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Critical properties of a liquid film between two planar walls are investigated in the canonical ensemble, within
which the total number of fluid particles, rather than their chemical potential, is kept constant. The effect of
this constraint is analyzed within mean-field theory (MFT) based on a Ginzburg-Landau free-energy functional
as well as via Monte Carlo simulations of the three-dimensional Ising model with fixed total magnetization.
Within MFT and for finite adsorption strengths at the walls, the thermodynamic properties of the film in the
canonical ensemble can be mapped exactly onto a grand canonical ensemble in which the corresponding chemical
potential plays the role of the Lagrange multiplier associated with the constraint. However, due to a nonintegrable
divergence of the mean-field order parameter profile near a wall, the limit of infinitely strong adsorption turns
out to be not well-defined within MFT, because it would necessarily violate the constraint. The critical Casimir
force (CCF) acting on the two planar walls of the film is generally found to behave differently in the canonical
and grand canonical ensembles. For instance, the canonical CCF in the presence of equal preferential adsorption
at the two walls is found to have the opposite sign and a slower decay behavior as a function of the film thickness
compared to its grand canonical counterpart. We derive the stress tensor in the canonical ensemble and find that
it has the same expression as in the grand canonical case, but with the chemical potential playing the role of
the Lagrange multiplier associated with the constraint. The different behavior of the CCF in the two ensembles
is rationalized within MFT by showing that, for a prescribed value of the thermodynamic control parameter
of the film, i.e., density or chemical potential, the film pressures are identical in the two ensembles, while the
corresponding bulk pressures are not.
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I. INTRODUCTION

The thermodynamic equivalence of statistical ensembles is
known to break down in systems of finite extent [1,2]. Fixing
the particle number in a finite volume but still allowing heat
exchange with a bath leads to the canonical ensemble as the
proper description. The vast majority of theoretical studies on
critical phenomena in confinement have been performed in the
grand canonical ensemble [3,4], whereas there are relatively
few studies concerning the canonical ensemble (see, e.g.,
Refs. [5–10]). On the other hand, in many circumstances the
experimental setup is naturally realizing the canonical ensem-
ble [11–13], which easily justifies corresponding theoretical
studies. For instance, important consequences of the conser-
vation of the particle number arise concerning the structure
and the phase transitions of (off-critical) fluids confined in
nanoscopic pores or capillaries [14–23], which motivated the
development of canonical density functional methods [24,25].
Furthermore, there is a strong, intrinsically theoretical, interest
in such analyses, in particular stemming from numerical
methods. Molecular dynamics simulations [26] as well as
lattice gas [27] or lattice Boltzmann simulations [28] naturally
operate in the canonical ensemble and have been applied for
studying static and dynamic critical phenomena [29–36]. In
order to properly extract physical properties of bulk systems
from such simulations, a detailed understanding of finite-size
effects in the canonical ensemble is required [6,7,10,37–42].
Constraining nonordering degrees-of-freedom results in the
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so-called Fisher renormalization of critical exponents [43–48].
Recently, it has been shown that the choice of the ensemble
may also affect the phase behavior of and the critical Casimir
forces (CCFs) on colloids in a critical solvent [49].

In the present study we consider films of one-component
or binary fluids close to their bulk critical point within
the canonical ensemble, i.e., with a fixed total number of
particles (of each species). Simple one-component liquids
undergoing liquid-vapor transitions as well as binary liquid
mixtures undergoing liquid-vapor or liquid-liquid segregation
transitions belong to the Ising universality class. Their static
critical behavior is properly captured by a statistical field
theory based on a Ginzburg-Landau free-energy functional
[3]. Our analysis employs the mean-field approximation of
this field theory, which provides the leading contribution to
the canonical and grand canonical partition functions. The
conclusions drawn on this basis are supported by Monte Carlo
simulations of the three-dimensional Ising model. Fluctuation
corrections will be analyzed in detail in a forthcoming study,
in which a statistical field theory in the canonical ensemble
will be developed systematically. For concreteness, here we
use the vocabulary appropriate for a simple fluid which may
separate into phases of different densities, noting that the
notion of density—which represents the order parameter (OP)
of the transition—can be replaced with that of concentration
or magnetization and the notions of chemical and substrate
potential with those of bulk and surface (magnetic) field,
respectively (for more details, see Sec. II A). The spatial
integral of the OP is henceforth called the “mass” � of
the film. The film is bounded in one spatial direction by
two planar and parallel walls, which are assumed to be of

2470-0045/2016/94(2)/022103(44) 022103-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022103


GROSS, VASILYEV, GAMBASSI, AND DIETRICH PHYSICAL REVIEW E 94, 022103 (2016)

macroscopic lateral extent. In this case, thermodynamically
extensive quantities such the mass � or the free energy have
to be defined as per transverse area of the film. In the
Monte Carlo simulations discussed here, periodic boundary
conditions are employed along the lateral directions. We focus
on the one-phase region of this confined system, i.e., on
temperatures above the capillary critical point [50,51]. The
walls have an adsorption preference, modeled by appropriate
surface chemical potentials, for one of the two phases of the
film, leading to critical adsorption on the walls. We consider
the cases of either symmetric or antisymmetric boundary
conditions for finite values of the substrate potential, referred
to, in the case of equal strengths of the surface fields, by
(++) and (+−) boundary conditions, respectively. This setup
covers the so-called normal surface universality class [52,53]
and describes the typical adsorption behavior of a near-critical
binary liquid mixture [54–60].

First we address the basic phenomenology of critical
adsorption in a film bounded by two parallel walls in the canon-
ical ensemble. Previous studies of critical adsorption have been
performed in the grand canonical ensemble, i.e., assuming that
the film can exchange particles with its surroundings at fixed
bulk chemical potential and allowing the spatial integral � of
the OP profile to fluctuate [50–53,61–75]. We investigate the
mapping between a canonical and a grand canonical system
with the chemical potential μ chosen such that the imposed
value of � is recovered. Due to the absence of closed analytical
solutions of the Ginzburg-Landau model in the presence of
arbitrary bulk and surface fields, we address this problem
numerically as well as via a suitable perturbation theory and
by a short-distance expansion. As a crucial consequence of
the mass constraint, μ acquires dependencies on the physical
parameters of the system, such as temperature, surface field,
total mass, and film thickness. As expected, for all boundary
conditions studied here, the dependence of μ on the total
mass � differs from that of a system with periodic boundary
conditions in all spatial directions. This finding will have
important repercussions on the behavior of the CCF in the
two ensembles. In the case of (++) boundary conditions we
point out that, as a consequence of the mass constraint, one
may not simply set the strength of the surface fields to infinity
in order to obtain the universal OP profile corresponding to
the case of strong adsorption. The reason is the nonintegrable
short-distance divergence ∼1/z of the mean-field OP profiles
near both walls, with z denoting the distance from them.
This is a mean-field specific effect which is expected to
be eliminated by critical fluctuations, as they give rise to a
weaker, integrable divergence ∼z−β/ν in the strong adsorption
regime, with β/ν � 0.52 for the three-dimensional Ising
universality class [76], where β and ν are standard bulk critical
exponents.

