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Weak ergodicity breaking induced by global memory effects
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We study the phenomenon of weak ergodicity breaking for a class of globally correlated random walk dynamics
defined over a finite set of states. The persistence in a given state or the transition to another one depends on the
whole previous temporal history of the system. A set of waiting time distributions, associated to each state, sets
the random times between consecutive steps. Their mean value is finite for all states. The probability density of
time-averaged observables is obtained for different memory mechanisms. This statistical object explicitly shows
departures between time and ensemble averages. While the residence time in each state may have a divergent
mean value, we demonstrate that this condition is in general not necessary for breaking ergodicity. Hence, we
conclude that global memory effects are an alternative mechanism able to induce ergodicity breaking without
involving power-law statistics. Analytical and numerical calculations support these results.
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I. INTRODUCTION

Ergodicity plays a fundamental role in the formulation of
statistical physics. This property is usually stated by saying
that ensemble average and time average of observables are
equals, the latter being taken in the long time limit. In contrast
with thermodynamical systems, where the lack or ergodicity is
induced by a spontaneous symmetry breaking [1], the disparity
between ensemble and time averages can also be found as
an emergent property of complex (nonequilibrium) systems
dynamics. In this context, the discrepancy with respect to
ergodicity is named weak ergodicity breaking (EB) [2]. It is
known that dynamics able to induce power-law statistics for
the relevant observables lead to weak EB [3].

In systems that admit a description through a stochastic
dynamics, time averages in the presence of weak EB may
remain random even in the long time limit. Their statistics,
termed as weakly nonergodic statistical physics [4,5], define
a still very active line of research. Continuous-time random
walks form a natural frame where these effects were studied
[4–9]. Furthermore, diverse kinds of complex anomalous
diffusion processes are a natural partner of weak EB [10–20].
In addition to its theoretical interest, weak EB was also found
in different physical and biological systems [21–36]. Weak
EB can be studied in systems that have associated a stationary
state, for example random walks on finite domains, and also
in nonstationary systems such as unbounded diffusive ones.
Different measures of EB are naturally associated to each case
(see, for example, Refs. [4] and [28], respectively).

For continuous-time random walks leading to weak EB
the times between (renewal) transition events are governed
by waiting time distributions with power-law tails (see, for
example, Refs. [4,5]). Independently of the system dimen-
sionality and stochastic dynamics, weak EB is in general
associated with or related to some underlying statistically
self-similar (effective) process. One of the main goals of
this paper is to show that there exist dynamics where this
requisite is not necessary. We demonstrate that systems whose
dynamics involves global memory effects may also develop
EB. Furthermore, we establish that the lack of ergodicity
induced by the memory effects may happen even in the absence

of statistical properties (residence times) characterized by
dominant power-law distributions.

Global memory (or correlation) effects refer to systems
whose stochastic dynamics at a given time depends on their
whole previous temporal history (trajectory). These kinds of
(highly non-Markovian) dynamics have been studied previ-
ously [37–45], mainly as a mechanism that induces superdiffu-
sion. In contrast, here we study random walk processes defined
over a finite set of states where the persistence in a given state or
the transition to another one depends on the previous system
trajectory. The random times between consecutive steps are
defined by a set of waiting time distributions with finite average
times. In addition, our main results rely on alternative memory
mechanisms. They are related to Pólya urn dynamics [46–50],
which is one of the simplest models of a contagion process,
being of interest in various disciplines [47].

We demonstrate that, in contrast to other global correlation
mechanisms [37–39], the urnlike dynamics is able to induce
weak EB. In fact, in the long time limit, its memory mechanism
is equivalent to a memoryless dynamics with different random
transition rates for each realization. This randomness leads
to the discrepancy between time and ensemble averages.
Interestingly, in contrast with renewal random walks [4,5], the
departure from ergodicity arises even when the statistics of the
residence times in each state are not dominated by power-law
behaviors. Hence, the random times that the system spent in
a given state before jumping to another one are characterized
by finite averages.

We remark that there exist previous contributions where the
interplay between memory effects and weak EB was analyzed
[51,52]. Nevertheless, the memory mechanisms cannot be
mapped with the present ones. Furthermore, the dynamics
develops on unbounded domains whereas here it develops over
a finite number of states, a situation that may be of interest in
biophysical systems (finite domains).

The paper is organized as follows. In Sec. II, we introduce
the globally correlated random walk model. The probability
density of time-averaged observables is obtained in general. In
Sec. III, we study three different global memory mechanisms:
the elephant random walk model, a random walk driven
by an urnlike dynamics, and an imperfect case of the last
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one. In Sec. IV, for all models, we obtain the probability
density of the residence times. Section V is devoted to the
conclusions. Analytical calculations that support the main
results are presented in the appendices.

II. FINITE RANDOM WALK WITH GLOBAL MEMORY
EFFECTS

In this section we introduce the globally correlated random
walk model and study its properties. The probability density
of time-averaged observables is also obtained.

A. Model

The system is characterized by a finite set of states μ =
1, . . . ,L. To each state μ we assign a waiting time distribution
wμ(t), which gives the statistics of times between consecutive
steps of the stochastic dynamics. We assume that all average
times

τμ ≡
∫ ∞

0
dtwμ(t)t (1)

are finite (τμ < ∞).
The stochastic dynamics is as follows. At the beginning (ini-

tial time), each state is selected in agreement with a set of prob-
abilities {pμ}Lμ=1, 0 � pμ � 1, normalized as

∑L
μ=1 pμ = 1.

Given that a state μ is selected, the system remains in it during
a random time selected in agreement with the waiting time
distribution wμ(t). After this step, the system may remain in
the same state or jump to another one. Hence, it may persist
in the same state, remaining an extra time interval chosen in
agreement with the same waiting time distribution, or jump to
a different state with a different waiting time distribution. This
dynamic repeats itself in time after each step, where a step
refers to the process of selecting the next state.

