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Optimization of a relativistic quantum mechanical engine
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We present an optimal analysis for a quantum mechanical engine working between two energy baths within
the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical
engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic
processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that
the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce
the expression for the efficiency at maximum power.
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I. INTRODUCTION

The concept of a quantum mechanical engine was in-
troduced by Scovil and Schultz- Dubois [1] and has been
discussed extensively in the literature [2–25]. The principal
difference between the classical engine cycles and the quantum
version resides in the quantum mechanical nature of the
working substance, which has exotic properties [2,3]. Several
theoretical implementations for a quantum mechanical engine
have been reported, such as entangled states in a qubit [4],
quantum mechanical versions of the Otto cycle [5,6,8], photo-
cells [7,9], and a strained single-layer graphene flake [10]. In
recent years, it has been proposed that if the reservoirs are also
of a quantum mechanical nature, these could be engineered
into quantum coherent states [7,9] or into squeezed thermal
states [6], thus allowing for a theoretical enhancement of the
engine efficiency beyond the classical Carnot limit [6,7,9].

One of the simplest theoretical implementations for a
quantum mechanical engine is a system composed of one
or more particles trapped in a one-dimensional potential
well [2,3,11–14,19–22]. The different processes can be driven
by a quasistatic deformation of the potential well by applying
an external force. The case of the Schrödinger spectrum for
two levels and one particle in an isoenergetic cycle originally
proposed by Bender et al. [2] lead to many studies and
publications that considered replacing the heat baths with
energy baths. The basic idea of this possibility is that the
expectation value of the energy is a quantity well defined
in quantum mechanics [2]. One of the most interesting
studies about isoenergetic cycles is the optimization scheme
proposed by Abe [12], which consists of the possibility that
the well width’s movement speed is finite, in analogy to
making the speed of the piston finite in the context of the
finite-time thermodynamics [12–14]. This study is extended in
the publication of Wang et al. [13] for two particles and three
levels, showing an enhanced value for the power output and
includes the possibility to have an energy leakage Q̇r between
the two energy baths. The generalization of this problem, N

fermions in M levels, is presented in Ref. [14], which includes
an excellent discussion of the power-law energy spectrum.

The case of a relativistic regime of the work of Bender
et al. [2] was studied in Ref. [19], which found an analytical
and exact solution for the efficiency and showed a lower value

for the case of the ultrarelativistic particles. Unfortunately, the
extension for the case of more than one particle is difficult due
to the structure of the energy spectrum, reported in Ref. [19],
which complicates optimization studies. In the present work,
we study the possibility of using a Taylor series to the power
of (λ/L), in which λ is the Compton wave length and L is the
width of the potential, to find a solution to the contribution for
the first relativistic order correction for two particles and three
levels for a one-dimensional box and to show how it affects
the calculation of the optimization region. It is important
to emphasize that this work is the first attempt to combine
two power-law spectrum in the literature in the context of
optimal analysis for a quantum mechanical engine. In spite of
that, several approximations must be made to obtain relevant
physical information. Another important limit of theoretical
interest is the ultrarelativistic case whose spectrum energy is
proportional to L−1 in contrast to the Schrödinger spectrum,
which is proportional to L−2. The discussion of this last case
will allow us to enrich the results and conclusions we obtain
for the first-order correction.

II. A DIRAC PARTICLE TRAPPED IN A
ONE-DIMENSIONAL INFINITE POTENTIAL WELL

The problem of a Dirac particle in the presence of a one-
dimensional, finite potential well V (x) is expressed by the
Dirac Hamiltonian operator [26–28],

Ĥ = −i�cα · ∇ + mc2β̂ + V (x)1̂ = Ĥ0 + V (x)1̂. (1)

Here,

α̂i =
(

0 σ̂i

σ̂i 0

)
, β̂ =

(
I 0
0 −I

)

are Dirac matrices in four dimensions, with σ̂i the Pauli
matrices, and Ĥ0 corresponds to the free Hamiltonian particle,

Ĥ0 = −i�cα · ∇ + mc2β̂. (2)

The domain of this operator is D(Ĥ0) = H1(R,C4), and
corresponds to the first Sobolev space of (complex-valued)
four-component spinors ψ̂(x) = (φ1,φ2,χ3,χ4), which is a
natural domain for first-order differential operators [26]. The
mathematical and physical pictures are given by considering
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the singular limit of an infinite potential well,

V (x) =
{

0 , |x| � L/2
+∞ , |x| > L/2 . (3)

The singular character of the infinite potential well, which
is the same as that in the more familiar Schrödinger case [29],
requires a different mathematical statement of the problem.
One must define a self-adjoint extension [26,29–31] of the free
Hamiltonian particle, whose domain D(Ĥ0) ⊂ H	 is a dense
proper subset of the Hilbert space H	 = L2(	) ⊕ L2(	) ⊕
L2(	) ⊕ L2(	) ≡ L2(	,C4) of square-integrable (complex-
valued) four-component spinors in the closed interval x ∈ 	 =
[−L/2,L/2]. In general, the domain of Ĥ0 and its adjoint Ĥ

†
0

verify D(Ĥ0) ⊆ D(Ĥ †
0 ) [26]. However, physics requires that

Ĥ0 be self-adjoint. The self-adjoint extension is obtained by
imposing appropriate boundary conditions [26,29–31] on the
spinors at the boundary ∂	 of the finite domain 	 and in the use
of a fundamental discrete symmetry of the Dirac Hamiltonian
(parity), as discussed in detail in Ref. [19]. This approach
physically provides acceptable spinor-eigenfunctions, given
by

ψ̂n(x) = A

⎛
⎜⎜⎜⎝

sin(nπ (x − L/2)/L)
0
0

− inλ/(2L)√
1+n2(λ/2L)2

cos(nπ (x − L/2)/L)

⎞
⎟⎟⎟⎠,

(4)

with associated discrete energy eigenvalues,

ED
n (L) = mc2(

√
1 + (nλ/2L)2 − 1), (5)

where λ = 2π�/(mc) is the Compton wavelength. The pos-
itive sign corresponds to the particle solution [27]. Two
important limits can be obtained for this spectrum; one
corresponds to the case when λ/L 	 1,

ED
n (L) → mc2

2
(nλ/2L)2 = ES

n (L), (6)

with ES
n (L) = n2π2

�
2/2mL2 being the solution to the well-

known Schrödinger problem. The other important limit of
Eq. (5) corresponds to a massless Dirac particle with λ → ∞,
where the spectrum reduces to the expression

ED
n (L)

∣∣∣∣
m=0

= nπ�c

L
. (7)

This situation may be of interest in graphene systems, where
conduction electrons in the vicinity of the so-called Dirac
point can be described as effective massless chiral particles,
satisfying Dirac’s equation in two dimensions [32–35].

