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The tetragonal-orthorhombic structural phase transition of oxygen atoms in the basal plane of YBa2Cu3O6+δ

high-TC cuprate superconductors is studied numerically. By mapping the system onto the asymmetric next-
nearest-neighbor Ising model, we characterize this phase transition. Results indicate the degrees of critical
behavior. We show that this phase transition occurs at the temperature TC � 0.148 eV in the thermodynamic
limit. By analyzing the critical exponents, it is found that this universality class displays some common features,
with the two-dimensional three-state Potts model universality class, although the possibility of other universality
classes cannot be ruled out. Conformal invariance at T = Tc is investigated using the Schramm-Loewner evolution
(SLE) technique, and it is found that the SLE diffusivity parameter for this system is 3.34 ± 0.01.
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I. INTRODUCTION

Unconventional superconductivity remains a challenging
problem in low-temperature physics. Copper oxide super-
conductors have very rich electronic and structural phase
diagrams, incorporating signatures of different physical phe-
nomena, which result in different competing orders. In
these materials, superconductivity appears in proximity or in
competition with symmetry-breaking in the ground state [1].
Optimal doping seems to occur near a quantum phase transition
of magnetic ordering [2], while at the same time, a strong
isotope effect of the oxygen atoms [3] or the well-known
lattice instabilities [4] indicates a noticeable electron-phonon
interaction in these compounds.

The Y-Ba-Cu-O family of cuprate superconductors itself
consists of several family members that differ in the number
of the CuO2 planes and the CuO chains and their stacking
sequence. CuO chains are the exclusive property of this family
among other cuprates. These chains are believed to play the
role of a carrier reservoir with a minor direct contribution in
the superconductivity of the system. Holes can be doped to the
CuO2 planes by adding (removing) oxygen atoms to (from)
the chains. So, all doping-dependent properties, especially
superconductivity itself, should be related to the formation
and ordering of these chains.

YBa2Cu3O6+δ (Y123) is the first discovered and most
studied member of this family. In Y123, at δ � 0.4, the
antiferromagnetic order disappears and superconductivity
begins simultaneously with a structural phase transition from
tetragonal to orthorhombic phase. This structural symmetry
reduction is related to the redistribution of the oxygen atoms
in the basal plane, where the CuO chains form [5]. Numerous
x-ray diffraction (XRD), nuclear magnetic resonance (NMR),
and nuclear quadrupole resonance (NQR) investigations indi-
cate the importance of oxygen ordering in the basal plane at
δ � 0.5 [6–10]. A detailed characterization of the nature of
phase transitions at this doping value can partly clarify the
interplay between the lattice and the electronic properties of
this family, which is scarce in the literature. In this paper,
by focusing on a semiclassical model, i.e., the asymmetric
next-nearest-neighbor Ising (ASYNNNI) model [11,12], we
study the dynamics of oxygen atoms in the basal plane
of this compound at δ � 0.5. Toward that end, employing

the Monte Carlo (MC) and the Schramm-Loewner evolution
(SLE) techniques, the oxygen ordering and critical properties
of the structural phase transition in the basal plane of a
Y123 superconductor are investigated. This model is partly
able to address some properties of this compound, e.g., the
plateau problem [13] or the structural phase formations. The
parameters of the ASYNNNI model are calculated by means
of ab initio density-functional theory (DFT). Two kinds of
statistical quantities are analyzed in this paper to characterize
the transition, namely the local and the global quantities. We
show that thermodynamic quantities exhibit sharply singular
behavior at the critical temperature. The exponents of these
quantities in the critical region are reported as a function of
system size. The most important global (geometrical) quantity
in our analysis is the fractal dimension of the exterior perimeter
of the geometrical spin clusters. We present a complete
analysis of these critical loops defined in the model, e.g.,
their gyration radius, loop length, and cluster mass. Finite-size
arguments help us to determine the exponents in the thermo-
dynamic limit. In the second part, we address the conformal
invariance of the model right at the critical temperature. We
analyze (boundary-to-boundary) conformal curves using the
SLE technique, which aims to classify two-dimensional (2D)
critical models into some one-parameter universality classes.
To be more precise, we employ two methods to apply the
SLE formalism: the strip-compatible SLE, and the SLE(κ,ρ),
which is a variant of the SLE theory. The results show degrees
of similarities with the three-state Potts model, as well as
the ordinary Ising model. The paper has been organized as
follows: In Sec. II, we introduce the physics of the system and
its relation to the ASYNNNI model. Section III is devoted to
the numerical details, and the calculated local exponents are
analyzed and discussed in Sec. IV. Geometrical aspects of the
ASYNNNI model are investigated in Sec. V. Section VI is
devoted to the SLE and conformal invariance of the interfaces
of the model at hand.