The state corresponding to the next step is chosen in agree-
ment with a conditional probability Tn({n1,n2, . . . ,nL}|μ)
[denoted as Tn({nν}|μ)]. Here, n indicates the number of
steps performed up to the present time, while nν gives the
number of times that each state ν was chosen previously.
Then, n = ∑L

ν=1 nν . The dependence of the process on the
whole previous trajectory (global correlation) is given by the
dependence of Tn({nν}|μ) on the set {nν}Lν=1. The previous
definitions completely characterize the stochastic dynamics
in terms of the initial probabilities {pμ}Lμ=1, the waiting time
distributions {wμ(t)}Lμ=1, and the conditional (or transition)
probabilities Tn({nν}|μ).

For the studied models [see Eqs. (15), (16), and (21)], as a
consequence of the memory effects, the following property
is observed. In the long time limit (t → ∞), which also
corresponds to a divergent number of steps (n → ∞), the
fractions

fμ = lim
n→∞

nμ

n
, (2)

∑L
μ=1 fμ = 1, may become random variables whose values

depend on each particular realization. Their probability density
is denoted by P({fμ}), which satisfies the normalization
condition

∫
�

df1 · · · dfL−1P({fμ}) = 1. Here, � is the region
defined by the condition

∑L
ν=1 fμ = 1. The average of fμ over

an ensemble realizations, denoted by 〈· · · 〉, is

〈fμ〉 =
∫

�

df1 · · · dfL−1 fμP({fν}). (3)

At a given time t , with Pμ(t) we denote the (ensemble) prob-
ability [

∑L
μ=1 Pμ(t) = 1] that the system is in the (arbitrary)

state μ. This object is characterized in Appendix A from the
dynamics defined previously. The stationary probability reads
P st

μ ≡ limt→∞ Pμ(t). It can be written in terms of P({fν}) as

P st
μ =

〈
fμτμ∑L

μ′=1 fμ′τμ′

〉
, (4)

where τμ is defined by Eq. (1). In Appendix A we also derive
this result. Basically it says that in each realization the system
reaches a (random) stationary state defined by the weights
(fμτμ)/

∑L
μ′=1 fμ′τμ′ . In consequence, P st

μ depends on which
memory mechanism drives the stochastic dynamics.

B. Time-averaged observables

To each state μ, we assign an observable with value Oμ.

Hence, each realization of the random walk defines a corre-
sponding trajectoryO(t). In the stationary regime, its ensemble
average 〈O〉st ≡ limt→∞〈O(t)〉 = limt→∞

∑L
μ=1 Pμ(t)Oμ is

〈O〉st =
∑L

μ=1
P st

μ Oμ, (5)

where the weights follow from Eq. (4). On the other hand,
its time average is defined as O ≡ limt→∞(1/t)

∫ t

0 dt ′O(t ′),
which leads to

O = lim
t→∞

L∑
μ=1

(
tu

t

)
Oμ. (6)

Here, tu is the total residence time in the state μ in the interval
(0,t). Hence,

∑L
μ=1 tu = t.

Even when a long time limit is present in the previous
definition, the observable O may be a random object that
depends on each particular realization. Its probability density
can be written as

P (O) = lim
t→∞

〈
δ

(
O −

∑L

μ=1

tu

t
Oμ

)〉
, (7)

where, as before, 〈· · · 〉 denotes the average over an ensemble of
realizations and δ(x) is the Dirac delta function. Now, our goal
is to calculate this object for the dynamics defined previously.

Given that the waiting time distributions are characterized
by a finite average time τμ, Eq. (1), after invoking the law of
large numbers, in the long time limit the total residence time tu
in each state can be approximated as tu � nμτμ. Consistently,
the present time is t � ∑L

μ=1 nμτμ. Hence, we can write

lim
t→∞

tu

t
� lim

n→∞
nμτμ∑L

μ′=1 nμ′τμ′
= fμτμ∑L

μ′=1 fμ′τμ′
, (8)

where the last relation follows from Eq. (2). Taking into
account that the fractions {fμ}Lμ=1 are characterized by the
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distribution P({fμ}), Eq. (7) becomes

P (O) =
∫

�

df1 · · · dfL−1P({fμ})

× δ

(
O −

∑L

μ=1

fμτμ∑L
μ′=1 fμ′τμ′

Oμ

)
. (9)

Therefore, P (O) can be completely characterized after know-
ing the distribution P({fμ}). Notice that the specific structure
of the waiting time distributions {wμ(t)}Lμ=1 only appears
through the average times {τμ}Lμ=1, Eq. (1).

C. Ergodicity and localization

For an ergodic dynamics the fractions fμ [Eq. (2)] must be
characterized by their ensemble average, Eq. (3). Hence,

P({fμ}) = δ(f1 − 〈f1〉)δ(f2 − 〈f2〉) · · · δ(fL − 〈fL〉). (10)

Inserting this expression into Eq. (9), it follows the distribution

P (O) = δ(O−〈O〉st), (11)

where 〈O〉st is given by Eq. (5) with the weights

P st
μ = 〈fμ〉τμ∑L

μ′=1〈fμ′ 〉τμ′
. (12)

From Eqs. (4) and (10), we note that these weights correspond
to the stationary probabilities of each state μ in the ergodic
case. Hence, time averages and ensemble averages do in fact
coincide.

The maximal departure with respect to ergodicity happens
when the dynamics localize; that is, the system remains in the
initial condition. This case corresponds to

P({fμ}) =
L∑

μ=1

pμδ(f1) · · · δ(fμ − 1) · · · δ(fL). (13)

Hence, Eq. (9) becomes

P (O) =
L∑

μ=1

pμδ(O − Oμ). (14)

These limits are reached by the following memory mecha-
nisms.

