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Time evolution of Rényi entropy under the Lindblad equation

Sumiyoshi Abe
Department of Physical Engineering, Mie University, Mie 514-8507, Japan
and Institute of Physics, Kazan Federal University, Kazan 420008, Russia

(Received 12 June 2016; published 4 August 2016)

In recent years, the Rényi entropy has repeatedly been discussed for characterization of quantum critical states
and entanglement. Here, time evolution of the Rényi entropy is studied. A compact general formula is presented
for the lower bound on the entropy rate.
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Consider a density matrix ρ that is positive semidefinite
and satisfies the normalization condition, tr ρ = 1. Its Rényi
entropy defined by

Sα = 1

1 − α
ln trρα (α > 0) (1)

provides a useful tool for characterizing entanglement con-
tained in ρ (see Refs. [1–3], for example). This generalized
entropy obviously converges to the von Neumann entropy,
S = −tr(ρ ln ρ), in the limit α → 1. ρ may instantaneously be
diagonalized in a certain orthonormal basis {|ui〉}i as

ρ =
∑

i

pi |ui〉〈ui |, (2)

where the eigenvalues, pi’s, are in the range [0, 1] and satisfy∑
i pi = 1. In this form of ρ, the Rényi entropy is written as

Sα = (1 − α)−1 ln (
∑

i pα
i ), which is analogous to its classical

definition [4].
Some comments are in order. Firstly, the Rényi entropy

is not uniformly continuous as a functional unless α → 1.
This has been discussed in Ref. [5], where the concept
of so-called “Lesche stability” has been introduced. Later,
relevant issues have further been studied in Ref. [6] for other
generalized entropies. Problems regarding uniform continuity
of a functional usually matter in the neighborhoods of the
boundary of its domain. Therefore, one would ignore the
problems to use the Rényi entropy or other similar generalized
entropies to extend traditional thermostatistics. Then the
second comment comprises the fact that, like other generalized
entropies, discussions of this kind, however, are illegitimate
due to the presence of unwarranted biases in such generalized
maximum entropy schemes [7]. In addition, the Rényi entropy
does not satisfy the concept of subset independence that is
the fourth of the Shore-Johnson axioms [8] for the maximum
entropy principle.

In this article, we discuss the dynamical behavior of the
Rényi entropy by employing a master equation of the Lindblad
type [9,10]. We present a compact formula for the lower bound
on the entropy rate, which generalizes the result known for the
von Neumann entropy [11] (see also Ref. [12]).

Let us recall the Lindblad equation for a density matrix ρ

[9,10]:

i
∂ρ

∂t
= [H, ρ] − i

2

∑
n

cn(L†
nLnρ + ρL†

nLn − 2LnρL†
n),

(3)

where � is set equal to unity. H stands for a system Hamiltonian
and Ln’s are referred to as the Lindbladian operators that
describe interaction between the system and its environment.
cn’s are c numbers and have to be non-negative in order for the
density matrix to remain positive semidefinite in the course of
time evolution. This is the most general quantum master equa-
tion that is linear, Markovian, and positive semidefiniteness
preserving.

Now, the time derivative of the Rényi entropy in Eq. (1) is
written as follows:

dSα

dt
=

∑
n

cn�n, (4)

where �n is given by

�n = α

1 − α

1

trρα
tr(ρα−1LnρL†

n − ραL†
nLn), (5)

provided that the identical relation, tr(ρα−1[H, ρ]) = 0, has
been used. The presence of ρα−1 in Eq. (5) mathematically
forces us to assume in the case α < 1 positive definiteness of
the density matrix rather than positive semidefiniteness, but
the final results will be free from this problem.