Building upon the analysis of the OP profiles of the critically
adsorbed film, we proceed to a study of CCFs in the canonical
ensemble. Critical Casimir forces generally arise from con-
fining a near-critical medium (see, e.g., Refs. [4,77,78] for re-
views). As a consequence, the fluctuation spectrum is modified
and the mean OP acquires a spatial dependence; the latter effect
lends itself to a description within mean-field theory (MFT).
Similarly to the case of critical adsorption, CCFs seem to have
been investigated so far only in the grand canonical ensemble

(see, e.g., Refs. [4,77,78] and references therein). We study the
effect of a mass constraint on the CCF by computing numerical
solutions of the Ginzburg-Landau model in the mean-field
approximation and by performing Monte Carlo simulations of
the three-dimensional Ising model. The salient features of our
numerical results are rationalized within linear MFT (i.e., upon
neglecting the quartic coupling in the Ginzburg-Landau free-
energy functional), within which analytical calculations for
arbitrary bulk and surface fields can be carried out and the CCF
can be easily extracted from the residual finite-size part of the
free energy. In the grand canonical ensemble, it is well known
that the CCF is attractive for (++) boundary conditions and
that, up to prefactors, its scaling function decays exponentially
as a function of the scaling variable L/ξ , where ξ is the bulk
correlation length and L is the film thickness [73,79]. Notably,
for (++) boundary conditions in the canonical ensemble, we
find that, upon varying the total mass, the CCF may change
sign and thus becomes repulsive. Furthermore, we find that its
scaling function decays rather slowly, i.e., as a power law of
the scaling variable L/ξ , and may attain significantly larger
values compared to the grand canonical one.

As an alternative to computing the residual finite-size con-
tributions to the free energy, the CCF can also be determined
via the stress tensor as the difference between the wall stresses
of the film and the stresses of the surrounding fluid. We prove,
within MFT, that the stress tensor in the canonical ensemble
assumes the same analytic expression as in the grand canonical
one, with the Lagrange multiplier being equal to the bulk field.
Accordingly, within MFT and for the same thermodynamic
conditions (i.e., total mass or chemical potential), the canonical
and grand canonical film pressures are identical. Consequently,
the difference in the behavior of the CCF between the two
ensembles is due to a difference in the bulk pressures which
are subtracted in order to obtain the CCF. While in the grand
canonical ensemble the bulk fluid and the film are thermody-
namically coupled via the overall, spatially constant chemical
potential, in the canonical ensemble the number density of the
bulk fluid—and hence its pressure—is, in principle, arbitrary
and depends on the actual experimental setup. In this respect it
is quite natural to assume that the bulk surrounding the film and
the film itself are governed by the same thermodynamic control
parameter, corresponding to the chemical potential in the grand
canonical ensemble and the mean density in the canonical one.
We show that this assumption indeed leads to different values
of the bulk pressures for the two ensembles and thus explains
the difference between the CCFs in the two ensembles,
being the force obtained by subtracting from the same film
pressure two different bulk pressures. In the canonical case
we furthermore demonstrate that defining the CCF as the
difference between the film and the bulk pressure does not
necessarily yield the same result as extracting it from the
residual finite-size contribution to the free energy. The reason
is that certain terms in the free energy which, as a consequence
of the canonical constraint, depend on the film thickness L can,
based on finite-size scaling arguments, still be identified as
“surfacelike,” i.e., as contributions to the surface free energy.

The outline of the paper is as follows. In Sec. II we
focus on the critical adsorption in a film in the canonical
ensemble. In particular, we first discuss (Sec. II A) the expected
general scaling properties and then introduce the mean-field
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TABLE I. Glossary of quantities frequently used in the present study. The notions nonlinear and linear MFT refer to the Ginzburg-Landau
model [see Eqs. (17) and (19)] with and without the quartic nonlinearity in φ. The notion “total mass” refers to the total OP and can be
understood as “total number of particles” in the case of a single-component fluid.

Quantity Description Definition in

L Film thickness Sec. II A
z Coordinate in the direction perpendicular to the walls Sec. II A
ẑ Distance from a wall Sec. II D
t Reduced temperature Eq. (1)
φ Order parameter (OP) profile Sec. II A
� Total mass of the filma Eq. (2)
ϕ Mean mass density of the film Eq. (10)
μ Chemical potential/bulk field Sec. II A
h1 Substrate potential/surface field Sec. II A

ξ
(0)
+ Correlation length amplitude associated with t Eq. (3a)

ξ (0)
μ Correlation length amplitude associated with μ Eqs. (3b), (5b)

l
(0)
h1

Amplitude associated with h1 Eqs. (6), (8)

φ
(0)
t Amplitude associated with φ and t Eq. (4a)

l(0)
ϕ Amplitude associated with φ Eq. (12)

ζ Reduced coordinate (ζ = z/L) Eq. (9a)
ζ̂ Reduced distance from a wall Sec. II D
m Scaled OP Eq. (11)
M Finite-size scaling variable associated with ϕ Eq. (9e)
x Finite-size scaling variable associated with t Eq. (9b)
B Finite-size scaling variable associated with μ Eq. (9c)
H1 Finite-size scaling variable associated with h1 Eq. (9d)
Ff Total film free energya Eqs. (17), (19)
	0 Amplitude in mean-field free-energy functional Eq. (18)
φ0, m0 Equilibrium OP profile within linear MFT Eqs. (31), (33)
φ̃0, m̃0 Constrained equilibrium OP profile within linear MFT Eqs. (35), (37)
μ̃0, B̃0 Constraint-induced bulk field Eqs. (34), (36)
xc, Bc Bulk critical point (xc = Bc = 0) Sec. II A
xc,cap, Bc,cap Capillary critical point Secs. II A, II E
Fres Residual finite-size free energya Eq. (78)
K Critical Casimir force (CCF) Eqs. (77), (79)
pb Bulk pressure Eq. (78)
pf Film pressure Eq. (78)
Tij , T̄ij Stress tensor Eqs. (81), (91)

 Scaling function of the residual free energy Eqs. (82), (85)
� Scaling function of the CCF Eqs. (84), (88)
	++, 	++,∗, 	̃++ Amplitude of the CCF [for (++) boundary conditions]b Eqs. (121), (123a)

aUnless otherwise indicated, thermodynamic extensive quantities such as � and Ff are considered as per transverse area.
bDistinct from the usual notation, we define 	++ and related quantities as amplitudes of the CCF K rather than of the residual finite-size free
energy Fres.

Ginzburg-Landau model (Sec. II B). We then proceed to the
first central part of this study, which concerns the investigation
of the OP profiles and the mapping between the canonical
and the grand canonical ensembles within MFT. These results
are obtained from a perturbation theory about the solution of
the linearized Euler-Lagrange equations (Sec. II C), as well
as from a short-distance expansion (Sec. II D). These two
approaches are already sufficient to illustrate the essential
effects emerging from the mass constraint, as the comparison
with the numerical solutions of the full, nonlinear mean-field
model shows (Sec. II E). We also briefly discuss the OP profiles
obtained from Monte Carlo simulations of the Ising model in
three spatial dimensions and discuss the influence of the lateral
system size (Sec. II F). The second central aspect of the present

study is the investigation of the CCF in the canonical ensemble,
presented in Sec. III. After outlining the general scaling
behavior of the CCF (Sec. III A), we analytically study the
CCF within linear MFT and compare it with the full numerical
solutions of the nonlinear mean-field model (Sec. III B),
as well as with the results of Monte Carlo simulations of
the three-dimensional Ising model (Sec. III C). Appendix A
discusses general scaling properties of a film within MFT
and presents a useful mapping relation. Appendix B contains
a generalized perturbative treatment of the MFT considered
in Sec. II B, while Appendix C presents a derivation of the
mean-field stress tensor in the canonical case, which is an
essential tool for determining CCFs. A glossary of the most
frequently used quantities is provided in Table I.
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II. CRITICAL ADSORPTION