III. THE FIRST LAW OF THERMODYNAMICS

Through this work, we describe a very special type of
dynamics, where we shall assume that one or more physical
parameters in the set {μj } such as geometrical dimensions
in this case, on which the Hamiltonian Ĥ ({μj }) depends
explicitly, can be varied at an arbitrary slow rate μ̇j . To be
more precise, let us assume that |n; {μj }〉 constitutes the set of

eigenvectors of Ĥ ,

Ĥ |n; {μj }〉 = En({μj })|n; {μj }〉, (8)

where n represents a set of indexes that labels the spectrum
of the Hamiltonian. The density matrix operator is diagonal in
the energy eigenbasis,

ρ̂ =
∑

n

pn({μj })|n; {μj }〉〈n; {μj }|, (9)

where the coefficients 0 � pn({μj }) � 1 represent the prob-
ability for the system to be in the particular state |n; {μj }〉.
Therefore, due to the normalization condition Trρ̂ = 1, we
have ∑

n

pn({μj }) = 1. (10)

In this representation, the von Neumann entropy [36] adopts
a simple expression in terms of the probability coefficients,

S({μj }) = −kBTr(ρ̂ ln ρ̂)

= −kB

∑
n

pn({μj }) ln[pn({μj })]. (11)

The ensemble-average energy E = 〈Ĥ 〉 of the system is
given by

E = Tr(ρ̂Ĥ ) =
∑

n

pn({μj })En({μj }). (12)

The statistical ensemble just described can be submitted to
an arbitrary quasistatic process, involving the modulation of
one or more of the parameters {μj }, and hence the ensemble-
average energy in Eq. (12) changes accordingly,

dE = Tr(Ĥ δρ̂) + Tr(ρ̂ δĤ )

=
∑

n

∑
j

En({μj }) ∂

∂μj

pn({μj })δμj

+
∑

n

∑
j

pn({μj }) ∂

∂μj

En({μj })δμj

= δQ + δW, (13)

and corresponds to the first law of quantum thermody-
namics [2–4,8,10–20,22–24]. The first term in Eq. (13) is
associated with the energy exchange, while the second one
represents the work done. That is, energy exchange between
a quantum mechanical system and its surroundings is induced
by transition between quantum states of the systems, in which
the temperature (heat bath) is included or not, while the work
is performed due to the variation of energy spectrum with fixed
occupation probabilities. The quasistatic process described
above via Eq. (13) can be considered as a very particular form
of a dynamical process, provided two main assumptions are
made: First, the dynamics is uniquely determined by the rate of
change of the set parameters {μ̇j }, such that in a given interval
of time δt we have δμj = μ̇j δt . Second, the rates must be
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slow enough in order to satisfy that the quantity δμj/μ̇j must
be considerably higher compared with the relaxation times of
the system and reservoir [12–19].

As in a classical system, we define a generalized force
Y = −δW/δμj . For this case, the external force driving the
change in the width of the potential well must be equal to the
“internal pressure” of a one-dimensional system,

F = −δW

δL
= −

∑
n

pn

dEn

dL
. (14)

IV. A RELATIVISTIC ENGINE OF TWO PARTICLES
IN AN ISOENERGETIC CYCLE

In our case, we have only one parameter in the set {μj },
corresponding to the case of the width of the potential well,
L. An arbitrary state |�〉 can be expanded in terms of the
eigenstates |ψn〉 as |�〉 = ∑

n an|ψn〉, with the expansion
coefficients satisfying

∑∞
n=1 |an|2 = 1. The working substance

of our quantum mechanical engine consists of two noninter-
acting relativistic particles in a system of three possible levels
operating under an isoenergetic cycle. So, throughout the paper
we shall assume that there are only three states |ψ1〉 with
n = 1, |ψ2〉 with n = 2, and |ψ3〉 with n = 3 employed by
the quantum mechanical engine model with two particles. The
isoenergetic cycle, a scheme for a quantum mechanical engine
originally proposed by Bender et al. [2,3], is composed of two
isoentropic and two isoenergetic processes. In particular, dur-
ing the isoenergetic processes, the “working substance” must
exchange energy with an energy reservoir [11,13], keeping
constant the expectation value of the Hamiltonian. Therefore,
to realize this process of the work done by the external
parameter μ, on which the Hamiltonian of the quantum system
depends parametrically, it can be precisely counterbalanced.
In the isoenergetic process the quantum system evolves
from initial state |ψ(0)〉 to a final state |ψ(t)〉 through a
unitary evolution [37]. Therefore, one possibility to satisfy the
constancy of the expectation value of the Hamiltonian is given
by dH

dt
= i�[H (t),H (t ′)] + ∂H

∂t
= i�[H (t),H (t ′)] + ∂H

∂μ

∂μ

∂t
=

0. A possible practical realization of this cycle was proposed
in several works [2,8,11,13,37], where the working substance
exchanges energy with an external field, which acts as an
energy reservoir and plays the role of heat baths in a traditional
quantum heat engine [8,13,37,38]. During the isoenergetic
stage, the energy exchange between a quantum mechanical
system and its surroundings induced transitions between the
quantum states of the system. Currently, an isoenergetic
process is not very easy to be realized in experiments,
but this is not the case in numerical simulations [39,40].
Throughout this work, we assume that the final state after the
isoenergetic process corresponds to the maximal expansion,
or compression, that is, the particles end completely localized
in the closest upper (lower) levels. On the other hand, during
the isoentropic process, the occupation probabilities pn do not
change. Thus, no transition occurs between levels during this
process, and no energy is exchanged between the system and
the energy bath during this stage.