In what follows, we show that the quantity in Eq. (5) satisfies

�n > 〈[L†
n, Ln]〉α, (6)

where 〈A〉α is defined by

〈A〉α = tr(Aρα)

trρα
, (7)

which is referred to as the α average of A. The instantaneous di-
agonalization in Eq. (2) makes the quantity in Eq. (7) be rewrit-
ten as 〈A〉α = ∑

i P
(α)
i 〈ui |A|ui〉, where P

(α)
i ≡ pα

i /
∑

j pα
j

is formally equivalent to the escort distribution associated
withpi [13].

Before proceeding, here we wish to point out the fact that,
like the Rényi entropy itself, the α average is not Lesche
stable, either [14], under deformation of ρ unless α → 1. In
addition, such a generalized average is not consistent with the
principles of quantum mechanics [15,16]. However, this issue
is irrelevant to our discussion, since we are regarding the α

average as a purely mathematical expression here.
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Now, let us show that Eq. (6) holds. The proof is elementary.
Substituting Eq. (2) into Eq. (5), we have

�n = α

1 − α

1

trρα

⎧⎨
⎩

∑
i, j

pα−1
i pj |〈ui |Ln|uj 〉|2 −

∑
i

pα
i 〈ui |L†

nLn|ui〉
⎫⎬
⎭. (8)

We wish to replace the double summation inside the braces on the right-hand side with a single summation. For this purpose,
it is necessary to separately examine two cases: (i) 0 < α < 1 and (ii) α > 1. Let us consider f (x) = xα of positive x. This
function is concave in case (i) and convex in case (ii). Therefore, we have [17]

(i) [λpi + (1 − λ)pj ]α > λpα
i + (1 − λ)pα

j ,

(ii) [λpi + (1 − λ)pj ]α < λpα
i + (1 − λ)pα

j , (9)

where λ ∈ (0, 1). On the other hand, since it is true for any positive y [17] that (i) yα − 1 � α(y − 1), (ii) yα − 1 � α(y − 1);
with the equalities being for y = 1, it follows that

(i) pα
i

[
λ + (1 − λ)

pj

pi

]α

� pα
i

{
α

[
λ + (1 − λ)

pj

pi

− 1

]
+ 1

}
,

(ii) pα
i

[
λ + (1 − λ)

pj

pi

]α

� pα
i

{
α

[
λ + (1 − λ)

pj

pi

− 1

]
+ 1

}
. (10)

Combining Eq. (9) with Eq. (10), we have

(i) pα
i

{
α

[
λ + (1 − λ)

pj

pi

− 1

]
+ 1

}
> λpα

i + (1 − λ)pα
j ,

(ii) pα
i

{
α

[
λ + (1 − λ)

pj

pi

− 1

]
+ 1

}
< λpα

i + (1 − λ)pα
j . (11)

It may be of interest to observe that λ disappears from Eq. (11). Thus we obtain

(i) αpα−1
i pj > (α − 1)pα

i + pα
j , (ii) αpα−1

i pj < (α − 1)pα
i + pα

j . (12)

Therefore, we find that, in both cases (i) and (ii), Eq. (8) satisfies the following inequality:

�n >
1

trρα

∑
i

pα
i 〈ui |[L†

n, Ln]|ui〉, (13)

which proves Eq. (6).

An immediate consequence from the results in Eqs. (4)
and (6) is that if Ln’s are normal [18], that is, [L†

n, Ln] =
0, then the Rényi entropy rate is positive. In addition, the
result clearly reproduces the one given in Ref. [11] in the limit
α → 1.

In conclusion, we have derived a compact formula for the
lower bound on the time derivative of the Rényi entropy
under the Lindblad equation. The result is expected to be
useful for studying the dynamics of quantum entanglement
in the Markovian approximation. However, there is no a priori
reason for the dynamics of a subsystem, i.e., subdynamics,

to be Markovian [19]: If the total system is in a strongly
entangled state, then the subdynamics generically fails to be
Markovian and even the subsystem Hamiltonian may not exist.
It is therefore of obvious importance to further generalize the
present discussion to non-Markovian dynamics.
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