II. PHYSICS OF THE T-OII TRANSITION

The unit cell of the Y123 compound has been schematically
depicted in Fig. 1. Y123 has two symmetrically equivalent
CuO2 planes and one CuO chain in the basal plane. For
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FIG. 1. Building blocks of YBCO structure.

δ < 0.4, oxygen atoms are almost randomly distributed in
the basal plane and only a few long enough, randomly
oriented CuO chains may form. So, there is no noticeable
difference between the lattice parameters a and b, and the
symmetry is tetragonal. For higher doping concentrations,
many long parallel CuO chains begin to form, resulting in the
orthorhombic phases. According to the doping concentration,
the stacking sequence of the chains differs, and different
orthorhombic phases may appear [5]. One orthorhombic phase
is the OII phase, in which the CuO chains have a staggered
configuration and the distance between two successive parallel
chains is equal to two-lattice parameters perpendicular to the
chain direction. The other important orthorhombic phase is
the so called OI phase, in which long parallel chains exist
with one-lattice parameter separation. This phase is stable
at low temperatures for δ = 1. At δ = 0.5, a tetragonal to
OII phase transition is possible with temperature. Since the
tetragonal-orthorhombic (T-OII) transition is believed to be
a second-order transition, power-law behaviors are expected
to occur with some universal exponents that determine its
presumably critical universality class. The nature of this
structural phase transition is diffusional, and it is expected
to occur at temperatures comparable to the melting point [14].

In Y123, the detailed relationship between oxygen concen-
tration, oxygen ordering in the basal plane, and hole doping in
the CuO2 planes is not understood, yet. Experimental evidence
has revealed that the formation of nanosized striped puddles of
OII phase in the basal plane, constituted from CuO chains with
more than ∼10–13 oxygen atoms when δ � 0.5, is responsible
for the appearance of superconductivity [6,7]. Characterization
of the T-OII transition is ambiguous when directly working out
with zero-temperature ab initio calculations. The main issue
is how to undertake the dynamics of the oxygen atoms and
electrons, simultaneously. One way out of this problem is to
downfold the original problem on a model Hamiltonian, which

FIG. 2. The ten considered oxygen configurations. Black (green)
solid circles are oxygen (copper) atoms.

mimics the major part of the particle-particle interactions and
can be used later in the simulation of that compound by MC
methods. Toward that end, based on the adiabatic approxima-
tion, the kinetic energy of oxygen ions is ignored. Then, we
are left with the so-called electronic adiabatic Hamiltonian
to be handled by means of DFT. Since the dynamics of
oxygen ions are very slow compared with electrons, and the
system is being analyzed at finite temperatures, the oxygen
atom dynamics can be considered to be classic. Based on the
occupation of each lattice site i with oxygen atoms, we have
two degrees of freedom: empty, i.e., |0〉i , or occupied, i.e., |1〉i .
So, one can adjust a pseudospin variable to each site. Based
on these pseudospin variables, in the OII phase the ordering
is ferromagnetic in one direction and antiferromagnetic in
the perpendicular direction. In this phase, we can define the
staggered spin in which the spin of, say, even columns (chains
in the y direction) is flipped, i.e., sstag(i,j ) ≡ (−1)i s(i,j ), in
which i and j show components perpendicular and parallel
to the chains, respectively, in the square lattice. Therefore, in
the tetragonal phase, Mstag ≡ 〈sstag〉 = 0, whereas for the OII
phase this quantity begins to grow as a function of temperature.
This order parameter is analyzed in this paper. We show that
Mstag, as well as Cv , shows sharp singular behavior at the
critical temperature. The SLE technique is also employed
to analyze the critical staggered spin-domain walls of the
ASYNNNI model.