The scheme of this work is illustrated in Fig. 1. During
the first stage, 1 → 2, the width of the potential, expands
slowly, and the expectation of the Hamiltonian, ED

12(L) = ED
H ,

FIG. 1. The four processes of the isoenergetic cycle schematically
represented. The initial configuration corresponds to the first particle
(1) in the ground-state level and the second particle (2) in the first
excited state. The first process correspond to isoenergetic expansion
from L1 → L2 and are coupled with an energy bath EH . In the context
of maximal expansion, when the system is in L2, the first particle
(1) is in the first excited state and the second particle (2) in the
second excited state. During this process, the system absorbs energy
from EH . Similarly, the third process corresponds to isoenergetic
compression from L3 → L4 coupled with an energy bath EC . For
maximal compression, the particles return to the initial configuration,
and the system releases energy to the energy bath EC . For the two
adiabatic processes (L2 → L3 and L4 → L1) the entropy remains
constant, and the two particles stay in fixed states.

remains constant. The total energy of the system can be
rewritten as

ED
H = mc2

N∑
j=1

⎛
⎝

√
1 +

(
jλ

2L1

)2

− 1

⎞
⎠, (15)

where we change the index n to j , and N represents the total
number of particles in the quantum system. Unfortunately, this
series does not have an analytical expression as found in the
Schrödinger problem [14],

ES
H = π2

�
2

2mL2
1

N∑
j=1

j 2 = π2
�

2

2mL2
1

G1, (16)

where G1 ≡ ∑N
j=1 j 2 = 1

6N (N + 1)(2N + 1). Using the no-
tation of Ref. [14], the normalization condition for the particles
can be written in the form

∑ |a(j )
n |2 = 1, with a

(j )
n being

the expansion coefficients of j th particle occupying the nth
eigenstate. We can then write the energy of the system as a
function of L for the case of the relativistic spectrum in Eq. (5)
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as follows:

ED
H = mc2

N∑
j=1

M∑
n=1

∣∣a(j )
n

∣∣2

⎡
⎣

√
1 +

(
nλ

2L

)2

− 1

⎤
⎦, (17)

where M represents the energy-level number. The condition of
energy conservation along the isoenergetic process 1 → 2 (see
Fig. 1) implies that Eq. (17) must be equal to Eq. (15). From
this equality we obtain a relationship between the coefficients
and the width of the potential well, which is used to simplify
the expression

F12(L) =
N∑

j=1

M∑
n=1

∣∣a(j )
n

∣∣2 (nλ)2mc2

4L3
√

1 + (
nλ
2L

)2
, (18)

which corresponds to the force determined by Eqs. (14)
and (17). In this case, we obtain a relationship between
the coefficients and the width of the potential well, which
is not as simple as in the case of a single power-law
spectrum [37]. However, the physical interest of this work
focuses on finding the relativistic correction of the work
presented by Wang et al. [13]. To do that, we work with
the first-order correction of the spectrum given in Eq. (5),
and we develop the isoenergetic cycle using a combination
of power-law spectrum [E ∝ (L−2 − L−4)], considering the
case of N = 2 and M = 3. Finally, we achieve interesting
results when we take the ultrarelativistic limit and compare
the results with the first-order relativistic correction previously
developed.

A. First-order correction

1. Force and energy

For this case, we can use a Taylor series up to order
O[(λ/L)4] for the spectrum of Eq. (5), considering Nλ

2L1
	 1.

In all our calculations present in this subsection, the expression
for the physical observables contain the expressionO[(λ/L)6],
but for notational reasons we do not include this term in
the manuscript. The initial condition for the cycle under this
approach is given by

EH = mc2

2

(
λ

2L1

)2 N∑
j=1

j 2 − mc2

8

(
λ

2L1

)4 N∑
j=1

j 4

= mc2

2

(
λ

2L1

)2

G1 − mc2

8

(
λ

2L1

)4

J1, (19)

where G1 is given in Eq. (16) and J1 = ∑N
i=1 i4 = (N5/5) +

(N4/2) + (N3/3) − (N/30). For N = 2 we obtain the values
G1 = 5 and J1 = 17. Then, the initial energy for the cycle is
given by

EH = 5

2
mc2

(
λ

2L1

)2

− 17

8
mc2

(
λ

2L1

)4

. (20)

Throughout the first process, the energy of the system as a
function of L can be rewritten for our case as

E12(L) = mc2

2

(
λ

2L

)2 2∑
j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n2

− mc2

8

(
λ

2L

)4 2∑
j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n4, (21)

and must be equal to Eq. (20). On the other hand, the force to
the first process is given by the expression

F12(L) = mc2

L

(
λ

2L

)2 2∑
j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n2

− mc2

2L

(
λ

2L

)4 2∑
j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n4, (22)

subject to restriction imposed by equating Eq. (20) with
Eq. (21). For this restriction, we do not have a simple relation
as one might expect between L and the coefficients. However,
we found a solution of physical interest (see Appendix for
details) for the force throughout the process which is given by

F12(L) = 5mc2

L

(
λ

2L1

)2

− mc2

L

(
17

4
+ 25K

2D2

)(
λ

2L1

)4

,

(23)

where we define for simplicity D = ∑2
j=1

∑3
n=1 |a(j )

n |2 n2 and

K = ∑2
j=1

∑3
n=1 |a(j )

n |2 n4.
Under the context of maximal expansion, when L1 → L2,

the first particle is in the first excited state (|a(1)
2 | = 1), and the

second particle is in the second excited state (|a(2)
3 |2 = 1). The

energy at that point can be rewritten as

E(L2) = EH = 13

2
mc2

(
λ

2L2

)2

− 97

8
mc2

(
λ

2L2

)4

. (24)