III. EXAMPLES

In the examples worked below, the stochastic dynamics may
reach both the ergodic and localized regimes, Eqs. (11) and
(14), respectively. The distribution P({fμ}) can be explicitly
calculated and then the nonergodic properties characterized
through Eq. (9).

A. Elephant random walk model

This correlation model has been studied extensively in the
recent literature as a mechanism for inducing superdiffusion
[37–39]. In the present context, it is defined by the transition
probability

Tn({nν}|μ) = εqμ + (1 − ε)
nμ

n
. (15)

The positive weights 0 < qμ < 1 are extra parameters normal-
ized as

∑L
μ=1 qμ = 1. The parameter ε assumes values in the

interval [0,1]. The stochastic dynamics can be read as follows.
With probability ε, and independently of the previous history,
the new state is chosen in agreement with the probabilities
{qμ}Lμ=1. On the other hand, with probability 1 − ε each state
is chosen in agreement with the weights {nμ/n}Lμ=1, which in
fact depend on the whole previous history of the process.

For ε = 1, the selection of the new state is completely
random and independent of the previous history. Therefore,
the system is ergodic in this case [Eq. (11)]. On the other hand,
for ε = 0 the dynamics localize; that is, the system remains in
the initial condition[Eq. (14)].

Even when the dynamics reaches the ergodic and localized
regime, for intermediate values 0 < ε < 1 the dynamics is
ergodic. This property is demonstrated in Appendix B. In
fact, the distribution P({fμ}) is δ distributed, Eq. (10), with
〈fμ〉 = qμ.

B. Random walk driven by an urnlike dynamics

In the Pólya urn dynamics [46,47] (initially) an urn contains
many balls that, for example, are characterized by L different
possible colors. At each step, one determines the color of one
ball taken at random and puts into the urn one extra ball of the
same color. A similar process can be defined by starting the
urn with only one ball [48–50] (Blackwell-MacQueen urn). Its
dynamics is defined by the following conditional probability,
which is taken as the driving memory mechanism.

For the random walk over the μ = 1, . . . ,L states, we take
the conditional probability [48,49]

Tn({nν}|μ) = λqμ + nμ

n + λ
. (16)

As before, the set of parameters {qμ}Lμ=1 is normalized
to 1. Instead, λ is a positive free parameter. For λ → ∞
the dynamics loses any dependence on the previous history
achieving in consequence an ergodic regime, Eq. (11). On the
other hand, for λ = 0, a localized regime is achieved, Eq. (14).
Hence, the intermediate values of λ avoid this regime and
in consequence one can define a nontrivial dynamics starting
from n = 1.

For arbitrary values of λ, the probability density of the
(asymptotic) fractions (2) is derived in Appendix C. It can be
written as

P({fμ}) =
{

L∑
ν=1

pν

qν

fν

}
D({fμ}|{λqμ}), (17)

where D({fμ}|{λμ}) is a Dirichlet distribution [48,49],

D({fμ}|{λμ}) ≡ �(λ)∏
μ′ �(λμ′)

∏
μ

f
λμ−1
μ . (18)

Here, λ = ∑L
μ=1 λμ. The (ensemble) average fraction reads

〈fμ〉 = (qμλ + pμ)/(λ + 1). When pν = qν , due to the nor-
malization

∑L
ν=1 fν = 1, the first factor in Eq. (17) does not

contribute, and 〈fμ〉 = qμ.

We notice that P({fμ}) [Eq. (17)] depends on the initial
conditions {pμ}Lμ=1. This property arises from the strong
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ADRIÁN A. BUDINI PHYSICAL REVIEW E 94, 022108 (2016)

memory effects that drive the underlying stochastic dynamics.
Nevertheless, this dependence is not able to cancel any of the
stationary fractions. In consequence, the initial conditions are
not relevant for breaking ergodicity or not. In fact, given that
P({fμ}) departs from Eq. (10), this model leads to EB. The
distribution P (O) [Eq. (9)] can be evaluated from Eq. (17).

As an example, we consider a two-level system, where
the observable is defined by {Oμ} → (O2,O1), with O1 �
O � O2. After integration, we get

P (O) = 1

N
[ω2(O2 − O)]λ1−1[ω1(O − O1)]λ2−1

[ω2(O2 − O) + ω1(O − O1)]λ1+λ2
, (19)

where for shortening the expression we introduced the param-
eters λ1 ≡ λq1, λ2 ≡ λq2, and the weights

ω1 ≡ τ1

τ1 + τ2
, ω2 ≡ τ2

τ1 + τ2
. (20)

Here, τ1 and τ2 are the average times corresponding to the
two waiting time distributions w1(t) and w2(t), respectively
[Eq. (1)]. The normalization constant reads N−1 = (O2 −
O1)ω1ω2�(α1 + α2)/�(α1)�(α2). For simplicity, in the pre-
vious expressions we assumed the initial condition pμ = qu.
The case pμ 	= qu can be recovered from these expressions
[see Eqs. (17) and (18)].

The model (16) demonstrates that global memory effects
may lead to EB. This result has a close relation with the
breakdown of the standard central limit theorem for globally
correlated random variables [50]. On the other hand, as shown
in Sec. IV, depending on the values of λ, here EB arises because
the average residence times in each state may be divergent;
that is, their probability density is characterized by power-law
tails. The next modified dynamics also develops EB but does
not involve power-law statistics.