III. METHOD AND COMPUTATIONAL DETAILS

Using DFT, we can calculate the ground-state energy of
the YBCO unit cell for each oxygen configuration in the basal
plane, and then from the cluster expansion of pair interactions,
the coupling constants, Jij , of the Ising-like ASYNNNI model
(H = −∑

j>i Jij sisj ) can be determined. For this, the energy
per unit cell of the ten most stable configurations (Fig. 2) is cal-
culated, and then it is set equal to the corresponding expansions
derived from the model Hamiltonian. This yields the coupling
constants of the ASYNNNI model, with reasonable accuracy.
From the obtained values, it is found that the interaction of
an oxygen atom placed between two vertically successive Cu
atoms (a vertical site) and another O atom placed between
two horizontally successive Cu atoms (a horizontal site) is
negligibly small. This is the case for every other interaction
between two oxygen atoms, one at a vertical and the other at
a horizontal site (e.g., see Fig. 2, C and J). In practice, small
coupling parameters between these two sublattices means that
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in a local neighborhood where all oxygen atoms are located,
say vertical sites, there will be a noticeable energy penalty
for placing an oxygen atom at a horizontal site. This implies
that the phases of vertically oriented and horizontally oriented
chains should be regionally separated. So, we reconstruct
our model, restricted only to one sublattice site with the
corresponding interactions, assuming that the dynamics of
oxygen atoms are restricted only to horizontal or vertical sites.
Experiment also provides evidence that exciting oxygen ions
by electron bombardments instigates the collective hopping of
oxygen atoms either from a horizontal site to a vacant vertical
chain site or by reshuffling the chain segments to extend the
average length of chains without changing the overall oxygen
content [15].

Based on the ASYNNNI model, one obtains phase-
formation temperatures that are much higher than room tem-
perature. It is an accepted opinion that the room-temperature
phase is a frozen-in structure from higher temperatures because
of the small diffusivity of oxygen atoms in the perpendicular
direction to the chains in this compound [10].

DFT calculations are performed using the WIEN2K

code [16]. The employed basis set is linearized augmented
plane waves plus local orbitals (LAPW+LO). The initial
lattice parameters have been set from experiment and then
have been relaxed for every structure. The muffin-tin radii have
been set equal to 2.35, 2.5, 1.75, and 1.55 for Y, Ba, Cu, and O
atoms, respectively. The generalized gradient approximation
with Perdew-Burke-Ernzerhof (PBE) parametrizations has
been used for the exchange and correlation functional. The
energy separation between the core and valence states has
been set equal to 6.0 Ry. The APW+LO basis set has been
selected for the d orbitals of Cu atoms to have a more effective
convergence. For all other atomic orbitals, we have used the
LAPW basis set. The RKmax, Lmax, and Gmax parameters have
been set equal to 7.0, 10, and 14, respectively. The number of
k points in the irreducible Brillouin zone is set to 72, for which
the energies are converged up to 0.0001 Ry. For supercell
structures, the density of k points in the reciprocal lattice is
preserved. Calculated coupling constants are reported in Fig. 3,

FIG. 3. The coupling constants of the ASYNNNI model. The
values are as follows (in eV): J1 = 0.119, J2 = −0.014, J3 = 0.001,
J4 = 0.021, J5 = 0.006, J6 = 0.0004, and J7 = 0.002.

which shows schematically how we label different coupling
parameters. In this figure, the set of sites interacting with the
typical site (i,j ) have been shown. The ASYNNNI model is
strongly anisotropic, e.g., the first-neighbor coupling in the x

direction [the coupling to the sites (i + 1,j ) and (i − 1,j )] J2

and the first-neighbor coupling in the y direction [the coupling
to the sites (i,j + 1) and (i,j − 1)] J1 are very different. In
fact, in the x direction the coupling (J2) is antiferromagnetic,
whereas for the y direction the coupling (J1) is ferromagnetic
and |J1| � |J2|.