The isoenergetic condition for a maximal expansion required
to equalize Eq. (20) with Eq. (24) implies an equation in the
form

97

8
x2

2 − 13

2
x2 + c1 = 0, (25)

where we define x2 = (λ/2L2)2 and c1 = 5
2 (λ/2L1)2 −

17
8 (λ/2L1)4. The physical solution of Eq. (25) is given by

x2 = 26

97
− 2

97

√
169 − 194c1. (26)

Note that if we use the Taylor series for the last solution, we
get x2 ∼ 2

13c1, and if we neglect the order O(λ/L)4 and higher,
we get

x2 = 5

13

(
λ

2L1

)2

→ L2 = L1

√
13

5
, (27)

which corresponds to the solution given by Wang et al. [13].
In the process 2 → 3, the system expands adiabatically

from L = L2 until L3. No transition occurs during this stage.
The energy of the system is given by E23 = 13

2 mc2( λ
2L

)
2 −
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97
8 mc2( λ

2L
)
4
, and the force is F23 = 13mc2

L
( λ

2L
)
2 − 97mc2

2L
( λ

2L
)
4
.

The first terms in the force F23 are the nonrelativistic result as
presented in Ref. [13].

The third process corresponds to isoenergetic compression
from L3 until L4. As with the first process, the key point is the
fact that the expectation value of the Hamiltonian is constant
along the trajectory and is given by

EC = 13

2
mc2

(
λ

2L3

)2

− 97

8
mc2

(
λ

2L3

)4

. (28)

Using the same treatment to constrain the force as we used
in the first isoenergetic process (see Appendix for details), we
found that the force throughout this process can be expressed
as follows:

F34(L) = 13mc2

L

(
λ

2L3

)2

− mc2

L

(
97

4
+ 169K

2D2

)(
λ

2L3

)4

.

(29)

In the context of maximal compression, the first particle
now returns to the ground state (|a(1)

1 |2 = 1) and the second
one goes to the first excited state (|a(2)

2 |2 = 1). The energy at
that point is

E(L4) = EC = 5

2
mc2

(
λ

2L4

)2

− 17

8
mc2

(
λ

2L4

)4

. (30)

In order to match Eq. (30) with Eq. (28), we use an equation
in the form of

17

8
x2

4 − 5

2
x4 + c3 = 0, (31)

where we define x4 = (λ/2L4)2 and c3 = 13
2 (λ/2L3)2 −

97
8 (λ/2L3)4. The physical solution for this equation is given

by

x4 = 10

17
− 2

17

√
25 − 34c3. (32)

Using a Taylor series, the first order in the series expansion is
given by x4 ∼ 2

5c3 and if we neglect the O(λ/L)4 we get

x4 = 13

5

(
λ

2L3

)2

→ L4 =
√

5

13
L3, (33)

corresponding to the nonrelativistic case presented in the work
of Wang et al. [13].

Finally, the fourth process corresponds to the last adiabatic
trajectory and goes from L4 to L1, returning to the starting
point. During the compression, the energy of the system as
a function of L is E41 = 5

2mc2( λ
2L

)
2 − 17

8 mc2( λ
2L

)
4
, and the

force applied to the wall of the potential is F41 = 5mc2

L
( λ

2L
)
2 −

17mc2

2L
( λ

2L
)
4
.

2. Energy exchange and total work

In the two isoenergetic processes, the system is coupled
with energy baths EH and EC . Since these energy baths
are sufficiently large and their internal relaxation is very
fast, we can assume the existence of an energy leakage Q̇r

between the two energy baths [12–17]; moreover, it can be
considered constant [13,15]. On the other hand, the study of

optimization of quantum engines has been discussed in another
approximation called “low dissipation scheme” proposed by
Esposito et al. [18] and generalized in Refs. [16,17] for the case
of the so-called “Carnot cycles with external leakage losses.”
One of the points treated in the works [16,17] is the study
of the efficiency at maximum power for the case of different
working substances operating between two energy baths under
isoenergetic conditions with a constant leakage between the
baths. Inspired by these works, we therefore assume that the
rate of this escape is a constant, so the energy QH and the
absolute value of QC is given by

QH =
∫ L2

L1

F12(L)dL + Q̇rτ = 5mc2

(
λ

L1

)2

ln

(
L2

L1

)

−mc2

(
17

4
+ 25K

2D2

)(
λ

2L1

)4

ln

(
L2

L1

)
+ Q̇rτ,

(34)

|QC | =
∫ L3

L4

F34(L)dL + Q̇rτ = 13mc2

(
λ

L3

)2

ln

(
L3

L4

)

−mc2

(
97

4
+ 169K

2D2

)(
λ

2L3

)4

ln

(
L3

L4

)
+ Q̇rτ,

(35)

where we use the approximation K/D2 ∼ const in the force
expression. In general the fraction K/D2 is a function of L,
but unfortunately the complete analytical dependence of L

cannot be obtained. We use the known results for the case of
power-law potentials [12–14] predicting, for a power law of the
type L−2 for two particles and three levels in an isoenergetic
expansion, a relation in the form

5

(
L

L1

)2

=
2∑

j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n2 ≡ D. (36)

For the case of a spectrum of the type L−4, for two particles
and three levels in the isoenergetic expansion, the following
relationship is obtained:

17

(
L

L1

)4

=
2∑

j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n4 ≡ K. (37)

Then, for the first approximation to the quotient K/D2 there
must be a constant given by the value 17/25. The same analysis
is done for the case of isoenergetic compression, where the
relation found is K/D2 = 97/169.