C. Imperfect urnlike model

Here, we consider a model that can be seen as an imperfect
case of the previous one. We consider the possibility of having
random state selections that do not depend on the previous
system history. The transition probability reads

Tn({nν}|μ) = εqμ + (1 − ε)
λqμ + Mμ

M + λ
. (21)

The set {qμ}Lμ=1 is normalized as before, 0 � ε � 1, and λ � 0.
Hence, with probability ε each state μ, independently of the
previous trajectory, is chosen with weight qμ. Complementar-
ily, with probability 1 − ε the state is chosen in agreement with
the urn mechanism, Eq. (16). In fact, here Mμ is the number
of times that the state μ was chosen with the urn dynamics.
Furthermore, M is the number of times that the urn mechanism
was applied: M = ∑L

μ=1 Mμ. In contrast with the elephant
walk model [Eq. (15)], here the contribution proportional to
ε can be thought of as an error in the application of the urn
dynamics.

In order to clarify the stochastic dynamics induced by
Eq. (21), in Fig. 1 we plot two realizations [Figs. 1(a) and 1(c)]
for a two-level system with O2 = 1 and O1 = −1. Hence, the
observable realizations switch between these two values. The
waiting time distributions are exponential ones,

wμ(t) = γμ exp[−γμt], (22)

FIG. 1. Realizations of a two-level system (a, c) with observable
{O2 = 1,O1 = −1} driven by an urnlike dynamics, jointly with
the corresponding conditional probabilities Tn({nν}|μ) [Eqs. (16)
and (21)] as a function of n (b, d). The parameters are λ = 2,
p1 = q1 = 0.4, and p2 = q2 = 0.6. The waiting time distributions
are exponential functions [Eq. (22)] with γ1 = γ2 = γ . In (a) and (b)
ε = 0.1, while in (c) and (d) we take ε = 0.

with μ = 1,2. In Figs. 1(b) and 1(d) we plotted the conditional
probabilityTn({nν}|μ) as a function of n. For clarity, each value
is continued in the real interval (i − 1,i). Figures 1(a) and
1(b) correspond to ε = 0.1, that is, Eq. (21), while Figs. 1(c)
and 1(d) correspond to ε = 0, that is, Eq. (16). In both cases
Tn({nν}|μ) attains stationary values for increasing n [Eq. (2)].
Nevertheless, in the case ε = 0.1 at random values of n the
conditional probability collapses to the value qμ. This effect
gives the error or imperfection with respect to the case ε = 0.

The probability distribution of the asymptotic fractions
[Eq. (2)] associated to Eq. (21) is given by

P({fμ}) =
{

L∑
ν=1

pν

qν

fν − εqν

1 − ε

}
1

(1 − ε)L−1

×D

({
fμ − εqμ

1 − ε

}
|{λqμ}

)
, (23)

where D({fμ}|{λμ}) is the Dirichlet distribution [Eq. (18)].
Furthermore, each fraction is restricted to the domain

εqμ � fμ � 1 − ε(1 − qμ). (24)

In this case, the average fraction reads

〈fμ〉 = qμ(λ + ε) + pμ(1 − ε)

(λ + 1)
. (25)

Equation (23) is related to Eq. (17) by the change of
variables fμ → εqμ + (1 − ε)fμ. This relation follows by
considering the asymptotic limits of Eqs. (21) and (16), and
by using that the law of large numbers applies to the error
mechanism. For ε = 0 the previous expressions recover the
previous case, Eq. (17). Interestingly, the effect of introducing
the imperfect mechanism is to reduce the domain of each
fraction fμ, Eq. (24).

From Eqs. (9) and (23) we can calculate the distribution
of the time-averaged observable. Below we consider a two-
level system withO1 < O < O2 and initial condition pμ = qu.
This case straightforwardly allows us to reconstruct the case

022108-4



WEAK ERGODICITY BREAKING INDUCED BY GLOBAL . . . PHYSICAL REVIEW E 94, 022108 (2016)

FIG. 2. Probability density of the time-averaged observable O.
We take a two-level system driven by an urnlike dynamics with
different values of λ and ε. The solid lines correspond to the analytical
expressions Eqs. (19) and (26). The waiting time distributions are
exponential functions [Eq. (22)] with γ1 = γ2 = γ . In all plots we
take p1 = p2 = q1 = q2 = 1/2. The (red) circles (ε = 0.5) and (blue)
squares (ε = 0) correspond to numerical simulations. λ is indicated
in each plot.

pμ 	= qu. We get

P (O) = 1

Nε

[
ω2(O2 − O) − ωε

1(O − O1)
]λ1−1

×[
ω1(O − O1) − ωε

2(O2 − O)
]λ2−1

× 1

[ω2(O2 − O) + ω1(O − O1)]λ1+λ2
. (26)

The possible values of the time-averaged observable are
restricted to the domain Omin � O � Omax, where

Omax ≡ O2 + O1ω
ε
1ω

−1
2

1 + ωε
1ω

−1
2

, Omin ≡ O1 + O2ω
ε
2ω

−1
1

1 + ωε
2ω

−1
1

. (27)

Furthermore, we introduced the parameters

ωε
1 ≡ ω1

εq1

1 − εq1
, ωε

2 ≡ ω2
εq2

1 − εq2
, (28)

while the normalization constant is N−1
ε = (O2 −

O1)ω1ω2[�(λ)/�(λ1)�(λ2)](1 − ε)−(λ−1)(1 − εq1)λ1−1(1 −
εq2)λ2−1. Consistently, for ε = 0, Eq. (26) recovers the
previous case, Eq. (19). From the previous expression
it becomes clear that the error mechanism introduced in
Eq. (21) leads to a shrinking of the probability density of the
time-averaged observable.

In order to check these results, in Fig. 2, we plot the
distribution (26) for a two-level system where as before we
take O2 = 1, O1 = −1, and the exponential waiting time
distributions (22). For each value of λ, we plot the cases
ε = 0.5 [Eqs. (21) and (26)] and ε = 0 [Eqs. (16) and (19)].
Consistently, a higher ε leads to a shrinking of the density
P (O), which confirms that for ε → 1 an ergodic regime is
achieved, P (O) = δ(O). The same happens for increasing λ.