MC simulations are performed on L × L square lattices
with L = 32, 64, 80, 100, 128, 150, 180, 256, 350, 512,
and 700 and for various temperatures. Periodic boundary
conditions are considered in both directions. We employ the
METROPOLIS algorithm to solve the model at high and low
temperatures, and in the vicinity of the critical temperature,
Wolff’s algorithm is used to prevent critical slowing down. The
movement of an oxygen atom between two sites is translated
to two simultaneous spin flips in those sites in the ASYNNNI
model. To preserve the total number of oxygen atoms, we
employ the demon algorithm in which single spin flips are
allowed conditioned with δ = 0.5 each time. We extract the set
of connected sites of the same spin (geometrical spin clusters)
using the Hoshen-Kopelman algorithm [17] to obtain the
ensemble of critical loops. Other boundary conditions may be
considered to generate stochastic curves going from boundary
to boundary. To obtain an independent ensemble of samples,
we flip randomly L

4 sites after extracting a sample, and we let
500L2 MC steps be taken before the next sample is extracted.
For each system size, we start the simulation from the high-
temperature limit. Near the critical points, the temperature
change steps are equal to 0.001. In the SLE calculations,
the minimum size of the critical curve is considered to be
1024, and for the other statistical analysis all lengths have
been considered. Over 104 spin samples are generated for
each temperature, and over 106 critical loops are generated for
the geometrical analysis. For the SLE investigations of each
setup, over 2 × 104 independent samples are generated.

IV. LOCAL TRANSITION EXPONENTS

In this part of the paper, we carry out a detailed self-
contained analysis of the local quantities of the model in the
critical regime, i.e., in the vicinity of the T-OII transition. Note
that for the sake of convenience in the simulation, in all parts
of the paper the real temperatures are 1

10 times the reported
temperatures, i.e., Treal (eV) = 1

10 T.
The results of critical exponent calculations are shown

in Fig. 4, and the obtained values are listed in Table I. As
stated above, and as is seen in Fig. 4(a), singularity occurs at
some finite temperature. The dependence of Tc on the system
size has been plotted in the inset graph, from which one
obtains Tc(L → ∞) = 1.48 ± 0.01, which is consistent with
similar studies [13,18]. To characterize the critical aspects of
the model, the critical exponents should be obtained in the
vicinity of the critical temperature. Care should be taken to
avoid finite-size effects in determining the critical exponents.
As an example, consider the correlation length ξ (T ). In a
finite system, one expects to have ξ = [a(T − Tc)ν + b

L
]
−1
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(a) (b)

(c) (d)

FIG. 4. (a) The singular behavior of the specific heat and the staggered susceptibility for L = 512. Inset: Tc as the function of system size
L. (b) The log-log plot of Cv in terms of T − Tc. Inset: finite-size values of α. (c) The log-log plot of Mstag in terms of T − Tc. Inset: finite-size
values of β. (d) The log-log plot of χstag in terms of T − Tc. Inset: finite-size values of γ .

(a and b are some constants), which satisfies ξ (Tc) ∼ L and
ξ (T ,L → ∞) ∼ (T − Tc)−ν , as expected. In many situations,
the above fitting is not possible and one should find the
exponent in some other way. One way is to find the linear
fit of the log-log plot of ξ in terms of T − Tc, not very close to
Tc, where the role of the term b

L
in the above formula becomes

significant, and also not very far from Tc, where the power-law
behavior is lost.

We fit our results with the general q-state Potts model to
find the best-fitting value of q. The duality of the Potts model
with other models, e.g., Coulomb gas [19], the Z(N ) spin
model [20], the O(n) model [21], etc., helps one to acquire
a deep understanding of the transition. For the q-state Potts

TABLE I. The critical exponents of the three models: 2D Ising
model, 2D three-state Potts model, and ASYNNNI model. The
magnetic exponents of the ASYNNNI model (β and γ ) have been
calculated for staggered magnetization, Mstag. The results for the
three-state Potts model have been adapted from [20,22,23].

Three-state ASYNNNI
Exponent Definition Ising Potts model model

α Cv ∼ t−α 0 1/3 0.5 ± 0.1
β M ∼ tβ 1/8 1/9 0.11 ± 0.02
γ χ ∼ t−γ 7/4 13/9 1.50 ± 0.05

model, the dependence of the exponents on q is as follows: the
critical exponent of the heat capacity, α, defined as Cv ∼ t−α ,
is α = 2(1 − 1/yT ); the critical exponent of the magnetization,
β, which in our work is a staggered parameter and is defined
as Mstag ∼ tβ , is β = (2 − yH )/yT ; and the critical exponent
of the magnetic susceptibility, γ , defined as χstag ∼ t−γ ,
is γ = 2(yH − 1)/yT . In these relations, the thermal and
magnetic exponents are yT = 3(1 − u)/(2 − u) and yH =
(3 − u)(5 − u)/4(2 − u), in which 0 � u ≡ (2/π ) cos−1 (