A. General scaling considerations

Before turning to MFT, here we describe the general setup
and the properties which can be expected from general finite-
size scaling arguments [4,52,53,80]. Consider a d-dimensional
film bounded by two (d − 1)-dimensional planar and parallel
walls a distance L apart. The walls are located at positions z =
±L/2 and carry the two corresponding surface fields h±

1 which
lead to preferential adsorption of the OP at the walls. Here we
exclusively consider the case in which h±

1 are of equal strength
and have equal or opposite signs. For notational convenience,
we thus occasionally drop the superscript of h1. Furthermore,
near surfaces, fluids typically have a reduced tendency to order,
which can be modeled by an effective “surface temperature”
or “surface enhancement” field c, which acts like an inverse
extrapolation length [52,53]. In the present study, we focus on
the dependencies on h1 for a fixed value of c. As discussed
below, the presence of a nonvanishing surface enhancement c

affects, however, the scaling laws involving h1. In the case of a
one-component fluid, the OP φ is proportional to the deviation
of the density n from its critical value nc, i.e., φ ∝ n − nc,
whereas for a binary fluid φ is proportional to the difference of
the concentration CA of one of the species from its bulk critical
value CA,c, i.e., φ ∝ CA − CA,c. The system is described by a
reduced temperature,

t = T − Tc

Tc

, (1)

where Tc is the bulk critical temperature of the fluid medium.
For the present scaling considerations we assume the film in
the directions parallel to the walls to be of macroscopic extent
and, in particular, much larger than any correlation length in the
fluid. Thus, we effectively take the aspect ratio of the system
to be ρ ≡ L/A1/(d−1) → 0, where A is the area of the walls,
so that ρ does not appear in the scaling relations presented
below. The effects associated with a nonzero value of ρ will,
however, be briefly addressed in the context of analyzing our
Monte Carlo simulation data (Secs. II F and III C).

We first discuss the scaling properties of a film in the grand
canonical ensemble, in which the film can exchange particles
with an external reservoir with a prescribed chemical potential
μ. For a one-component fluid the quantity μ is actually the
deviation of the chemical potential from its critical value in
the bulk, while for a binary fluid, it is the deviation of the
difference in the chemical potentials of the two species A and B
from its bulk critical value: μ ≡ (μA − μB) − (μA,c − μB,c).
For (++) boundary conditions, it is known that the critical
point of the film is shifted to a lower value Tc,cap < Tc of
the temperature and a negative chemical potential difference
μc,cap < μc = 0 [51]. Below Tc,cap, phase separation in a film
can occur. While we occasionally comment on these aspects in
the course of this study, a detailed investigation is beyond the
scope of the present analysis and therefore we focus here on
temperatures above the capillary critical point. In this case,
the translational symmetry along the directions parallel to
the walls is not broken and the OP field φ(z) depends on
z only. Therefore, unless stated otherwise, we henceforth
consider all thermodynamically extensive quantities, such as
the total number of particles or the free energy, as quantities per

TABLE II. Values of bulk and surface critical exponents for the
Ising universality class in spatial dimensions d = 4 (MFT) and d = 3
(rounded to three significant digits) [53,76]. Within the context of the
present MFT study, one has 	1 ≡ 	

sp
1 , whereas for the MC simulation

data of the Ising model the appropriate surface critical exponent is
	1 ≡ 	ord

1 [see the discussion in Sec. II A and, in particular, Eq. (9d)].

Exponent d = 4 d = 3

ν 1/2 0.630
η 0 0.0336
β 1/2 0.326
γ 1 1.24
δ 3 4.80
	 3/2 1.56
	

sp
1 1 1.05

	ord
1 1/2 0.46

transverse area A. The integrated OP per transverse area, i.e.,
the so-called total mass � (which for a simple fluid essentially
corresponds to the total number of particles and should not be
confused with the actual mass of the fluid), is thus given by

� ≡
∫ L/2

−L/2
dz φ(z). (2)

The asymptotic critical behavior of thermodynamic quan-
tities is governed by the renormalization-group fixed points
in the phase diagram spanned, inter alia, by the variables
t, μ, h1, and c. For the present study, the relevant fixed points
are: (t = 0, μ = 0, h1 = 0, c = 0) corresponding to the so-
called special phase transition [81], (t = 0, μ = 0, h1 = 0,

c = ∞) corresponding to the so-called ordinary phase tran-
sition, and (t = 0, μ = 0, h1 = ∞, |c| < ∞) corresponding
to the so-called normal phase transition [53]. We remark
that, depending on the boundary conditions, the presence of
a mass constraint requires to keep the value of the surface
fields h1 finite within MFT; this is discussed in detail below.
In order to avoid a clumsy notation and for the purpose of
discussing general scaling relations, in this section we consider
thermodynamic control parameters such as μ, h1, or c to
be renormalized quantities which are dimensionless due to
splitting off suitable dimensional factors carrying the proper
units.

All surface phase transitions share the same bulk critical
behavior, which we discuss first. Based on the exponential
decay of the two-point correlation function of the OP in the
bulk, the correlation length ξt at zero bulk field (μ = 0) and ξμ

at zero reduced temperature (t = 0) can be defined as [76,82]

ξt = ξ
(0)
± |t |−ν , for μ = 0 and t → 0±, (3a)

ξμ = ξ (0)
μ |μ|−ν/	, for t = 0 and μ → 0. (3b)

Here ν and 	 are the standard universal bulk critical exponents
(see Table II), while ξ

(0)
± and ξ (0)

μ are the corresponding
nonuniversal amplitudes. However, the amplitude ratio Uξ =
ξ

(0)
+ /ξ

(0)
− forms a universal number, with Uξ � 1.9 in d = 3

spatial dimensions and Uξ = √
2 in d = 4 spatial dimensions

[76]. A further relevant quantity is the value φb of the OP
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parameter in the bulk, which, near criticality, behaves as

φb,t = θ (−t)φ(0)
t |t |β, for μ = 0 and t → 0, (4a)

φb,μ = sgn(μ)φ(0)
μ |μ|1/δ, for t = 0 and μ → 0, (4b)

where θ (t) is the step function [θ (t > 0) = 1, θ (t < 0) = 0],
φ

(0)
t and φ(0)

μ are nonuniversal amplitudes, and δ = 	/β is
a universal critical exponent. For later use, we note that the
amplitudes ξ (0)

μ and φ(0)
μ in Eqs. (3b) and (4b) can be expressed

in terms of ξ
(0)
+ and φ

(0)
t in Eqs. (3a) and (4a) as [76]

φ(0)
μ =

(
C+

Rχ

)1/δ(
φ

(0)
t

)1−1/δ
, (5a)

ξ (0)
μ = ξ

(0)
+

(
Q2

C+

)1/(2−η)(
φ(0)

μ

)1/(2−η)

= ξ
(0)
+

(
Q2

R
1/δ
χ

)1/(2−η)(
φ

(0)
t

C+

)ν/	

, (5b)

where C+ is a nonuniversal amplitude entering the definition
of the susceptibility χ via χ = C+t−γ for t > 0, η and γ

are further standard bulk critical exponents, and Rχ and Q2

are universal amplitude ratios, with Rχ � 1.6,Q2 � 1.2 in
d = 3 and Rχ = 1,Q2 = 1 in d = 4 spatial dimensions for
the Ising universality class [76]. Note that in our definition in
Eq. (5b) the amplitude ξ (0)

μ is by a (universal) factor of δ1/(2−η)

larger than the one considered in Ref. [76]. This permissible
rescaling, which could be alternatively understood as a change
of the definition of the field μ, is performed here in order to
cast MFT (see Sec. II B below) into its mathematically most
simple scaling form.