On the other hand, the plots show that P (O) may develop
different forms such as U and bell shapes, or even uniform
ones. Similar dependencies arise when studying renewal
random walks with divergent average trapping times [4].

In all cases, the numerical simulations (circles and squares)
follow from a time average performed on a time interval with
n = 1 × 103 steps and 1 × 105 realizations. The theoretical
results fit very well the numerical ones.

IV. PROBABILITY DENSITY OF RESIDENCE TIMES

In contrast to the elephant random walk model, the previous
urn models develop weak EB. Here, we explore if this property
is induced, or not, by a power-law statistics. In fact, for
continuous-time random walks with renewal events, EB is
induced by the divergence of the average residence time in
each state [4]. The residence times are the random times
that the system stays or remains in a given state before
jumping to another one (see Fig. 1). Here, for the models
introduced previously, we calculate their probability density.
The calculations are valid for an arbitrary number of states, L.

We consider a single trajectory in the long time limit, such
that the fractions {fμ}Lμ=1 [Eq. (2)] can be described by their
associated probability densityP({fμ}) [see Eqs. (17) and (23)].
At the beginning of the residence in a given state μ the first
time interval is chosen in agreement with its waiting time
distribution wμ(t). In each step, the system remains in the
same state with probability fμ, which adds a new random time
interval also defined from wμ(t). The residence time ends when
a different state ν 	= μ is chosen. This change occurs with
probability 1 − fμ. Therefore, the probability Wμ({f }|τ ) dτ

of leaving the state μ after a residence time τ can be written
in the Laplace domain [g(s) = ∫ ∞

0 dτg(τ )e−sτ ] as

Wμ({f }|s) = (1 − fμ)wμ(s)
∞∑

n=0

f n
μ wn

μ(s). (29)

Here, wμ(s) is the Laplace transform of the waiting time
distribution wμ(t) associated to the state μ. The previous
expression takes into account all possible ways of leaving
the state μ after a given number of steps. It can be rewritten as

Wμ({f }|s) = (1 − fμ)
wμ(s)

1 − fμwμ(s)
. (30)

The density Wμ({f }|τ ) is a conditional object. In fact,
it is defined for a particular realization with random values
of the fraction fμ. Therefore, the probability density of
the residence time Wμ(t) is obtained after averaging over
realizations, Wμ(t) = 〈Wμ({f }|t)〉, which is equivalent to an
average over the distribution P({fν}) of the set of fractions
{fν}Lν=1. Therefore, we get

Wμ(τ ) =
∫

�

df1 · · · dfL−1P({fν})Wμ({f }|τ ), (31)

where Wμ({f }|τ ) follows from Eq. (30) after Laplace inver-
sion. The average residence time Tμ is defined by

Tμ ≡
∫ ∞

0
dττWμ(τ ). (32)
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The previous two expressions can be evaluated for arbi-
trary waiting time distributions and memory models. For an
exponential waiting time distribution wμ(t) = γμ exp[−γμt]
[Eq. (22)] with mean value τμ = 1/γμ [Eq. (1)], it follows that
wμ(s) = γμ/(s + γμ). From Eq. (30), we get Wμ({f }|s) =
(1 − fμ)γμ/[s + (1 − fμ)γμ], which can be inverted as

Wμ({f }|τ ) = (1 − fμ)γμ exp[−(1 − fμ)γμτ ]. (33)

For an ergodic system, characterized by the probability density
P({fν}) given by Eq. (10), from Eq. (31) we get

Wμ(τ ) = (1 − 〈fμ〉)γμ exp[−(1 − 〈fμ〉)γμτ ]. (34)

This result is consistent with the definition of the underlying
stochastic process that in each step allows the persistence
in the same state. In fact, the average residence time is
Tμ = 1/[γμ(1 − 〈fμ〉)], indicating an increasing of the average
residence time with an increasing of the weight 〈fμ〉. On the
other hand, in the localized regime [Eq. (13)], due to the
absence of transitions, it is not possible to define Wμ(τ ).

Taking exponential waiting time distributions Eq. (22), for
a two-level system [μ = 1,2] characterized by the conditional
probability (21) (imperfect urn model), after a simple change
of variables, Eqs. (23) and (31) deliver

Wε
μ(τ ) = 1

N

∫ 1

0
df ϕε exp[−ϕε τ ]cμ f λμ−1(1 − f )λμ′−1,

(35)
where the superscript denotes the dependence on the parameter
ε. λμ = λqμ [μ = 1,2] while λμ′ [μ′ = 2,1] corresponds to
the other system state, λμ′ = λqμ′ = λ(1 − qμ). The initial
conditions appear through the contribution

cμ ≡ pμ

qμ

f + 1 − pμ

1 − qμ

(1 − f ). (36)

The decay rate ϕε is

ϕε ≡ γμ[1 − εqμ − (1 − ε)f ], (37)

while the normalization constant reads N−1 = �(λ1 +
λ2)/�(λ1)�(λ2). Straightforwardly, the average residence
time, T ε

μ = ∫ ∞
0 dττWε(τ ), from Eq. (35) can then be written

as

T ε
μ = 1

N

∫ 1

0
df

1

ϕε

cμf λμ−1(1 − f )λμ′−1. (38)

Consistently, for ε = 1 Eq. (35) recovers Eq. (34) with
〈fμ〉 = qμ [Eq. (25)]. Hence, γμT 1

μ = 1/(1 − qμ). The same
results arise when λ → ∞. For arbitrary ε and λ, from
Eqs. (35) and (38) explicit analytical expressions can be found
for both Wε

μ(τ ) and T ε
μ [see Appendix D].