√
q

2 )
and t ≡ T −Tc

TC
. In Figs. 4(b), 4(c), and 4(d), we have shown the

critical exponents of the heat capacity, staggered magnetiza-
tion, and staggered magnetic susceptibility. The exponents in
the thermodynamic limit have been reported in Table I. The
results are most compatible with the Ising and the three-state
Potts models. For comparison, the same exponents for the
Ising and the three-state Potts models have also been included
in Table I. The β exponent is not distinguishable, since both
the Ising and the three-state Potts models are in the error bar
of the ASYNNNI model, whereas the exponents α and γ are
distinguishable. A nearly clean finite-size scaling is found for
all exponents, as indicated in Fig. 4.

A note is in order here: although long-range interactions
can change the universality class of the Ising model [24], the
interactions in the current model are actually short-range, as
they involve only nearest- and next-nearest-neighbor spins,
which cannot change the universality class. The second
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candidate for changing the universality class is anisotropy.
It does change the universality class of sandpile models. In
spite of this fact, extending it to equilibrium models with
second-order phase transitions is, in general, conjectural.

V. GEOMETRICAL PROPERTIES
OF CONFORMAL LOOPS

In this section, we present a detailed analysis of the
geometrical statistical observables for the ASYNNNI model.
Consider the ASYNNNI model on a square lattice in which
each spin lies at the center of a square having four nearest
neighbors and the spin boundaries are put on the edges of the
square lattice as the dual to the original lattice. The situation
has been shown in Fig. 5(a). The interfaces are defined as
the separator of up and down spins inside which there may
exist some other loops. Therefore, we have an ensemble of
stochastic loops. In Fig. 5(b) we have shown a critical sample
and a stochastic loop as the separator of the white (sstag = −1)
and the gray regions (sstag = +1). Note that in our analysis, we
consider staggered spin instead of real spins. The algorithm
of extracting these stochastic loops (or the open traces, as
is used in SLE analysis) is simply the so called exploration
process algorithm, in which a random walker moves on the
edges of the square lattice. At each step, the walker moves
according to the following rule: turns left or right according to
the value of the spin in front of it (for up or down, respectively).
The resulting interface is a unique self-avoiding interface that
can be conditioned to end on the real axis (bottom boundary)
or other boundary points. Note that in the square lattice, the
random walker has the choice to turn right or left, as indicated
by an arrow in Fig. 5(a). In such situations, we always select
the right-hand side (with respect to the previous trace, as
indicated in the figure). This choice is important and affects
the statistics. At T = Tc, these interfaces are believed to be
self-affine (fractal) and can be described by the SLE in the

continuum limit. At this limit, the behaviors are expected to
be power-law. As an example, consider the distribution of the
loop lengths, N (l). In the thermodynamic limit at the critical
state, one has N (l) ∼ l−τl , in which τl is the exponent. In
the finite systems, one may expect that N (l) ∼ l−τlF (l/LγlL),
in which γlL is the exponent that is expected to be the
fractal dimension of the loop, Df . F is some scaling function
that captures the finite-size effect of the system, having two
important properties: limx→0 F (x) = 1 and limx→1 F (x) = 0.
Another way to obtain the fractal dimension of the loop
is to scale the loop lengths by their gyration radius r as
〈log(l)〉 = Df 〈log(r)〉.

The quantities considered in this section are the fractal
dimension, Df , the gyration radius of loops, r , loop lengths,
l, and cluster masses, m. We found that at T = Tc, up to a
scale above which the finite-size effects play the dominant
role, we have N (x) ∼ x−τx , in which x = r ,l,m, and N is the
corresponding distribution function. In Fig. 6, we have shown
these functions. Finite-size analysis in Fig. 6(a) reveals that in
the thermodynamic limit, Df = 1.4 ± 0.02. The critical state
of the model is reflected in the power-law behavior of the gy-
ration radius of loops, i.e., Fig. 6(b), in which for small length
scales (with respect to the length scale at which the finite-size
effects play the dominant role and the linear behavior in the
log-log plot is destroyed, i.e., rcut), the linear behavior in the
log-log plot is evident. The corresponding exponents have
been reported in Table II. The results overlap mostly with the
three-state Potts model and also the Ising model. The other
test for the criticality is that at T = Tc, the correlation length
reaches the system size ξ (T = Tc) ∼ L. A good estimation of
the correlation length is rcut [25]. In Fig. 6(c), we show that
rcut(L) scales linearly with the system size L, which shows
the criticality of the system. In this graph, rcut(L)’s have been
calculated as the point at which the local slope of the log-log
plot, averaged over an interval around, changes considerably
with respect to the mean slope up to that point.
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(a) (b)