We now briefly recall the critical behavior induced by the
scaling variables h1 and c associated with the presence of
surfaces. For c 
 |t |� with μ and h1 small, a scaling behavior
characteristic of the special transition is expected [53]. Here
� is a surface critical exponent having the value � � 0.68
in d = 3 spatial dimensions and � = 1/2 in d = 4 spatial
dimensions [83]. Analogously to the bulk field μ, one can
associate a length scale l

sp
h1

with the surface field h1 [84,85],

l
sp
h1

≡ l
(0)
h1,sp|h1|−ν/	

sp
1 , (6)

where l
(0)
h1,sp denotes the corresponding non-universal ampli-

tude and 	
sp
1 is another surface critical exponent (see Table II).

At bulk criticality and for distances ẑ 
 l
sp
h1

, the OP behaves

as φ(ẑ) ∼ ẑ(βsp
1 −β)/ν , with (βsp

1 − β)/ν having the value −0.15
in d = 3, while this exponent is zero in d = 4 [85,86]. For
ẑ � l

sp
h1

, instead, a crossover to the behavior characteristic of
the normal universality class occurs, for which φ(ẑ) ∼ ẑ−β/ν

in the limit h1 → ∞ [52]. Off criticality, the OP decays
exponentially for distances ẑ � ξt,μ, independently of the
value of l

sp
h1

. Heuristically, the length lh1 can be interpreted as an
extrapolation length lex ∝ lh1 , such that the OP profile behaves
as |φ(ẑ → 0)| ∼ (ẑ + lex)−β/ν near a wall [52]. Although the
very concept of an extrapolation length strictly applies only
to MFT, it is useful for the interpretation of experimental or
simulation data [87–90] and provides an effective means to
take into account scaling corrections to the leading critical
behavior.

For c � |t |� and sufficiently small μ and h1, scaling
properties are governed by the so-called ordinary fixed point,
for which the relevant scaling field is a combination of h1 and
c [53,91],

h1 ≡ h1/c
Y , (7)

where Y ≡ (	sp
1 − 	ord

1 )/� and 	ord
1 is a further surface

critical exponent (see Table II). The corresponding length scale
lord
h1

, analogous to the one in Eq. (6), is defined as

lord
h1

≡ l̃
(0)
h1,ord|h1|−ν/	ord

1 = l
(0)
h1,ord|h1|−ν/	ord

1 . (8)

In the second equality, we have absorbed the factor c−Y ,
which here we consider to be a constant, into the amplitude
l
(0)
h1,ord. At bulk criticality, the OP profile behaves for distances

lc 
 ẑ 
 lord
h1

as φ(ẑ) ∼ ẑ(	ord
1 −β)/ν , with a length scale lc ∼

c−ν/� [86,91]. The decay φ(ẑ) ∼ ẑ−β/ν characteristic for the
normal surface universality class occurs for ẑ � lord

h1
, while

for ẑ 
 lc, one recovers the special universal behavior φ(ẑ) ∼
ẑ(βsp

1 −β)/ν . We remark that, in three dimensions, the exponent
(	ord

1 − β)/ν is positive, giving rise to a nonmonotonic
behavior of the OP profile [92,93]. Generically, fluids exhibit
a nonzero surface enhancement c and are strongly adsorbed
at the surfaces of the container walls [94,95]. Accordingly,
one expects critical behavior to occur which corresponds
to the normal (h1 → ∞) or the ordinary (h1 → 0) surface
universality class, including crossover phenomena. For h1 →
0 and sufficiently small values of c, however, a large portion of
the scaling region falls into the domain of the special surface
universality class. In order to keep the focus of the discussion
on the role of the ensemble, we confine our mean-field
investigation below (Sec. II B), as far as c is concerned, to
the case c = 0.

In a film of thickness L, the finite-size scaling behavior is
described by universal scaling functions which depend on a
set of scaling variables [52,96,97],

ζ ≡ z/L, (9a)

x ≡
(

L

ξ
(0)
+

)1/ν

t, (9b)

B ≡
(

L

ξ
(0)
μ

)	/ν

μ, (9c)

H1 ≡
(

L

l
(0)
h1

)	1/ν

h1, (9d)

M ≡
(

L

ξ
(0)
+

)β/ν
ϕ

φ
(0)
t

=
(

L

l
(0)
ϕ

)β/ν

ϕ, (9e)

where, in Eq. (9e),

ϕ ≡ �

L
(10)

is the mean mass density of the film [98]. The scaling variable
H1 in Eq. (9d) is written in a form which applies, upon inserting
the corresponding exponent and length scale defined in Eqs. (6)
and (8), to both the crossover from the normal to the special
as well as the crossover from the normal to the ordinary phase
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transition. We keep this unified description. Accordingly, the
finite-size scaling relation for the OP profile reads

φ(z,t,μ,h1,L) =
(

L

l
(0)
ϕ

)−β/ν

m

(
z

L
,

(
L

ξ
(0)
+

)1/ν

t,

(
L

ξ
(0)
μ

)	/ν

μ,

(
L

l
(0)
h1

)	1/ν

h1

)

= φ
(0)
t

(
L

ξ
(0)
+

)−β/ν

m, (11)

where we have introduced the quantity

l(0)
ϕ ≡ ξ

(0)
+
(
φ

(0)
t

)ν/β
(12)

for convenience. The scaling variable M in Eq. (9e) is related
to the universal scaling function m via

M =
∫ 1/2

−1/2
dζm(ζ ). (13)

Equation (11) follows from the homogeneity relation [53]

φ(z,t,μ,h1,L) = b−β/νφ(z/b,tb1/ν,μb	/ν,h1b
	1/ν,L/b),

(14)

upon choosing as rescaling factor b = L and upon introducing
the appropriate length scales and amplitudes according to
Eq. (9). Equation (2) may be inverted in order to obtain the
bulk field μ as function of �, which obeys the scaling relation

μ(t,ϕ,h1,L) =
(

L

ξ
(0)
μ

)−	/ν

B
((

L

ξ
(0)
+

)1/ν

t,

(
L

l
(0)
ϕ

)β/ν

ϕ,

(
L

l
(0)
h1

)	1/ν

h1

)
, (15)

where B is the corresponding universal scaling function. In
writing Eq. (15) we have taken into account that, as implied
by Eq. (9e), the density ϕ rather than the total mass � is
the appropriate quantity entering into the finite-size scaling
relations (see, e.g., Ref. [5]).

In the canonical ensemble, instead of the chemical poten-
tial, the total mass � [Eq. (2)] is fixed. Therefore, in this
ensemble the natural counterpart of Eq. (11) is

φ(z,t,ϕ,h1,L) =
(

L

l
(0)
ϕ

)−β/ν

m

(
z

L
,

(
L

ξ
(0)
+

)1/ν

t,

(
L

l
(0)
ϕ

)β/ν

ϕ,

(
L

l
(0)
h1

)	1/ν

h1

)
. (16)

For notational convenience, we use the same symbol φ for the
profile in the canonical and in the grand canonical ensemble.
In the case of a binary fluid, we remark that, since the
OP is given by φ ∝ CA − CA,c (with the concentration of
species A defined as CA = nA/(nA + nB) in terms of the
individual number densities nA,B of the two species A and
B), fixing �, i.e., the number of particles of species A, does
not a priori impose a constraint on the other component
(B) or on the total density

∫
V

d3r (nA + nB) of the mixture.
However, from an experimental point of view it appears to

be natural to require that, within the canonical setup, the
particle number of each species is conserved individually.
The ensuing constraint of a nonordering parameter such as
the total density may, depending on the location of the phase
transition in the phase diagram, lead to Fisher renormalization
of the critical exponents (see Refs. [43–45,47,48] and, in
particular, Refs. [46,99]). A detailed analysis of such effects
is, however, beyond the scope of the present study. Scaling
relations analogous to those in Eqs. (11) and (16) can be
formulated for any observable in the grand canonical and
canonical ensembles, respectively. The scaling behaviors of the
(residual) free energy and of the CCF are discussed separately
in Sec. III A.