Equations (34) and (35) can be simplified using the first-
order correction for the ratio between the different widths of the
wall and using an approximation of the type ln (1 ± x) ∼ ±x.
The two ln of L2/L1 and L3/L4 can be approximated to

ln

(
L2

L1

)
� 1

2
ln

(
13

5

)
+ 17

40

(
λ

2L1

)2

+ O[(λ/L1)4], (38)

ln

(
L3

L4

)
� 1

2
ln

(
13

5

)
− 97

104

(
λ

2L3

)2

+ O[(λ/L1)4].

(39)
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Using these equations in combination with Eqs. (34) and (35),
we obtain the following equations for QH and QC :

QH = 5

2
mc2

(
λ

2L1

)2

ln

(
13

5

)
− 17

8
mc2

(
λ

2L1

)4

A

+ Q̇rτ, (40)

|QC | = 13

2
mc2

(
λ

2L3

)2

ln

(
13

5

)
− 97

8
mc2

(
λ

2L3

)4

B

+ Q̇rτ, (41)

where the expression for A and B are

A = ln

(
13

5

)
+ 50

17

K

D2
− 1, (42)

B = ln

(
13

5

)
+ 338

97

K

D2
+ 1. (43)

Finally, the total mechanical work defined by

W = QH − QC, (44)

can be rewritten for this case as

W = mc2

2
ln

(
13

5

)(
λ

2L1

)2[
5 − 13

(
L1

L3

)2]

− 17mc2

8

(
λ

2L1

)4

A
[

1 − 97B
17A

(
L1

L3

)4]
. (45)

Note that if we neglect the term (λ/L1)4 we obtain the result

W = �
2π2

2m

(
5

L2
1

− 13

L2
3

)
ln

(
13

5

)
, (46)

which corresponds to the expression for the nonrelativistic
case presented in the work of Wang et al. [13].

B. Ultrarelativistic case

Now we discuss the case of the asymptotic limit of
vanishing mass for the spectrum in Eq. (5). In this case, the
initial energy of the cycle described previously is given by

EH = 3π�c

L1
. (47)

Throughout the first process, the energy as a function of L can
be rewritten as

E12(L) = π�c

L

(∣∣a(1)
1

∣∣2 + 2
∣∣a(1)

2

∣∣2 + 3
∣∣a(1)

3

∣∣2

+ ∣∣a(2)
1

∣∣2 + 2
∣∣a(2)

2

∣∣2 + 3
∣∣a(2)

3

∣∣2)
. (48)

The force is then given by

F12(L) = �πc

L2

(∣∣a(1)
1

∣∣2 + 2
∣∣a(1)

2

∣∣2 + 3
∣∣a(1)

3

∣∣2

+ ∣∣a(2)
1

∣∣2 + 2
∣∣a(2)

2

∣∣2 + 3
∣∣a(2)

3

∣∣2)
, (49)

subject to restriction that Eqs. (47) and (48) remain equal,

L = L1

3

(∣∣a(1)
1

∣∣2 + 2
∣∣a(2)

1

∣∣2 + 3
∣∣a(1)

3

∣∣2

+ ∣∣a(2)
1

∣∣2 + 2
∣∣a(2)

2

∣∣2 + 3
∣∣a(2)

3

∣∣2)
. (50)

Then, we can compact the force as follows:

F12(L) = 3π�c

L1L
. (51)

In the context of maximal expansion, when the system is in
L2, we obtain from Eqs. (48) and (49), L2 = 5

3L1.
For the process 2 → 3 the system expands adiabatically

from L = L2 to L = L3. The system remains in the initial
configuration before this process begins; therefore, that means
|a(1)

2 | = 1, |a(2)
3 | = 1, and all other coefficients are equal to

zero. The expected value for the energy throughout the process
is given by E23 = 5π�c

L
, and the force is given by F23 = 5π�c

L2 .
For the isoenergetic compression, the expectation value of

the Hamiltonian is kept constant as

EC = 5π�c

L3
. (52)

Using the same treatment that was presented earlier, it is easy
to show that force is given by

F34(L) = 5π�c

L3L
, (53)

and under the maximal compression we obtain the relation
L4 = 3

5L3.
For the last process, adiabatic compression, from L4 to

L1, the energy of the system as a function of L is given by
E41 = 3π�c

L
and the force applied to the wall of the potential

is F41 = 3π�c
L2 .

For this case, the energy absorbed QH and the energy
released QC are, respectively,

QH = 3π�c

L1
ln

(
5

3

)
+ Q̇rτ, (54)

QC = 5π�c

L1
ln

(
5

3

)
+ Q̇rτ. (55)

The mechanical work W per cycle is given by

W = π�c

(
3

L1
− 5

L3

)
ln

(
5

3

)
. (56)

V. OPTIMIZATION OF THE PERFORMANCE
OF THE HEAT ENGINE

To obtain a finite power in our heat engine, we use the
approach proposed by Abe [12]. Therefore, we define finite
average speed of the variation of L as v̄(t) and the total length
variations along one cycle as L0. Therefore,

L0 = |L1 − L2| + |L2 − L3| + |L3 − L4| + |L4 − L1|
= 2(L3 − L1). (57)

It is important to recall that in order for the adiabatic theorem
to apply, the timescale associated with the variation of the state
must be assumed to be much larger than that of the dynamical
one, ∼�/E [12–14]. We define the total time of the cycle τ as
a function of average speed by the expression

τ = L0

v̄
= 2(L3 − L1)

v̄
, (58)
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and this time has to be much larger than �/E in order to fulfill
the adiabatic regime in the cycle.

Now, we discuss the optimization scheme as follows. First,
we use a definition of power output, given by P = W/τ , where
W corresponds to the total work along one cycle discussed in
the last section. Second, we define a dimensionless parameter
r = L3/L1 to obtain the power output and the efficiency of
the quantum engine as a function of r . It is convenient to
define the dimensionless power output P ∗(r) = W

sτ
, with s as

a constant for the model which has units of power. For P ∗, we
can calculate the value r = rmp that corresponds to the point
given by the maximization condition ∂P ∗

∂r
|r=rmp = 0. On the

other hand, the efficiency (η = W/QH ) depends on the energy
leakage Q̇r , which can be rewritten in the form of Q̇r = αq̇,
where q̇ it is an expression that depends on the model, and
the parameter α is assumed to be constant. Therefore, the
maximization condition for the efficiency given by ∂η

∂r
|r=rmη

=
0 is strongly affected by the value of the parameter α.