FIG. 5. (a) The interfaces of the ASYNNNI system as the separator of the spin-up and spin-down sites. The interfaces can be generated by
an exploration process in which one moves clockwise on the edges with the simple rule that to its right is always a (+) site and to its left is
always a (−) site. A problem may arise in the configuration shown by an arrow in the figure. In these situations, the walker move to its right.
(b) A staggered spin sample on the square lattice with one of its domain walls.
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(a) (b)

(c) (d)

FIG. 6. (a) DF for L = 512. Inset: finite-size dependence of DF . (b) The log-log plot of N (r) in terms of r . Inset: the finite-size dependence
of τr . (c) Finite-size dependence of N (r). Inset: the dependence of rcut on the system size. (d) SCP in terms of temperature. Inset: Log-log plot
of the SCP(T ) as a function of Tc − T .

The Ising model may be viewed as a correlated percolation
problem. For example, at T → ∞ the Ising model is dual to
the percolation problem [26]. Therefore, one can analyze this
system as the correlated percolation problem and characterize
the percolation transition in the system as a second-order
transition [26]. It is shown that for the regular Ising model,
this transition occurs exactly at Tc. In other words, for the
percolation transition temperature, Tp, we have Tp = Tc for
the Ising model on the regular lattice [27]. In the ASYNNNI
model, the same phenomenon is observed. Let us define the
spanning cluster probability (SCP) as the probability that
a randomly chosen site belongs to a spanning staggered
spin cluster (which connects two opposite boundaries). This

TABLE II. The geometrical exponents of the ASYNNNI model
(Df , τx, x = r , l, m, and ν). The results for the three-state Potts
model have been adapted from [20,22,23].

Three-state ASYNNNI
Exponent Definition Ising Potts model model

Df 〈log(l)〉 = Df 〈log(r)〉 11/8 17/12 1.40 ± 0.02
τr N (r) ∼ r−τr 3.4 ± 0.1 ? 3.2 ± 0.1
τl N (l) ∼ r−τl 27/11 41/17 2.5 ± 0.1
τm N (mass) ∼ mass−τm 2.3 ± 0.1 ? 2.0 ± 0.1
ν SCP(T ) ∼ t ν ? ? 1.6 ± 0.1

probability is naturally related to the temperature, SCP(T ).
We found that for the ASYNNNI model, the percolation
transition takes place at the T-OII transition temperature, i.e.,
T ASYNNNI

p = T ASYNNNI
c . In Fig. 6(d), the SCP has been plotted

as a function of temperature. The main result is that in the
thermodynamic limit, SCP(T < Tc,L → ∞) ∼ |t |ν in which
ν = 1.56 ± 0.1.

VI. SCHRAMM-LOEWNER EVOLUTION

The conformal symmetry at scale-invariant 2D models is
shown to be very helpful to understand the lesser known
models. Conformal minimal series can be considered as the
other representation of universality in the critical phenomena.
Therefore, fitting a lesser known model to a conformal minimal
model is a valuable, albeit formidable, task in statistical
analysis. Fortunately, a theory designed by Schramm [28],
namely the SLE, has opened a new door in understanding
the internal structure of conformal theories. In this theory,
the emphasis is on the global properties of the model under
study. In most statistical models, one can define some global,
non-self-intersecting interfaces. For example, for the Ising
model it can easily be defined as the separators of spin-up
and spin-down sites, as defined in the previous section.