Interestingly, for 0 < ε � 1 (and any initial condition) the
average residence time T ε

μ is finite [see Eq. (D4)]. This is the
main result of this section. In fact, this result demonstrates that
weak EB may arise even in the absence of power-law statistical
distributions with divergent average residence times. On the
other hand, for the case ε = 0, that is, the dynamics defined
by the conditional probabilities (16), the average residence
time T 0

μ , depending on the parameter values, may be finite or

infinite. From Eqs. (38) and (D4) we get

γμT 0
μ =

λ − ( 1−pμ

1−qμ

)
λ(1 − qμ) − 1

, λ >
1

(1 − qμ)
> 1. (39)

Consistently, for increasing λ this expression recovers the
ergodic case [Eq. (34)], limλ→∞ γμT 0

μ = 1/(1 − qμ). In the
complementary region of possible values of λ, the average
residence time is divergent:

γμT 0
μ = ∞, λ � 1

(1 − qμ)
. (40)

This last regime indicates that the density Wε
μ(τ ) develops

power-law tails. In fact, for long residence times, γμτ 
 1,
from Eqs. (35) and (D1) it can be approximated as

W 0
μ(τ ) ≈ γμC0

μ

(
1

γμτ

)λ(1−qμ)+1

, (41)

which defines the previous finite and infinite average time
regimes. The dimensionless constant reads C0

μ = (pμ/qμ)(1 −
qμ)�(1 + λ)/�(qμλ). When pμ = 0 (pμ′ = 1) the asymp-
totic behavior becomes W 0

μ(τ ) ≈ (1/γμτ )λ(1−qμ)+2, while for
W 0

μ′(τ ) it is given by Eq. (41). We remark that in general Wε
μ(τ )

(ε > 0) may also develop power-law behaviors. Nevertheless,
a multiplicative exponential factor always leads to finite
average times [see, for example, Eq. (42) below].

For particular values of the characteristic parameters,
the integral results defined by Eqs. (35) and (38) lead to
simple analytical expressions. Taking p1 = q1 = 1/2, p2 =
q2 = 1/2, and λ = 2 [Fig. 2(b)] the density of residence times
becomes

Wε
μ(τ ) = exp(−γ +

ε τ )(1 + γ +
ε τ ) − exp(−γ −

ε τ )(1 + γ −
ε τ )

γμτ 2(1 − ε)
,

(42)
where for shortening the expression we introduced the rates
γ +

ε ≡ γμε/2 and γ −
ε ≡ γμ(1 − ε/2). In the case ε = 1 (er-

godic dynamics), we get Wε
μ(τ ) = (γμ/2)T 1

μ exp[−(γμ/2)τ ].
Hence, T 1

μ = 2/γμ. In the case ε = 0 it reduces to

W 0
μ(τ ) = 1

γμτ 2
[1 − (1 + γμτ ) exp(−γμτ )], (43)

which explicitly shows the presence of dominant power-law
tails. The average residence time [Eq. (38)] for arbitrary ε

reads

γμT ε
μ = 2arctanh(1 − ε)

(1 − ε)
= ln

(
2−ε
ε

)
(1 − ε)

, (44)

where arctanh[x] = ln
√

1+x
1−x

for x ∈ (−1,1). Thus, T ε
μ is finite

for 0 < ε � 1. Consistently with Eqs. (40) and (43), it diverges
for ε = 0, T 0

μ = limε→0 T ε
μ = ∞.

In order to check the previous results we determined the
distribution Wε

μ(τ ) from a set of realizations such as those
shown in Fig. 1. For the same system as in Fig. 2, the results
are shown in Fig. 3. Furthermore, we take w1(t) = w2(t) =
γ exp(−γ t), which implies Wε

1 (τ ) = Wε
2 (τ ). Consistently

with the previous analytical results [Eq. (42)], for ε = 0.5
[Fig. 3(a)] asymptotically the density of residence times
Wε

μ(τ ) is not dominated by power-law behaviors. Instead for
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FIG. 3. Probability distribution Wε
μ(τ ) [μ = 1,2] of the residence

times for a two-level system. The solid lines correspond to the
analytical result of Eq. (42). The waiting time distributions are
exponential functions [Eq. (22)] with γ1 = γ2 = γ . In both curves,
p1 = p2 = q1 = q2 = 1/2, and λ = 2. The (red) circles correspond
to a numerical simulation with ε = 0.5, while the (blue) squares
correspond to ε = 0. The dotted line is the asymptotic power-law
behavior (41) of Eq. (43).

ε = 0 [Fig. 3(b)] an asymptotic power-law behavior is clearly
observed [Eq. (43)]. The numerical and theoretical results are
consistent between them.

The numerical probability densities of Fig. 3 were obtained
from a set of equally sampled realizations. This means that the
same number of data for the random residence times is taken
from each realization. We took 5 × 103 realizations with a
total length of n = 5 × 105 steps. Furthermore, after running
the dynamics during 1 × 103 steps (long time limit), 5 × 103

random residence times were taken from each realization.

V. SUMMARY AND CONCLUSIONS

We have introduced a random walk dynamics characterized
by global memory mechanisms. Given a finite set of states, in
each step the system may remain in the same state or jump
to another one. These alternative events are chosen from a
conditional probability that depends on the whole previous
history of the system. The time between consecutive steps is
determined by a set of waiting time distributions, all of them
characterized by a finite average time.

We focused the analysis on the ergodic properties of the
stochastic dynamics. Hence, we characterized the probability
density of time-averaged observables [Eq. (9)]. By analyzing

different memory mechanisms, we conclude that global cor-
relations are not a sufficient condition for breaking ergodicity,
such as, for example, in the elephant random walk model
[Eq. (15)]. On the other hand, alternative urnlike memory
mechanisms [Eqs. (16) and (21)] do in fact break ergodicity. In
these cases, considering a two-level dynamics, the distribution
of time-averaged observables can be found in an explicit
analytical way [Eqs. (19) and (26)].