Finally, we present the two cases discussed in the last
section, the first-order correction and the ultrarelativistic case,
and we find the characteristic curve of P ∗ versus η, which
describes the two maximum points previously mentioned. The
engine optimization is defined as

ηmp � η � ηmax, Pmη � P � Pmax. (59)

For the first-order correction, we present a table of values
for r = rmp for the different cases of (λ/2L1)2 (fixed to do the
optimization scheme). We compare these values with those
of a nonrelativistic engine and see the effect of correction in
the different graphics of interest. For the ultrarelativistic case,
we obtain an analytical result in line with that presented in
Refs. [14,37] for power-law potentials.

A. First-order correction

The power output after a single cycle for this case is given
by

P = W

τ
= 2v̄mc2

λ

(
λ

2L1

)3[1

4

5r2 − 13

r3 − r2
ln

13

5

−A
(

λ

2L1

)2 17

16

r4 − 97B
17A

r5 − r4

]
, (60)

and we can define the dimensionless power output as

P ∗ = W

sτ
= 1

4

5r2 − 13

r3 − r2
ln

13

5
− A

(
λ

2L1

)2 17

16

r4 − 97B
17A

r5 − r4
,

(61)

where s = 2v̄mc2

λ
( λ

2L1
)
3
. This constant can be rewritten as s =

�
2π2v̄

mL3
1

, which exactly corresponds to the constant defined in

Ref. [13]. However, for our case it is more convenient to define
it in its first form, because in our optimization study we fixed
v̄ and ( λ

2L1
) to control r . The value of A and B are subject

to the value of the quotient K
D2 and the possible values of

this fraction are in the range 17
25 � K

D2 � 97
169 as demonstrated

before. We take the average between the two extreme values
for our calculations and approximate to (K/D2) ∼ 0.63 to
simplify the discussion.

FIG. 2. The different curves for the correction term P for
different values of ( λ

L1
)
2
. This figure represents the difference for

P ∗ between the value reported in Ref. [13] and our calculations in
the first-order correction.

In order to show the relativistic correction for the power
output from the no relativistic case, we can write Eq. (61) in
the form P ∗ = P ∗

S − P , where P ∗
S is the first term in Eq. (61)

and P the first-order correction for the power output given by

P = A
(

λ

2L1

)2 17

16

r4 − 97B
17A

r5 − r4
, (62)

which is presented in Fig. 2 for different values of (λ/L1)2.
In Fig. 3 we present the scheme of the P ∗ of nonrelativistic
particles and the first-order correction. The physical effect
is clear: the power output of this engine decreases when
considering the first-order correction. The total work under
one cycle, given by Eq. (45), is lower than that reported in
Ref. [13]. These results are coherent with those reported in
Ref. [19], which demonstrated that the efficiency is smaller

FIG. 3. The power output P ∗ vs. r for the nonrelativistic case
and different corrections of interest. The solid line represents the no
relativistic calculation (P ∗

S ). For this graphic we consider (λ/2L1)2 =
0.0225 (blue, dotted line) and (λ/2L1)2 = 0.04 (green, dash-dotted
line) with the approximation K

D2 ∼ 0.63 for simplicity. The inset
depicts the zoomed region of the same figure.
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TABLE I. The values of rmp and P ∗
max for different values of ( λ

2L1
)
2

for the first-order correction.

( λ

2L1
)
2

rmp P ∗
max

∼0 2.367114902 0.4682644969
10−4 2.367171434 0.4681567564
4 × 10−4 2.367341230 0.4678335433
9 × 10−4 2.367624884 0.4672948485
1.6 × 10−3 2.368023392 0.4655713187
2.5 × 10−3 2.368538162 0.4643867228
3.6 × 10−3 2.369171021 0.4643867228
4.9 × 10−3 2.3699924236 0.4629867035
6.4 × 10−3 2.370800527 0.4613719506
8.1 × 10−3 2.371803094 0.4595421083
10−2 2.372935642 0.4574974961

in the relativistic particles as compared with the nonrelativistic
particles. In Table I, we show the different values for rmp and
P ∗

max starting with the values obtained in Ref. [13] and then for

different values of ( λ
2L1

)
2
.

Now, we study the efficiency η, which is given by

η = W

QH

, (63)

and for our case we obtain the expression

η =
(
1 − 13

5r2

) − 34
40

(
λ

2L1

)2Ã
(
1 − 97

17r4
B
A

)
1 + α

(
r − 1

) − 34
40

(
λ

2L1

)2Ã
, (64)

where we have defined Ã = A/ ln ( 13
5 ) and the energy leakage

in the form Q̇r = αq̇ with q̇ = 5
2

mc2v̄
λ

( λ
2L1

)
3

ln ( 13
5 ). These

results for the efficiency in Eq. (64) are different from η =
1 − EC

EH
because this expression can only be obtained for a

single power-law potential [13,14,37]. This is also because in
quantum mechanics there is no analog of the second law of
thermodynamics [2,41].