Consider a growing critical curve γt on the upper half-plane,
i.e., H = {z ∈ C,Imz � 0} and Ht := H\Kt , in which Kt is
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the set of points located exactly on the γt trace, or disconnected
from infinity by γt . According to Riemann mapping theorem
in two dimensions, there is always a conformal mapping, gt (z),
which maps Ht → H , i.e., the uniformizing map, satisfying
∂tgt (z) = 2

gt (z)−ζt
and with the initial condition gt (z) = z. For

the critical models, it has been shown [21,28] that ζt , the
driving function, is a real-valued function proportional to
the one-dimensional Brownian motion ζt = √

κBt , in which
κ is known as the diffusivity parameter and B(t) is one-
dimensional Brownian motion. SLE aims to analyze these
critical curves by classifying them into the one-parameter
classes represented by κ . It is shown that the Ising model
is described by SLE with the diffusivity parameter κ = 3 [21]
(c = 1

2 CFT [29]) and for the three-state Potts model by
κ = 10/3 (c = 4

5 CFT). For more information, see [21,28].
The method of extracting the interfaces of the model

has been described in the previous section. For the SLE
investigations, we generate critical stochastic curves that start
from and end on the boundaries. To be more accurate, we
simulate the model on two different geometries: the strip
geometry and the upper half-plane geometry. Contrary to
the previous sections in which the boundary conditions were
considered to be periodic, in this section we consider some
other boundary conditions that are compatible with the SLE.

A. Strip geometry

By mapping the Loewner equation to the strip, one can
easily show that [30]

d

dt
gS

t (z) = coth

(
gS

t (z) − ζt

2

)
, (1)

in which gS
t (z) is the conformal uniformizing map in the

strip geometry, and ζt = √
κt . In the discrete form for a SLE

trace {z0,z1,z2, . . . ,zN }, one can solve the above equation by
considering ζ (ti) to be partially constant in the interval [ti−1,ti).
Then one can use the composite map gS

tN
o gS

tN−1
o · · · gS

t2
o gS

t1
to

uniformize the trace step by step, in which gS
ti

(z) is the partial
conformal map that takes the zi th point to the real axis. It can
be shown that the corresponding discrete map is [31]

�i = Im

[
πzi−1

i

2L

]
, ti = ti−1 − 2(L/π )2 log[cos(�i)],

ζ (ti) = Re
(
zi−1
i

)
,

zi
j = ζ (ti) + 2L

π
cosh−1

×
{

cosh

[
π

[
zi−1
j − ζ (ti)

]
2L

]/
cos(�i)

}
, (2)
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FIG. 7. Staggered spin sample with a highlighted interface on the (a) strip (1200 × 400) and (b) square (512 × 512) lattices.
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(a) (b)

FIG. 8. (a) 〈ζ 2
t 〉 − 〈ζt 〉2 in terms of t for the strip geometry. The slope, which is the diffusivity parameter, is κ = 3.3 ± 0.2. (b) 〈B2

t 〉 − 〈Bt 〉2

in terms of t for the upper half-plane. The upper inset shows χ2, the minimum of which is at κ � 3.42. Lower inset: the distribution of Bt=5000,
fitted by exp [− B2

10 000 ].

in which zi
j is the j th point of the trace after the ith map, i.e.,

zi
j = gS

ti
o gS

ti−1
o · · · gS

t2
o gS

t1
(zj ).

For the strip geometry, the stochastic curves start from the
lower boundary and end on the upper boundary, as indicated
in Fig. 7(a). In this paper, the ASYNNNI model is simulated
on the Lx × Ly lattice in which Lx = 1200 and Ly = 400 =
Lx

3 and the minimum length is considered to be lmin = 4000.
To avoid the possibility of crossing the vertical boundaries,
x = 0 and x = Lx , the staggered spin on these boundaries is
considered to be (+). To force a curve to start from the lower
boundary (y = 0), we imply the boundary change in a random
point on this line and let the upper boundary be open.