B. Model

We study MFT based on the Ginzburg-Landau free-energy
functional in the film geometry, which is the standard model to
describe universal quantities of systems undergoing second-
order phase transitions. The setup here is the same as the
one described in Sec. II A. However, in order to focus on the
effect of the ensemble, we consider in the present context only
the simplest possible model, which amounts to setting the
surface enhancement c = 0 and to keeping only a surface field
h1. Accordingly, within our mean-field model, exponents and
amplitudes appropriate for the crossover from the normal to the
special surface universality class [see Eq. (6)] are to be used in
the definition of the scaling variable H1 in Eq. (9d). We assume
that the translational symmetry in the directions parallel to the
walls is not broken, so that the OP field φ depends on z only
and we can consider all extensive quantities as quantities per
transverse area. Note that, while in Sec. II A quantities like
μ, h1, and c were considered to be dimensionless in order
to keep the notation simple, in the following we use the
same symbols to denote their bare (dimensional) counterparts
entering the Ginzburg-Landau model.

In the canonical ensemble (c), the free-energy functional
of the film (per transverse area and kBT ), including bulk and
surface contributions, is given by [100]

F (c)
f [φ] ≡

∫ L/2

−L/2
dz

[
1

2
(∂zφ)2 + 1

2
τφ2 + 1

4!
gφ4

]
− [h−

1 φ(z = −L/2) + h+
1 φ(z = L/2)], (17)

which is to be minimized under the constraint of a prescribed,
fixed total mass �, given by Eq. (2). Since the statistical weight
of an OP configuration φ is exp(−F (c)

f ),F (c)
f [φ] is dimen-

sionless. In Eq. (17), the coupling constant τ is proportional
to the reduced temperature t = (T − Tc)/Tc, where Tc is the
bulk critical temperature. Within MFT, τ = (ξ (0)

+ )−2t , which
follows from the expression of the correlation length in d > 4,
while the nonuniversal amplitudes [see Eq. (3a)] ξ

(0)
+ and ξ

(0)
−

form the universal ratio ξ
(0)
− /ξ

(0)
+ = 1/

√
2. Within MFT, the

coupling constant g > 0 is a free parameter the dimensionless
counterpart of which attains a fixed-point value only under
renormalization-group flow, which accounts for the effect of
fluctuations. Within MFT, some of the universal amplitude
ratios turn out to be related to the parameter g, which is
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dimensionless in d = 4; e.g., from Eq. (4a) one finds

	0 ≡ (
ξ

(0)
+ φ

(0)
t

)2 = 6

g
, (18)

where we denote this product of amplitudes, which appear
frequently in expressions related to the mean-field free
energy and CCF, as 	0. Since ν/β = 1 in MFT, in this
case we have also 	

1/2
0 = l(0)

ϕ [see Eq. (12)]. Analogously,
the nonuniversal amplitudes in Eqs. (3b) and (4b) can
be obtained from Eq. (5) by noting that, within MFT,
η = 0 and that one has for the susceptibility amplitude
C+ = (ξ (0)

+ )2, yielding φ(0)
μ = (ξ (0)

+ )2/δ(φ(0)
t )1−1/δ = (6/g)1/3

and ξ (0)
μ = (ξ (0)

+ φ(0)
μ )1/2 = (ξ (0)

+ φ
(0)
t )1/3 = (6/g)1/6. The ampli-

tude l
(0)
h1

= l
(0)
h1,sp appropriate to the special surface phase

transition [see Eq. (6)] can be extracted from the MFT result
presented in Eq. (61) below, based on the concept of an
extrapolation length [see the discussion following Eq. (6)],
yielding l

(0)
h1

= (6/g)1/4 [101].
In order to obtain the equilibrium states from Eqs. (17) and

(2), we minimize the extended, unconstrained functional (per
transverse area and kBT )

F (gc)
f ([φ]; μ) ≡

∫ L/2

−L/2
dz

[
1

2
(∂zφ)2 + 1

2
τφ2 + 1

4!
gφ4 − μφ

]
− [h−

1 φ(−L/2) + h+
1 φ(L/2)], (19)

with respect to φ and determine the Lagrange multiplier μ

such that the constraint in Eq. (2) is fulfilled. As indicated by
the notation, F (gc)

f represents the free-energy functional of a
film in the grand canonical (gc) ensemble, in which μ plays the
role of a chemical potential (or a bulk field). Minimization of
the functional in Eq. (19) leads to the Euler-Lagrange equation
(ELE)

∂2
z φ − τφ − g

6
φ3 + μ = 0, (20)

together with the boundary conditions

∂zφ|z=−L/2 = −h−
1 , ∂zφ|z=L/2 = h+

1 . (21)

In order to highlight the scaling behavior, it is instructive and
convenient to introduce the dimensionless finite-size scaling
variables in Eqs. (11) and (9), which, within MFT, take the
form

x = L2τ, B =
√

g

6
L3μ, H1 =

√
g

6
L2h1,

m(ζ ) =
√

g

6
Lφ(ζL), and M =

√
g

6
Lϕ. (22)

Accordingly, the functional F (gc)
f in Eq. (19) can be expressed

as

F (gc)
f ([m]; B) = 	0

L3

{∫ 1/2

−1/2
dζ

[
1

2
(m′)2+1

2
xm2+1

4
m4−Bm

]

− [H−
1 m(−1/2) + H+

1 m(1/2)]

}
, (23)

where 	0 is defined in Eq. (18). Within MFT, the film thickness
L as well as the unknown coupling constant g can be scaled out

and enter into Eq. (23) only as prefactors. As a consequence
they appear in neither the dimensionless ELE,

m′′(ζ ) − xm(ζ ) − m3(ζ ) + B = 0, (24)

nor the boundary conditions

m′|ζ=−1/2 = −H−
1 , m′|ζ=1/2 = H+

1 . (25)

The critical properties emerging from Eq. (24) have been
analyzed in Refs. [50,51] and, for |H1| = ∞, analytical
solutions of Eq. (24) in terms of elliptic functions are given
in Refs. [75,79,97,102]. Solutions of the linearized Eq. (24)
have been discussed, for instance, in Ref. [52], while the
behavior of the OP near the boundaries has been investigated
in Refs. [85,103]. In order to provide a self-contained pre-
sentation, we recall some of these results as they are relevant
for the present purpose. The case of finite H1 and arbitrary
values of x and B is studied in the following via perturbation
theory and numerical methods, with a particular focus on the
effect of introducing the mass constraint. In Appendix A the
mean-field scaling properties are utilized in order to derive a
mapping between the OP profile in a film with finite surface
fields and the profile in a film in which they are infinite. While
this relationship is not needed in the remaining part of this
work, it may be used in conjunction with the known analytical
solutions for |H1| = ∞ as an alternative to the perturbative
expansion discussed below.