For random walk dynamics over a finite set of states, EB
may be induced by a divergent average residence time in
each state. In order to check this possibility for the present
models, we calculated the probability density of the residence
times [Eq. (31)] and the corresponding average residence
time [Eq. (32)]. In general, the distributions do not develop
asymptotic power-law behaviors consistent with a divergent
average residence time. Hence, we conclude that global
memory effects are in fact an alternative mechanism that
leads to EB without involving power-law statistics. This main
conclusion was explicitly checked for two-level dynamics
[Eqs. (35) and (38)]. Only for a particular set of values do the
residence times have a divergent average. All previous results
were confirmed by numerical simulations [see Figs. 2 and 3].

In conclusion, we established that weak EB may also
arise in (finite dimensional) systems characterized by global
memory effects. This property may emerge even when the rel-
evant variables are not characterized by power-law statistical
behaviors.
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APPENDIX A: ENSEMBLE PROBABILITIES AND
STATIONARY STATE

Here, we obtain the ensemble probabilities {Pμ(t)}Lμ=1 and
their corresponding long time limit, Eq. (4).

From the dynamics defined in Sec. II, the probability Pμ(t)
that the system is in the (arbitrary) state μ at time t can be
written in the Laplace domain [g(s) = ∫ ∞

0 dτg(τ )e−sτ ] as

Pμ(s) = P1(μ)
μ(s) +
∞∑

n=1

∑
μ1,···μn

Pn+1(μ1, . . . , μn,μ)

×wμ1 (s) · · · wμn
(s)
μ(s), (A1)

where 
μ(s) = [1 − wμ(s)]/s is the Laplace transform of the
survival probability 
μ(t) = 1 − ∫ t

0 dt ′wμ(t ′). Furthermore,
Pn(μ1, . . . ,μn) is the probability of obtaining, after n steps, the
states {μ1, . . . ,μn} from the globally correlated mechanism.
Hence, P1(μ) = pμ.

Equation (A1) can be seen as an addition over the
ensemble realizations, where each term gives the weight of all
realizations with n selection events. Taking into account that
the variables μ1, . . . ,μn−1 run over the domain of possible
states 1,2, . . . ,L, Eq. (A1) can also be written as

Pμ(s) = pμ
μ(s) +
∞∑

n=1

∑
{nν }

Pn(n1, . . . , nL)

× Tn({nν}|μ) w
n1
1 (s) · · · wnL

L (s)
μ(s). (A2)
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Here, Pn(n1, . . . ,nL) is the joint probability of getting nν times
the state ν after n random steps, ν = 1, . . . ,L. Therefore, the
sum

∑
{nν } is restricted to the condition

∑L
ν=1 nν = n.

The expression (A2) is exact. Now, we perform a set
of approximations for getting the stationary state P st

μ =
limt→∞ Pμ(t). In the long time regime, t 
 {τν}Lν=1, in
the Laplace domain we can approximate [46] the waiting
time distribution as wν(s) � 1 − τνs, where τν is the av-
erage time defined by Eq. (1). Therefore, 
μ(s) � τμ and
also w

n1
1 (s) · · ·wnL

L (s) = ∏L
ν=1 wnν

ν (s) � exp[−s
∑L

ν=1 τνnν],
which in the time domain leads to a Dirac δ function,
δ(t − ∑L

ν=1 τνnν).
In the long time regime, n increases unbounded. For the

studied models, the conditional probability can then be approx-
imated as Tn({nν}|μ) � nμ/n � fμ [Eq. (2)]. Consequently,
Eq. (A2) leads to the approximation

Pμ(t) �
∞∑

n=1

∑
{nν }

Pn(n1, . . . ,nL)τμ

nμ

n
δ

(
t −

L∑
ν=1

τνnν

)
.

(A3)
By writing the δ contribution as δ(t − ∑L

ν=1 τνnν) = δ(t −
n

∑L
ν=1 τνfν), we realize that in the sum over n the dominant

term is that with n � t/
∑L

ν=1 τνfν . Using the properties of the
δ distribution, δ(t − n

∑L
ν=1 τνfν) = (1/

∑L
ν=1 τν ′fν ′ )δ(n −

t/
∑L

ν=1 τνfν), and after the change of variables nν → fν ,
Eq. (A3) leads to the stationary state

P st
μ =

∫
�

df1 · · · dfL−1
τμfμ∑L
ν=1 τνfν

P({fν}), (A4)

which in fact recovers Eq. (4). This result was also checked
by numerical calculations for the memory models introduced
in Sec. III.

APPENDIX B: ERGODICITY OF THE ELEPHANT
RANDOM WALK

The elephant random walk is defined by the transition
probability (15),

Tn({nν}|μ) = εqμ + (1 − ε)
nμ

n
. (B1)

Here, we demonstrate that the fractions defined in Eq. (2),
fμ = limn→∞(nμ/n), converge to qμ; that is, the distribu-
tion of the fractions is given by Eq. (10) with 〈fμ〉 = qμ

(0 < ε � 1).
At a given stage, the numbers nμ can be split as follows:

nμ = m(1)
μ + M (1)

μ . (B2)

Here, m(1)
μ gives the number of times that, with probabil-

ity ε, the state μ was chosen with probabilities {qμ}Lμ=1.
Complementarily, M (1)

μ gives the number of times that, with
probability 1 − ε, the state μ was chosen with probabilities
{nμ/n}. In the limit of a diverging number of selections (steps),
the law of large numbers gives limn→∞ m(1)

μ /n = εqμ. Thus,
asymptotically we can approximate

Tn({nν}|μ) � εqμ + (1 − ε)

[
εqμ + M (1)

μ

n

]
. (B3)

Now, we can split M (1)
μ in the same way as follows:

M (1)
μ = m(2)

μ + M (2)
μ . (B4)

Here, m(2)
μ is the number of times that, with probability

(1 − ε)ε, the state μ was chosen with probabilities {qμ}Lμ=1.
Similarly, M (2)

μ gives the number of times that, with probability
(1 − ε)(1 − ε), the state μ was chosen with probabilities
{M (1)

μ /n}. By using that limn→∞ m(2)
μ /n = (1 − ε)εqμ, it

follows the approximation

Tn({nν}|μ) � εqμ + (1 − ε)

[
εqμ + εqμ(1 − ε) + M (2)

μ

n

]
.