We remark when ( λ
2L1

)
2 	 1, Eqs. (61) and (64) converge

toward the nonrelativistic case presented in Ref. [13]. On the
other hand, when the engine reaches maximum efficiency ηmax,
we obtain the general equation,[

26

5r3
mη

− 97B̃
5r5

mη

(
λ

2L1

)2][
1 + α(rmη − 1)− 17Ã

20

(
λ

2L1

)2]

−
[

1 − 13

5r2
mη

− 17Ã
20

(
1 − 97

17r4
mη

B
A

)(
λ

2L1

)2]
α = 0,

(65)

where we have defined B̃ = B/ ln ( 13
5 ). The last equation

shows the dependency of rmη on the value of the parameter

α and the initial value of λ/L1. When ( λ
2L1

)
2 → 0, we obtain

the following equation:(
5r3

mη − 39rmη + 26
)
α − 26 = 0, (66)

which was reported for the nonrelativistic case in Ref. [13].
In Fig. 4, we show the dimensionless power output P ∗ as

FIG. 4. The dimensionless power output versus the efficiency
for the nonrelativistic case [13] (red, dotted line) and example of the
first-order correction for (λ/2L1)2 = 10−2 (green, solid line) showing
the two critical points for the efficiency (ηmp,ηmax) and the two critical
points for the power output (P ∗

max,Pmη). The curves are: a (α = 0), b

(α = 0.03), c (α = 0.08), and d (α = 0.15).

a function of the efficiency. This graphic displays the two
characteristic points for the efficiency, ηmp and ηmax, and the
two corresponding critical points for the dimensionless power
output, P ∗

max and P ∗
mη. Therefore, if λ/L1 is fixed, and the value

of rmη can be obtained from Eq. (65) and used to replace its
value in Eq. (61) to obtain P ∗

mη. For the same value of λ/L1

the point rmp can be obtained by calculating the derivative of
Eq. (61), then replacing the value in Eq. (64) to obtain the
value of ηmp. Thus, we have a family of loop-shaped curves

FIG. 5. The dimensionless power output P ∗ vs. the parameter
r for r � 50, for different cases of interest. The dotted line (red)
and the dot-dash line (green) represent the work of Wang et al. [13]
and Abe [12], respectively. The dash line (orange) and the solid line
(blue) represents the ultrarelativistic case for two particles in three
levels and two particles in two levels presented in Eqs. (56) and (57),
respectively.
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always limited by the values presented in the work of Wang
et al. [13].

B. Ultrarelativistic case

For this case, it is easy to show that the power output is

P = W

τ
= �πcv̄

2L2
1

(
3r − 5

r2 − r

)
ln

(
5

3

)
, (67)

and the dimensionless power output is then

P ∗ = W

sτ
= 1

2

(
3r − 5

r2 − r

)
ln

(
5

3

)
, (68)

with s ≡ �πcv̄

L2
1

. We can show without difficulty using the work
of Abe [12] that the dimensionless power output for the case of
the two ultrarelativistic particles and the two levels of energy
are given by

P ∗ = 1

2

(
r − 2

r2 − r

)
ln(2). (69)

The fourth power output is presented in Fig. 5, outlining the
case for two nonrelativistic particles in two levels and three
levels versus the ultrarelativistic case presented in this work
for the same cases. Remarkably, our results are consistent with
those presented in Ref. [14,37] for this type of power-law trap.

Then, the efficiency for the ultrarelativistic engine is given
by

η = W

QH

=
�πc

(
3
L1

− 5
L3

)
ln

(
5
3

)
3�πc
L1

ln
(

5
3

) + Q̇r
2(L3−L1)

v̄

. (70)

As before, we can select Q̇r as follows:

Q̇r = α
3�πc

2L2
1

ln

(
5

3

)
v̄. (71)

Therefore, we rewrite the efficiency in terms of r and α to get

η =
(
1 − 5

3r

)
1 + α(r − 1)

, (72)

and it is displayed in Fig. 6 for different cases of interest. As
the efficiency is a non negative number, we find from Eq. (72)
that the restriction for the r values is given by

r >
5

3
. (73)

We can control r to maximize the dimensionless power
output P ∗ based on the assumption that L1 and v̄ are fixed;
hence, the maximization condition ∂P ∗

∂r
|r=rmp = 0 yields

3r2
mp − 10rmp + 5 = 0, (74)

which has one valid solution that satisfies the condition in
Eq. (73), rmp ∼ 2.72. For ηmax ( ∂η

∂r
|r=rmη

= 0) we obtain an
equation that depends on the parameter α given by(

3r2
mη − 10rmη + 5

)
α − 5 = 0, (75)

whose solution is

rmη = 1

3

5α + √
10α2 + 15α

α
. (76)

FIG. 6. Efficiency of the ultrarelativistic case for the case of two
particles in three levels obtained in the Eq (60) for different values of
α. The curves are: a (α = 0), b (α = 0.03), c (α = 0.08), and d (α =
0.15). The dotted line corresponds to the same case for nonrelativistic
particles with α = 0 obtained in the Ref. [13].

It is important to recall that the limits of Eq. (76) are
obtained when α → ∞, rmη → 5+√

10
3 ∼ 2.72, and when α →

0, rmη → ∞, we get

2.72 � r � rmη. (77)

The values of rmη, ηmp, and ηmax for given parameters α for
the ultrarelativistic case is given in the Table II.

When α = 0, which energy leakage Q̇r = 0, we obtain the
following result for the efficiency

η = 1 − 5

3r
= 1 − EC

EH

. (78)

Using the fact that rmp ∼ 2.721, we obtain for the efficiency
the following value:

ηmp = 1 − 5

3rmp
� 0.387, (79)

which can be compared with the nonrelativistic case ηmp �
0.536 presented in Ref. [13] and showed in Fig. 4. The
efficiency at the maximum power output in the ultrarelativistic
limit is lower (see Fig. 7) than that of the nonrelativistic case,
and is in line with the results in the first-order correction
presented in this work.

TABLE II. The values of rmη, ηmp, and ηmax for given parameters
α for the ultrarelativistic case.

α rmη ηmp ηmax

0 ∞ 0.387 1
0.03 9.194 0.368 0.657
0.08 6.351 0.340 0.516
0.15 5.163 0.308 0.417
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FIG. 7. The dimensionless power output P ∗ vs. the efficiency η

for different values of α for the ultrarelativistic case of two particles
in three levels. The curves a (α = 0), b (α = 0.03), c (α = 0.08), and
d (α = 0.15) are presented in order to make a comparison with the
work of Wang et al. [13].