B. Real-axis-to-real-axis curves; SLE(κ,κ − 6)

Now consider a curve that starts from the origin and ends
on a point on the real axis (x∞). For the real-axis-to-real-axis
curves, starting from the origin and ending on a point on the
real axis (x∞), using the map φ(z) = x∞z/(x∞ − z), one can
send the end point of the curve to infinity. This procedure leaves
the equation for gt (z) unchanged, but it leads the drift term to
acquire a drift term: dζt = √

κdBt + κ−6
ζt−gt (x∞)dt [29,32]. As

before, we uniformize curves by a composite map, each of
which is defined by the slit map [33]. To generate the real-axis-
to-real-axis random curves, the boundary conditions at two
points x0 and x∞ should be changed, as is shown in Fig. 7(b).
One has to discretized the equations as mentioned in the previ-
ous section by assuming the driving function to be piecewise
constant (ζn) in some discrete time intervals [tn−1,tn). Using
the composite map gδtn−1,ζn−1 o gδtn−2,ζn−2 · · · o gt0,ζ0 in which
δtn ≡ tn − tn−1, one can send every point on the SLE trace
γt to the real axis step by step, in which gδtn,ζn

(z) = ζn +√
(z − ζn)2 + 4δtn [33,34]. The discretized driving function

satisfies the relation
ζn−

∑n
i=1[ ρcδti

ζi−Gti
(x∞) ]

√
κ

= Bn. After extracting
ζt , the above equation is employed to yield the value of the
diffusivity parameter, demanding the stochastic process on the
right-hand side of this equation to be a 1D Brownian motion.
The best fit to the Brownian motion gives us the value of κ . For
this, we used the maximum-likelihood estimation method, for

which the best fit and its precision can be obtained by looking
at the distribution of χ2 [35]. For the Brownian motion, we
should have 〈Bt 〉 = 0 and 〈B2

t 〉 − 〈Bt 〉2 = t , where 〈〉 is the
ensemble average, and Nt (B) ∼ exp (−B2

2t
), in which Nt (B) is

the distribution function of B at time t . The results are shown in
Fig. 8(b). Figure 8(a) shows the results for the strip geometry.
In that case, we found that 〈ζ 〉 � 0, as expected. The slope
of 〈ζ 2

t 〉 − 〈ζt 〉2 in terms of t is equal to the SLE diffusivity
parameter, i.e., 〈ζ 2

t 〉 − 〈ζt 〉2 = κt . As is depicted in the figure,
κ = 3.3 ± 0.2. The results for the upper half-plane geometry
have been shown in Fig. 8(b), which yields κ = 3.42 ± 0.2.
In the lower inset, we have shown the distribution for Bt=5000,
which is properly fitted to exp [− B2

104 ], indicating that B(t)
is fitted properly by one-dimensional Brownian motion. The
results have been gathered in Table III.

VII. CONCLUSION

In this paper, we have investigated the tetragonal-
orthorhombic (T-OII) structural phase transition of Y123
compounds. Toward that end, we mapped the system to the
ASYNNNI model to capture the dynamics of oxygen atoms
in the basal plane. After constructing the model by calculating
the coupling constants, we employed the METROPOLIS and
Wolff’s (in the critical regions) Monte Carlo calculations to
investigate the nature of this phase transition. The coupling
constants of this dual model have been obtained using ab
initio density-functional-theory calculations. In the first part

TABLE III. The exact κ value for the exterior perimeter of
the geometrical spin clusters of the Ising and three-state Potts
models [21,36,37] and the numerical result for the ASYNNNI model.
c denotes the central charge in CFT.

Three-state
Ising Potts model ASYNNNI

κ 3 10/3 3.4 ± 0.2 [SLE(κ,κ − 6)]
3.3 ± 0.2 (strip mapping)

c 1/2 (m = 3 CFT) 4/5 (m = 5 CFT) 0.78
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of the paper, we calculated and analyzed the local exponents
of, e.g., critical heat capacity and staggered magnetization. The
results show degrees of similarities with the three-state Potts
model, as well as the ordinary Ising model. To be more precise,
we calculated the geometrical statistical observables, e.g., the
fractal dimension of the perimeter of geometrical spin clusters
of the ASYNNNI model, the distribution of loop lengths, and
their gyration radius. Results have been presented in Table II
in comparison with the three-state Potts model and the Ising
model. It was revealed that, with the magnetic transition in the
ASYNNNI model, there occurs a percolation transition whose

exponent has also been reported in this table. A comprehensive
Schramm-Loewner evolution (SLE) analysis was performed
on the interfaces of the model. Two geometries were chosen to
test the SLE, i.e., the strip and the upper half-plane geometries.
The diffusivity parameter for the geometrical spin clusters is
found to be κ = 3.3 ± 0.2, as is represented in Table III.
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