C. Perturbative solution

In order to proceed analytically, we solve the ELE in
Eq. (24) for arbitrary bulk (B) and surface (H1) fields
employing a perturbative expansion in terms of the nonlinear
term. To this end, we introduce a bookkeeping parameter ε

(eventually set to 1) into Eq. (24),

m′′ = xm + εm3 − B, (26)

and expand the OP profile m(ζ ) and the bulk field B

accordingly:

m = m0 + εm1 + ε2m2 + · · · , (27a)

B = B0 + εB1 + ε2B2 + · · · . (27b)

We consider the total mass M to be a quantity of O(ε0) and
therefore we enforce the mass constraint in Eq. (9e) completely
at this order; i.e.,

M0 = M, Mi�1 = 0, with Mi�0 ≡
∫ 1/2

−1/2
dζmi(ζ ).

(28)

As a consequence, the total mass M will affect the higher-
order corrections mi only implicitly via their dependence
on m0. In the following, we consider a system with equal
surface fields, H1 ≡ H−

1 = H+
1 , i.e., with symmetric boundary

conditions. Results for the case of opposite surface fields
are summarized briefly in Sec. II C 5. The surface field is
considered to be a quantity of O(ε0). Hence, the boundary
conditions in Eq. (25) turn into

m′
0(−1/2) = −m′

0(1/2) = −H1,

m′
i(−1/2) = m′

i(1/2) = 0 for i � 1. (29)
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Equation (26) can be considered also in the grand canonical
ensemble, i.e., without enforcing a mass constraint. In this
case B is a certain assigned external field of O(ε0) and it is
not expanded in terms of ε (i.e., Bi = 0 for i � 1).

1. Solution at O(ε0)

In the absence of the nonlinear term, i.e., for ε = 0, Eq. (26)
reduces to

m′′
0 = xm0 − B0, (30)

with the solution

m0(ζ ) = B0

x
+ H1√

x

cosh(ζ
√

x)

sinh(
√

x/2)
. (31)

Occasionally, we refer to the above two equations as linear
MFT. By using elementary properties of hyperbolic functions,
Eq. (31) can be cast into the equivalent form

m0(ζ ) = B0

x
− H1√−x

cos(ζ
√−x)

sin(
√−x/2)

, (32)

which is particularly suited for the case x < 0 corresponding to
temperatures below the bulk critical point. For completeness,
we report also the profile in terms of the unscaled quantities,
as this form is useful further below in Sec. III for studying
CCFs:

φ0(z) = μ0

τ
+ h1√

τ

cosh(z
√

τ )

sinh(L
√

τ/2)
. (33)

These profiles formally diverge for x = −4π2n2 with n =
0,1,2, . . ., which can be considered to be an artifact of linear
MFT. We remark that, while for x < 0 linear MFT does not
allow the occurrence of a stable ordered bulk phase, the critical
point in a film is actually shifted to a temperature Tc,cap below
the bulk critical temperature Tc [51]. Accordingly, the confined
system is still in a stable disordered phase even within a certain
range of negative values of x. In particular, it is shown below
that, once the mass constraint is imposed, the divergence of
the profiles in Eqs. (31) and (39) for x = 0 is eliminated and
one obtains a well-defined profile for all x > −4π2.

Upon inserting Eq. (31) into Eq. (9e) and by imposing
the mass constraint according to Eq. (28), one obtains the
dependence of the bulk field B on M at the zeroth order,

B̃0 = Mx − 2H1, (34)

yielding

m̃0(ζ ) = M − 2H1

x
+ H1√

x

cosh(ζ
√

x)

sinh(
√

x/2)
, (35)

or, in terms of unscaled quantities [see Eq. (9)],

μ̃0 = �τ − 2h1

L
(36)

and

φ̃0(z) = �

L
− 2h1

Lτ
+ h1√

τ

cosh(z
√

τ )

sinh(L
√

τ/2)
. (37)

Here and in the following, a tilde is used to indicate a quantity
evaluated under the mass constraint. Up to this order in
perturbation theory, enforcing the mass constraint results in

a certain, spatially constant shift of the corresponding grand
canonical profile obtained for B = 0. We note that for fixed
B, the profile m0 in Eq. (31) diverges for x → 0, whereas in
that limit the constrained profile m̃0 in Eq. (35) remains finite:

m̃0(ζ,x → 0) = M + H1
(
ζ 2 − 1

12

)
. (38)

Similarly to Eq. (32), the constrained profile in Eq. (35) can
be expressed in the equivalent form

m̃0(ζ ) = M − 2H1

x
− H1√−x

cos(ζ
√−x)

sin(
√−x/2)

, (39)

which is convenient for x < 0. The constrained profile diverges
for x = −4π2n2 with n = 1,2, . . ., but not for n = 0. For
thick films in the supercritical region, i.e., x → +∞, and
independently of H1, one has asymptotically

m̃0(ζ,x → +∞) �
{
M + H1√

x
, ζ = ± 1

2 ,

M − 2H1
x

, ζ = 0.
(40)

2. Solution at O(ε)

At first order in ε, the ELE in Eq. (26) turns into

m′′
1(ζ ) = xm1(ζ ) + m3

0(ζ ) − B1, (41)

with the boundary conditions

m′
1(−1/2) = m′

1(1/2) = 0. (42)

The complete analytic expression for m1 is rather lengthy and
therefore we do not report it here. For the special case B = 0
(and thus B1 = 0), one has

m1(ζ,B = 0) = m0(ζ,B = 0)
H 2

1

18x2 sinh2(
√

x/2)

×{cosh(2ζ
√

x) − 3 cosh
√

x − 8 − 3
√

x

× [coth(
√

x/2) − 2ζ tanh(ζ
√

x)]}, (43)

which holds both for positive and for negative values of x.
As expected, m1 vanishes for H1 = 0, i.e., in the absence of
an ordering field. By comparing (in the supercritical region,
i.e., for x > 0) the relative magnitude of the various terms in
Eq. (43) one finds that for x � |H1| the perturbative correction
m1 becomes larger in magnitude than the profile m0. This leads
us to introduce a coarse smallness parameter,

σ ≡ H 2
1

x2
= g

6

h2
1

τ 2
. (44)

For a fixed bulk field B, the results obtained perturbatively are
reliable only as long as σ � 1. Note that σ does not depend
on the thickness L of the film.

Upon inserting the full solution of Eqs. (41) and (42)
into Eq. (9e) and enforcing the mass constraint according to
Eq. (28), i.e., M1 = 0, one finds

B̃1 = H 3
1

x2

[
2

3
+ 16

x
− 16 coth(

√
x/2)√

x
− 1

sinh2(
√

x/2)

]

+ 3MH 2
1

x2

4 + x − 4 cosh
√

x + √
x sinh

√
x

cosh
√

x − 1
+ M3.

(45)
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Due to its perturbative nature, this expression holds only for
x � |H1|. In contrast to the zeroth-order constraint field B̃0

[Eq. (34)], B̃1 as well as the higher-order corrections depend
on the scaling variable x even for M = 0. For large x, B̃1

behaves asymptotically as

B̃1(x → ∞) � 2

3

H 3
1

x2
+ 3M H 2

1

x3/2
+ M3. (46)

Under the constraint, the profile behaves asymptotically for
large x as

m̃1(ζ = 0,x → ∞) � −m̃0(0)

[
H 2

1

3x2
+ 6H1M

x2

]
,

m̃1(ζ = ±1/2,x → ∞) � −m̃0(±1/2)

[
H 2

1

4x2
+ 3H1M

2x3/2

]
.

(47)

Interestingly, both B̃1 [Eq. (45)] and the constrained profile
m̃1 [not reported here, and in contrast to the unconstrained m1

in Eq. (43)], attain a finite value for x → 0. We show below
that, in fact, for sufficiently small H1 and M, the solution of
the linear MFT provides an accurate approximation to the one
of the full nonlinear theory.