VI. CONCLUSIONS

In this work, we found the first-order relativistic correction
for the calculations presented in Ref. [13] and the ultrarela-
tivistic case that used the power-law spectrum presented in
Refs. [14,37]. We have shown that the power output decreases
as compared with the nonrelativistic case, and this is in
agreement with the results for ultrarelativistic calculations.
For the case of the first-order correction, we have a family
of functions that can be plotted in the characteristic curve
P ∗ versus η and we provide the values P ∗

max, Pmη, ηmp,
and ηmax. From Table I, we can see that the dimensionless
power output decreases and the value of rmp increases from
the value rmp ∼ 2.367 to rmp ∼ 2.373, yielding an expected
result if we see the value of the ultrarelativistic case, which is
given by rmp ∼ 2.721. The combination of different power-law
spectra provides a nontrivial relationship for the force along
the isoenergetic cycle. We believe that by exploring some
small parameters of the model, a simplified version could be
obtained. This could be used to study its effects on known
models or to address a new problem of interest. The different
approximations used in this work makes the correction of
power output small, but we think they are interesting and
relevant. One possibility to improve these kinds of corrections,
when having two power-law spectra, is to think of a weight
factor. This weight factor must depend on L and needs to have
the correct asymptotic behavior. This, of course, is beyond our
present work and discussion. Finally, we completed the study
with the ultrarelativistic case, and we plotted our results with
the curves for the case of two particles and two levels studied
by Abe [12] and Wang et al. [13], which are the limiting cases
of our more general approach.
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APPENDIX

We shall use the approximation to obtain the force in
compact form, present in Eqs. (23) and (29). For the first
isoenergetic process, we have a restriction in the form of

5

2
mc2

(
λ

2L1

)2

− 17

8
mc2

(
λ

2L1

)4

= mc2

2

(
λ

2L

)2

D − mc2

8

(
λ

2L

)4

K, (A1)

where

D =
2∑

j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n2 (A2)

and

K =
2∑

j=1

3∑
n=1

∣∣a(j )
n

∣∣2
n4. (A3)

On the other hand, the force throughout the process in terms
of these definitions can be rewritten as

F12(L) = mc2

L

(
λ

2L

)2

D − mc2

2L

(
λ

2L

)4

K, (A4)

subject to restriction imposed by Eq. (A1). To solve Eq. (A1),
we can define the variables

x =
(

λ

2L

)2

c1 = 5

2
mc2

(
λ

2L1

)2

− 17

8
mc2

(
λ

2L1

)4

(A5)

and easily find the quadratic equation

x2K − 4xD + 8c1 = 0, (A6)

whose solution is

x = 2D

K

(
1 ±

√
1 − 2c1

K

D2

)
. (A7)

The solution of physical interest is

x = 2D

K

(
1 −

√
1 − 2c1

K

D2

)
, (A8)

and as we work under the condition ( λ
2L1

)
2 	 1, we can use a

Taylor expansion of the root and easily find

x � 2
c1

D
. (A9)

It is important to check our approximation considering the case
of maximal expansion when L1 → L2, so x → x2. The first
particle is in the first excited state, and the second particle is
in the second excited sate. Under this condition, D is fixed in
the value D = 13, and we get for x2 = ( λ

2L2
)
2

the expression

x2 � 2c1

13
= 2

13

[
5

2
mc2

(
λ

2L1

)2

− 17

8
mc2

(
λ

2L1

)4
]
.

(A10)
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Note that, neglecting the term ( λ
L1

)
4
, we obtain the result

of a nonrelativistic case [13] as we comment in the work.
Therefore, to find an elegant and physical solution, we can
work to order ( λ

L
)
4

without losing important information. So,
we can replace the approximate solution given by Eq. (A9) in
the expression of the force, to obtain

F12(L) = 2mc2

L

[
5

2

(
λ

2L1

)2

− 17

8

(
λ

2L1

)4
]

− 2mc2

L

K

D2

[
5

2

(
λ

2L1

)2

− 17

8

(
λ

2L1

)4
]2

,

(A11)

and if we work to order (λ/L1)4, we can take the first term in
the second term of the force[

5

2

(
λ

2L1

)2

− 17

8

(
λ

2L1

)4
]2

∼ 25

4

(
λ

2L1

)4

, (A12)

to get

F12(L) = 5mc2

L

(
λ

2L1

)2

− mc2

L

(
17

4
+ 25K

2D2

)(
λ

2L1

)4

.

(A13)

Using the same method, we obtain for the isoenergetic
compression the quadratic equation

x2K − 4xD + 8c3 = 0, (A14)

with

c3 = 13

2

(
λ

2L3

)2

− 97

8

(
λ

2L3

)4

. (A15)

Under the same conditions discussed before, we obtain

x � 2c3

D
. (A16)

In the context of maximal compression when L3 →
L4 (x → x4), the first particle returns to the ground state, and
the second particle returns to the first excited state, and then
D = 5. The solution of physical interest is then

x4 � 2

5

[
13

2

(
λ

2L3

)2

− 97

8

(
λ

2L3

)4
]
. (A17)

Neglecting the order (λ/L3)4, we obtain the result presented
in the nonrelativistic case as discussed in the work. On the
other hand, the force during the compression phase is given by
the same Eq. (A4) subject to different constraint imposed by
Eq. (A16). Then, we obtain for the force

F34(L) = 2mc2

L

[
13

2

(
λ

2L3

)2

− 97

8

(
λ

2L3

)4
]

− 2mc2

L

[
13

2

(
λ

2L3

)2

− 97

8

(
λ

2L3

)4
]2

, (A18)

and if we work to order (λ/L3)4, we can take the first term in
the second term of the force,

[
13

2

(
λ

2L3

)2

− 97

8

(
λ

2L3

)4
]2

∼ 169

4

(
λ

2L3

)4

, (A19)

and finally we get

F34(L) = 13mc2

L

(
λ

2L3

)2

− mc2

L

(
97

4
+ 169K

2D2

)(
λ

2L3

)4

.

(A20)
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