(B5)

Performing the same splitting, at an arbitrary order we can
write

M (k−1)
μ = m(k)

μ + M (k)
μ , (B6)

where the law of large numbers gives limn→∞ m(k)
μ /n =

(1 − ε)k−1εqμ. Therefore, we get

Tn({nν}|μ) � εqμ + (1 − ε)εqμ

∞∑
k=0

(1 − ε)k = qμ. (B7)

This argument shows that in the asymptotic limit the memory
on the previous states is lost. Hence, the finite random
walk becomes ergodic, Eq. (10) with 〈fμ〉 = qμ. Numerical
simulations confirm this result. Notice that the previous
argument does not apply to the urn models in Eqs. (16) and
(21). On the other hand, we checked that for ε → 0 the rate
of convergence to the regime defined by Eq. (B7) is smaller,
being infinite for ε = 0, that is, in the localized regime. We
remark that this result does not contradict previous results for
unbounded diffusion processes [37–39].

APPENDIX C: FRACTION PROBABILITY DENSITY OF
THE URNLIKE DYNAMICS

For the urn dynamics defined by Eq. (16), here we obtain
the probability density of the stationary fractions, Eq. (2).

By using Bayes rule, the joint probability Pn(μ1, . . . ,μn)
of obtaining the values μ1, . . . ,μn with the dynamics defined
by Eq. (16) can be written as

Pn(μ1, . . . ,μn)=P1(μ1)T1({nν1}|μ2) · · · Tn−1({nνn−1}|μn).

By writing this expression in an explicit way, we realize that
the joint probability Pn(n1, . . . ,nL) of getting nμ times the
state μ after n random steps can be written as

Pn(n1, . . . ,nL) =
L∑

ν=1

(n − 1)!

n1! · · · (nν − 1)! · · · nL!

×pν

�(λ)

�(n + λ)

1

qν

L∏
μ=1

�(nμ + λμ)

�(λμ)
, (C1)

where λμ = λqμ. Each term in the sum
∑L

ν=1 corresponds
to all realizations with the same initial condition, which
leads to the weight pν . The contributions proportional to
the � functions follows straightforwardly from the product
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of successive conditional probabilities Tk({nk}|μk+1) and
the property �(n + x)/�(x) = x(1 + x)(2 + x) · · · (n − 1 +
x). Furthermore, in the first line the multinomial factor takes
into account all realizations with the same numbers {nμ}Lμ=1.
Equation (C1) can be rewritten as

Pn(n1, . . . ,nL) =
L∑

ν=1

pν

qν

nν

n
Dn(n1, . . . ,nL), (C2)

where

Dn(n1, . . . ,nL) ≡ n!

n1! · · · nL!

�(λ)

�(n + λ)

L∏
μ=1

�(nμ + λμ)

�(λμ)
.

(C3)
In the limit x → ∞ it is valid the Stirling approximation

�(x) ≈ √
2π/xe−xxx . Hence, in the same limit, it follows that

�(x + α)/�(x) ≈ xα . Using that n! = �(n + 1), and applying
the previous approximations to Eq. (C3), in the limit n → ∞
it follows that

Dn(n1, . . . ,nL) ≈ �(λ)

nλ−1

L∏
μ=1

n
λμ−1
μ

�(λμ)
. (C4)

By performing the change of variables nμ → nfμ, and by
using that (due to normalization) there are L − 1 independent
variables fμ, the previous expression straightforwardly leads
to the Dirichlet distribution D({fμ}|{λμ}), Eq. (18). Therefore,
in the same limit, Eq. (C2) trivially recovers Eq. (17).

APPENDIX D: EXACT ANALYTICAL RESULTS FOR
TWO-LEVEL SYSTEMS

For two-level systems driven by the imperfect urn dy-
namics, the integral expressions for the probability density

of residence times [Eq. (35)] and the average residence time
[Eq. (38)] can be explicitly evaluated. Wε

μ(τ ) reads

Wε
μ(τ ) = γμ exp[−γμτ (1 − εqμ)]

×{aμ(τ )1F1[λqμ; λ; (1 − ε)γμτ ]

+ bμ(τ )1F1[λqμ; λ + 1; (1 − ε)γμτ ]}. (D1)

The Kummer confluent hypergeometric function is

1F1[a; b; z] = ∑∞
k=0(a)k(b)kzk/k! with (x)k = ∏k−1

j=0(x + j )
= �(x + k)/�(x). The auxiliary function aμ(τ ) is

aμ(τ )≡ pμ

qμ

(1 − qμ)ε + (pμ − qμ)λ

qμγμτ
, (D2)

while bμ(τ ) is

bμ(τ ) ≡
(

1−pμ

qμ

ε

)
−(1−ε)pμ+(pμ − qμ)

(
ε − λ

qμγμτ

)
.

(D3)

Similarly, the average residence time is

γμT ε
μ = aμ2F1

[
1; λqμ; λ;

1 − ε

1 − εqμ

]

+ bμ2F1

[
1; 1 + λqμ; 1 + λ;

1 − ε

1 − εqμ

]
. (D4)

Here, the hypergeometric function is defined by
2F1[a; b; c; z] = ∑∞

k=0(a)k(b)k(c)kzk/k!, while the
coefficients are

aμ ≡ 1 − pμ

(1 − qμ)(1 − εqμ)
, bμ ≡ pμ − qμ

(1 − qμ)(1 − εqμ)
. (D5)
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