3. Solution at O(ε2)

While the perturbative solution can be extended to higher
orders in ε without basic problems, the resulting expressions
become increasingly lengthy. Since no novel qualitative fea-
tures emerge by accounting for the higher-order contributions,
in the following we only report certain limiting behaviors.

At second order in ε, one has

m′′
2(ζ ) = xm2(ζ ) + m2

0(ζ )m1(ζ ) − B2, (48)

with the boundary conditions

m′
1(−1/2) = m′

1(1/2) = 0. (49)

Enforcing the constraint M2 = 0 yields the bulk field B̃2,
which behaves asymptotically far from the bulk critical point
as

B̃2(x → ∞) � − 9H 2
1

64x5/2
M3 − H 5

1

160x4
. (50)

In contrast to B̃1 [Eq. (46)], B̃2 vanishes for large x even for
M = 0. Similarly to m̃1, the perturbative correction m̃2 has a
finite value for x → 0.

4. Summary

Due to the preferential adsorption at the walls, the OP
profile increases upon approaching them and generically takes
values of the same sign as that of the closest surface field.
Accordingly, for (++) boundary conditions the contribution
to M stemming from the region close to the walls is positive
and, consequently, a negative bulk field B̃ is expected to
be necessary in order to yield M = 0, in agreement with
the above perturbative results [see Eq. (34)]. Concerning the
special case M = 0, it is interesting to note that the bulk
field behaves asymptotically as a polynomial in the smallness

parameter σ [Eq. (44)]:

B̃(M = 0,x � H1) = B̃0 + εB̃1 + ε2B̃2 + O(ε3)

= −2H1

[
1 − ε

H 2
1

x2

(
1

3
− ε

H 2
1

80x2

)]
+O(ε3). (51)

On the other hand, in the opposite limit, i.e., at bulk criticality
x = 0, the constrained bulk field B̃ is also nonzero, but, for
M = 0, it is a polynomial in H1:

B̃(M = 0,x = 0)

= −2H1
[
1 − εH 2

1

(
1

7560 − ε 149
174 356 583 400H 2

1

)]
+O(ε3). (52)

We emphasize that, for H1 = 0, the OP profile is flat and
the constraint-induced field B̃ reduces to the one of a homo-
geneous bulk system, B̃ = B̃0 + B̃1 = Mx + M3 [Eqs. (34)
and (45)], while B̃i�2 = 0.

Since in the remaining part of the present study we focus on
the solution of the linearized ELE, it is important to determine
the parameter region for which it provides an accurate descrip-
tion. A simple estimate can be obtained by requiring that the
first-order perturbative correction m1 is small compared to the
zeroth-order solution m0. In the case of the grand canonical
ensemble, we have derived from this requirement a smallness
parameter σ = H 2

1 /x2 [Eq. (44)] which signals the onset of a
strongly nonlinear regime for σ � 1. The solution [Eq. (31)]
of the unconstrained linear ELE may thus be expected to
provide an accurate approximation to the full theory only if
x � |H1|. In the canonical case, instead, Eq. (47) indicates
that the constrained solution m̃0 in Eq. (35) ceases to be
accurate for large mass |M| because the subsequent terms
in the perturbative expansion are dominant for |M| � 1. This
is expected because neglecting the nonlinear term m3 in the
ELE implicitly assumes that the mean OP, henceM [Eq. (9e)],
are small as well. Thus, effectively, the present perturbation
theory is constructed around M = 0. Alternatively, one could
develop a perturbation scheme around the proper mean M
of the OP, taking into account already at leading order the
dominant terms proportional to powers of M arising from an
expansion of the nonlinearity in Eq. (24). Such an approach
is outlined in Appendix B, where, inter alia, expressions
for the (grand-)canonical OP profiles are derived which are
applicable for |M| � 1. Those results will be used further
below in order to rationalize the asymptotic behavior of the
CCF for large values of M. The results derived in the present
section so far (which in fact follow from the generalized
perturbation theory of Appendix B in the limit of small |M|)
will, however, be sufficient for most parts of the subsequent
discussion and therefore we continue with their analysis. For
x = 0 andM 
 1, one finds from Eqs. (35) and (45) and from
the corresponding full expression for m̃1 (not reported)

m̃1

m̃0

∣∣∣∣
ζ=±1/2,x→0

= − H 2
1

5040
− H1M

840
− 3M2

70
+ O(M3),

B̃1

B̃0

∣∣∣∣
x→0

= − H 2
1

7560
− H1M

120
− M3

2H1
, (53)
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FIG. 1. Ranges of values of the parameters x and H1 within which
the grand canonical [m0, Eq. (31)] and the canonical [m̃0, Eq. (35)]
mean-field solutions are reliable for a film with symmetric surface
fields H1, obtained by requiring |m1(ζ )| � |m0(ζ )| and |m̃1(ζ )| �
|m̃0(ζ )|, respectively. The shaded areas represent the regions in which
these conditions are fulfilled at ζ = ±1/2, ζ = 0, and for a vanishing
bulk field B or massM, as indicated. For nonzero B orM, the ranges
of parameters are qualitatively similar. Note that the lightly shaded
region encompasses also the darkly shaded one.

indicating that the constrained solution m̃0 together with B̃0

[Eqs. (35) and (34)] remains larger than m̃1 and B̃1 even
around the bulk critical point (x = 0), provided H1 and M
are sufficiently small in magnitude [104].

In order to complete this picture, in Fig. 1 we visualize
the range of values of x and H1 within which the condition
|m1/m0| � 1 in the grand canonical ensemble and |m̃1/m̃0| �
1 in the canonical ensemble are fulfilled. For simplicity, we
evaluate these conditions at the positions ζ = 0 and ζ = ±1/2
in the film and take the most stringent one. We find that the

range of allowed values of H1 at fixed x widens essentially
linearly upon increasing x both for the constrained and the
unconstrained solutions, consistently with Eqs. (44) and (47).
The allowed domain of H1 shrinks to zero for those values
of x for which the solutions of the linear MFT diverge [see
Eqs. (32) and (39)]. In agreement with Eq. (53), for x = 0
in the constrained case, the crossover between the domain of
validity of linear MFT and the nonlinear regime occurs at
|H1| � 50.

In Fig. 2, we compare the analytical solution m̃0 [Eq. (35)]
of the linearized MFT with the numerical solution of the full
ELE in Eq. (24) for a selected set of parameters. For M = 0
and x = 0, we expect, according to Eq. (53) and Fig. 1, that
the linear solution of MFT is accurate for sufficiently small
H1. This is confirmed in Fig. 2(a), where we observe good
agreement between the numerical and analytical profiles for
H1 = 10, but increasing deviations for larger H1. In panel (b),
we fix the surface field to the rather large value H1 = 100,
in which case we expect linear MFT to remain valid only for
x � H1. Indeed, we observe good agreement between m̃0 and
the full numerical solution for x � H1, whereas deviations
become noticeable for x � H1.

