enough
to make it vanish. Smaller systems appear to have RSB features
such as a nonzero value of P π,π (0).

In the RSB region where σ < 2/3, we predicted that θ =
1/6. The value of 1/6 is the SK value for μ. However, the
values for μ mostly reported in the numerical literature [44–46]
for the SK model seem closer to a value around 0.25, which,
while very different from 1/6 of the theoretical work of Parisi
and Rizzo [28], is consistent with the numerical value for θ

reported in [19]. However, once again, we suspect that finite-
size effects in the RSB region might cause the discrepancy. In
Appendix A we give what we believe is a cogent argument
that at least μ � 1/5.

Our work suggests that a convenient numerical test for RSB
or droplet behavior is via the size dependence of P π,π (0). If
this quantity does not grow with system size, the ordered state
is dropletlike. If it grows with system size, the system has RSB
behavior. However, this test is affected by finite-size effects,
yet perhaps not as badly as other commonly used tests based on
the existence or not of the AT line. Simulations using special-
purpose machines [47] that allow for considerably larger
system sizes might allow for the detection of the true nature
of the spin-glass state using the metric introduced herein.
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APPENDIX A: “PROOF” THAT μ � 1
5

FOR THE SK MODEL

For σ < 2/3, our calculation of the exponent θ related it to
the exponent μ of the sample-to-sample variation of the energy
in the SK limit. This exponent is believed to be 1/6 [28], but
numerical studies of it give larger values [19,44–46]. In this
Appendix we derive an upper bound on its value, namely,

μ � 1/5. We believe that with the methods used here it might
be possible eventually to actually prove that μ = 1/6. We also
point out that the numerical work is done for the ground state,
i.e., the the free energy at T = 0, and the argument in this
Appendix is for the free energy at a finite temperature T < Tc.
However, we do not think this difference affects the value
of μ. The difference between the numerical value and our
theoretical expectations is, we believe, just another problem
caused by finite-size effects.

In Refs. [36,37] it was shown that the free-energy fluctua-
tions �F in the SK model are given by the exact formula

β2�F 2 = N2β4

16

∫ ∞

0
f2(ε)E

〈(
q2

13 − q2
14

)(
q2

13 − q2
23

)〉
dε

+ Nβ2

4

∫ ∞

0
g2(ε)

(
E

〈
q2

13

〉 − 1

N

)
dε, (A1)

where N is the system size, β is the inverse temperature, f2

and g2 are two functions defined by

f2(ε) = 2ε ln(1 + ε2)

(1 + ε2)2
, g2(ε) = ε ln(1 + ε2)

(1 + ε2)3/2
,

and qij , with i = 1, 2 and j = 3,4, are the overlaps between
spin-glass systems 1, . . . ,4 of which systems 1 and 2 have
identical Gaussian bonds J

(i)
kl with unit variance, and likewise

for systems 3 and 4 with bonds J
(j )
mn , and the correlation

between the two sets of bonds is given for k > l and m > n by

EJ
(i)
kl J (j )

mn = δkmδln

1√
1 + ε2

.

The symbol E here stands for the expectation value with
respect to all bonds and the angular brackets denote a thermal
average. The free-energy fluctuations are thus directly linked
to bond chaos via integrals over a function (f2 or g2)
times momenta of overlaps between spin-glass replicas with
different but correlated bonds.

For the calculation of Eq. (A1) it is, in principle, necessary
to calculate 3- and 4-replica overlaps of the form E〈q2

13q
2
14〉,

etc. This is, however, very difficult. Instead, we note that
trivially

0 �
(
q2

14 − q2
23

)2 = q4
14 + q4

23 − 2q2
14q

2
23,

whence it follows that

E
〈
q2

14q
2
23

〉
� E

〈
q4

13

〉
,

since replicas 1 and 2 are identical, as are replicas 3 and 4, and
so E〈q4

14〉 = E〈q4
23〉 = E〈q4

13〉. This implies that

E
〈(
q2

13 − q2
14

)(
q2

13 − q2
23

)〉
= E

〈
q4

13 − q2
13q

2
23 − q2

14q
2
13 + q2

14q
2
23

〉
� 2E

〈
q4

13

〉
. (A2)

For an upper bound of the first integral term in Eq. (A1) it is
therefore only necessary to know E〈q4

13〉 as a function of ε.
Such moments have been calculated asymptotically in various
regimes in Ref. [36]. The results are summarized in Table I.

The function h is a non-negative function with the features
that h(ε) = O(ε3) for ε → 0 and h(ε) → const for ε → ∞.
These results allow for calculating the asymptotic behavior of
the integrals in Eq. (A1). The first integral can, with the help
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TABLE I. Summary of moments E〈qk
13〉 with k = 2,4 calculated

in Ref. [36].

Regime I Regime II Regime III

E〈qk
13〉 ε � N−1/2 N−1/2 � ε � N−1/5 N−1/5 � ε

E〈q2
13〉 const ∼(Nε2)−2/3 ∼[Nh(ε)]−1

E〈q4
13〉 const ∼(Nε2)−4/3 ∼[Nh(ε)]−2

of Eq. (A2), be bounded by

N2β4

16

∫ ∞

0
f2(ε)E

〈(
q2

13 − q2
14

)(
q2

13 − q2
23

)〉
dε

� N2β4

8

∫ ∞

0
f2(ε)E

〈
q4

13

〉
dε

= N2β4

8

∫ N−1/5

0
ε3F(N1/2ε) dε

+ N2β4

8

∫ ε0

N−1/5
ε3(Nε3)−2dε + O(1),

where F is a scaling function combining regimes I and II
and with the properties F(x) → const as x → 0 and F(x) =
O(x−8/3) as x → ∞. The term ε3 in the integrals comes from
a Taylor expansion of f2 for small ε. The upper limit of the
second part of the integral, which corresponds to regime III, is
some fixed ε0 of order 1 but small enough to allow for a Taylor
expansion of f2 and h. Asymptotic evaluation of the integral
is now possible and the result is, for regimes I and II,

N2β4

8

∫ N−1/5

0
ε3F(N1/2ε)dε

= β4

8

∫ N3/10

0
x3F(x)dx ∼ N2/5.

The dominant contribution to regime III of the integral comes
from the lower bound and is also ∼N2/5. A similar calculation
shows that the second integral term in Eq. (A1) is subdominant
to N2/5, hence the fluctuations are bounded by

β2�F 2 � const × N2/5

and the fluctuation exponent μ in β�F ∼ Nμ is bounded by
μ � 1/5.

APPENDIX B: NUMERICAL SIMULATION DETAILS

The main purpose of the numerical work is to verify the
main assumption in our calculation in Sec. II. This is that in
the mixed sector Qαa = 〈qαi(z)〉 = 0. It is this assumption that
allowed us to construct the first term in the loop expansion
about a spatially uniform solution. We also expect that
〈qαi(z)〉 = 0 in the droplet region. Our studies of the exponents
θ and μ are in effect a by-product of these investigations.

When doing numerical work on the one-dimensional long-
range model, one has to decide whether to stay with the KAS
model as originally outlined, in which every spin is coupled
to every other spin, or the diluted model in which only a
fixed number z (typically z is chosen to be 6) of the spins are
coupled [21,48]. The advantage of the diluted model is that

TABLE II. Parameters of the simulations for different values of
σ and system size L for periodic π and antiperiodic π boundary
conditions. Here R0 is the population size, T0 = 1/β0 is the lowest
temperature simulated, NT is the number of temperatures used in the
annealing schedule, and M is the number of disorder realizations.

L σ R0 1/β0 NT M

100 {0.1,0.25,0.5,0.55} 104 0.1000 101 6000
100 {0.6} 104 0.0934 101 6000
100 {0.667} 104 0.0833 101 6000
100 {0.75} 104 0.0690 101 6000
100 {0.896} 2 × 104 0.0373 101 12000
200 {0.1,0.25,0.5,0.55} 2 × 104 0.1000 101 6000
200 {0.6} 2 × 104 0.0934 101 6000
200 {0.667} 2 × 104 0.0833 101 6000
200 {0.75} 2 × 104 0.0690 101 6000
200 {0.896} 2 × 104 0.0373 101 6000
300 {0.1,0.25,0.5,0.55} 4 × 104 0.1000 101 6000
300 {0.6} 4 × 104 0.0934 101 6000
300 {0.667} 4 × 104 0.0833 101 6000
300 {0.75} 4 × 104 0.0690 101 6000
300 {0.896} 4 × 104 0.0373 101 6000
400 {0.1,0.25,0.5,0.55} 5 × 104 0.1000 201 6000
400 {0.6} 5 × 104 0.0934 201 6000
400 {0.667} 5 × 104 0.0833 201 6000
400 {0.75} 5 × 104 0.0690 201 6000
400 {0.896} 5 × 104 0.0373 201 6000
1000 {0.1,0.55} 2 × 105 0.1000 201 3000
1000 {0.75} 2 × 105 0.0690 201 3000

the simulations are faster, because each spin update requires
only a constant number of updates from their neighbors. On
the other hand, there is a consequence in that it suffers from
larger finite-size effects. We therefore decided to study the
fully connected model. Despite smaller system sizes than in
the diluted case, finite-size corrections to scaling are smaller.

The model is simulated using the population annealing
Monte Carlo method [49–52]. Population annealing works
with a large population R0 of replicas of the system, each with
the same disorder. The population transverses an annealing
schedule and maintains thermal equilibrium to a low target
temperature T0 = 1/β0. In this work we used a schedule that
is linear in β. When the temperature is lowered from β to β ′
the population is resampled. The mean number of copies of
replica i is proportional to the appropriate reweighting factor
exp[−(β ′ − β)Ei]. The constant of proportionality is chosen
such that the population size remains close to R0. This is
followed by NS = 10 sweeps of the Metropolis Monte Carlo

TABLE III. Dependence of Tc(σ ) on σ . The values of Tc used
in the simulation and the error bars are estimated using the data of
Ref. [33] via a cubic spline interpolation.

σ Tc(σ )

0.55 1.00(3)
0.6 0.93(3)
0.6667 0.83(2)
0.75 0.69(1)
0.896 0.37(1)
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algorithm of each replica. We simulate M disorder realizations
and measure overlaps at T = T0 = 0.1Tc and T = 0.2Tc.
The simulation parameters are summarized in Table II. Our
estimates of Tc(σ ) are given in Table III. Most of our studies
of the three overlap functions were done at 0.2Tc(σ ), in order

to more easily compare how varying σ affects them. We find
the ground-state energy by finding the lowest energy in our
population at the lowest temperature and we ensure that the
number of replicas having the lowest energy is large, in order
to estimate the exponents θ and μ.

[1] S. F. Edwards and P. W. Anderson, Theory of spin glasses,
J. Phys. F 5, 965 (1975).

[2] G. Parisi, Infinite Number of Order Parameters for Spin-Glasses,
Phys. Rev. Lett. 43, 1754 (1979).

[3] G. Parisi, The order parameter for spin glasses: A function on
the interval 0–1, J. Phys. A 13, 1101 (1980).

[4] G. Parisi, Order Parameter for Spin-Glasses, Phys. Rev. Lett. 50,
1946 (1983).

[5] R. Rammal, G. Toulouse, and M. A. Virasoro, Ultrametricity for
physicists, Rev. Mod. Phys. 58, 765 (1986).
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