5. Antisymmetric boundary conditions

Here we briefly summarize the relevant features of the solu-
tion of the linearized mean-field ELE with the mass constraint
in the case that the surface fields H−

1 and H+
1 have equal

strength but opposite signs, i.e., H1 ≡ H−
1 = −H+

1 . In this
case, the boundary conditions for the perturbative solutions are

m′
0(−1/2) = m′

0(1/2) = −H1,

m′
i(−1/2) = m′

i(1/2) = 0 for i � 1. (54)

Proceeding as above for symmetric boundary conditions, we
obtain the solution of the linear ELE in Eq. (30):

m0(ζ ) = B0

x
− H1√

x

sinh(ζ
√

x)

cosh(
√

x/2)
. (55)

(a) (b)
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FIG. 2. Comparison of the constrained solution m̃0 of the linear ELE (broken lines) with the numerical solution (solid lines) of the full
ELE in Eq. (24) with the mass constraint M = 0 and for various scaled surface fields H1 [(a), for x = 0] and scaled temperatures x [(b), for
H1 = 100]. The walls are located at ζ = ±1/2 and impose (++) boundary conditions in accordance with Eq. (25). These numerical results
explicitly confirm that linear MFT is reliable for sufficiently large x and, provided H1 is sufficiently small, even for x � 0 (see the discussion
in the main text).
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In order to fulfill the mass constraint, the bulk field has to take
the value

B̃0 = Mx. (56)

In terms of unscaled variables, these results are given by

φ0(z) = μ0

τ
− h1√

τ

sinh(z
√

τ )

cosh(L
√

τ/2)
(57a)

and

μ̃0 = �τ

L
. (57b)

While, as an artifact of the linearized MFT, m0 diverges upon
approaching the bulk critical point x = 0, the constrained
profile m̃0 remains finite in that limit,

lim
x→0

m̃0(ζ ) = M − H1ζ, (58)

as it was the case for symmetric boundary conditions [see
Eq. (38)]. Still as an artifact, both the constrained and the
unconstrained profiles m̃0 and m0, respectively, diverge for
x = −π2(2n + 1) with n = 0,1, . . ., similar to the case of
symmetric boundary conditions [see Eq. (35) and the related
discussion]. In contrast to the symmetric case [Eq. (34)],
the adsorption strength H1 does not affect the lowest-order
constraint field B̃0 [Eq. (56)] but enters only via perturbative
corrections. In particular, at O(ε) in the nonlinear term, we find

B̃1 = 3H1M
x

[
tanh(

√
x/2)√

x
− 1

1 + cosh
√

x

]
+ M3. (59)

The first-order correction m1 to the OP profile is also given
by a rather lengthy expression which we do not report here.
The parameter range within which the profiles m0 and m̃0

obtained from linear MFT provide an accurate approximation
of the solution of the full ELE [Eq. (24)] can be estimated
as in the previous section. It turns out that this occurs
for sufficiently small magnitudes of the mass M and for
x � |H1|. An exception here is the constrained case, in
which, for sufficiently small |H1|, even a small region around
x � 0 is still allowed in the above sense, similar to Fig. 1.

D. Short-distance expansion

Outside the domain within which linear MFT and its succes-
sive perturbative corrections [see Sec. II C] are accurate, one
can determine the OP profile close to one of the confining walls
by applying a short-distance expansion (SDE) [53,85,96,103].
We first consider the case of the grand canonical ensemble, i.e.,
with fixed external field μ, which can be later mapped onto
the canonical ensemble with fixed mass �. Within the grand
canonical ensemble, the SDE in semi-infinite geometry has
been studied previously [53,85,96,103]. In the corresponding
parallel-plate geometry, the presence of a second wall typically
induces a so-called “distant wall correction” to the semi-
infinite OP profile φ∞/2 such that the critical OP profile φ

in a film behaves, in the strong adsorption regime (|H1| = ∞),
as [61,62,105–107]

φ(ẑ 
 L) � φ∞/2(ẑ)

[
1 + C

(
ẑ

L

)d∗

+ · · ·
]

(60)

for small distances ẑ from the nearest wall. Here C is a universal
constant which depends on the boundary conditions at the two
walls [108] and d∗ is a universal exponent which, in the case of
critical adsorption, is equal to the spatial (bulk) dimensionality
of the film, d∗ = d. In the following, we derive, within MFT,
the SDE for the OP profile in the film geometry by locally
solving the corresponding ELE near one wall via a (partly
resummed) power-series ansatz in terms of ẑ. The solution is
constructed by inserting such an ansatz into the ELE [Eq. (24)]
and by successively requiring the lowest-order terms of the
expansion to satisfy the ELE and the boundary conditions. In
general, as long as one is interested in a power-series solution
with a sufficiently small number of expansion terms, it turns
out that the single nearby boundary condition is, in fact, already
sufficient to fix the required unknown coefficients. Specifically,
if H1 is infinite, the coefficients appearing up to and including
O(ẑ2) in the SDE can be determined uniquely by the near
wall boundary condition and, as a consequence of Eq. (60),
the distant wall affects the SDE only at O(ẑ3) or higher. If, in
contrast, H1 is finite, it turns out that the near wall boundary
condition allows one to unambiguously determine only the
constant term ∝ẑ0 in the SDE. However, this term necessarily
carries a nonvanishing error because in this case the effect of
the distant wall enters already at O(ẑ0).

1. Grand canonical ensemble

We first consider the case of finite H1 > 0. (The case of
H1 = ∞ is discussed further below.) The expression of the OP
profile corresponding to H1 < 0 is obtained as the negative of
the one for H1 > 0 but for a bulk field of reversed sign. This
property follows from the invariance of the ELE in Eq. (24)
and of the boundary conditions in Eq. (25) at the two walls
under a change of sign of the symmetry-breaking bulk and
surface fields and of the OP profile. Since we seek a local
solution of the OP profile in a film, but near one wall, it is
appropriate to continue using the quantities in Eq. (9) which
turn into dimensionless scaling variables upon rescaling them
by appropriate powers of the film thickness L. We furthermore
do not consider here the effects of capillary condensation
transitions associated with the emergence of the equilibrium of
two metastable OP profiles (cf. Sec. II E) and therefore focus
only on the supercritical region x � 0.

Owing to the enhancement of m near a wall, we assume
that |xm| 
 |m3| and |B| 
 |m3| hold close to the bulk
critical point, i.e., for x and B sufficiently small. We therefore
determine the leading contribution to the desired SDE from the
solution of the ELE [Eq. (24)] at criticality, i.e., from m′′ = m3,
and the boundary condition in Eq. (25) for ζ = −1/2. The
corresponding solution is identical to the one obtained in the
semi-infinite geometry [85,103] and is given by

m(ζ = −1/2 + ζ̂ ) =
√

2

ζ̂ + 21/4/
√

H1
, (61)

for ζ̂ 
 1, where ζ̂ = ẑ/L denotes the rescaled distance from
the near wall. This expression does not carry a dependence on
x or B. Instead, in order to account for the effect of nonzero x

and B, polynomial terms can be added to the right-hand side
of Eq. (61). The simplest ansatz involves only an additional
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constant term a0, i.e.,

m(−1/2 + ζ̂ ) =
√

2

ζ̂ + 21/4/
√

H1
+ a0. (62)

While this ansatz does not render an exact solution of the
full ELE in Eq. (24), we can nevertheless determine a0 such
that the ansatz approximately fulfills the ELE for small ζ̂ . To
this end, we insert Eq. (62) into Eq. (24), expand in terms of
powers of ζ̂ , and require that the ELE is satisfied at O(ζ̂ 0).
Consequently, the coefficient of the term ζ̂ 0, which constitutes
the lowest order in the expansion of Eq. (24) [for the ansatz in
Eq. (62)], must vanish. This yields

a0 = k − x

3k
− 21/4

√
H1,

k = 1

21/3

[
B + 23/4H

3/2
1 +

√(
B + 23/4H

3/2
1

)2+ 4

27
x3

]1/3

.

(63)

Upon approaching x = B = 0, as well as independently of the
values of x and B for H1 → ∞, one has a0 → 0; accordingly,
the characteristic behavior m(−1/2 + ζ̂ ) ∝ 1/ζ̂ of the profile
in MFT is recovered from Eq. (62) for H1 � 1. The strong
adsorption regime is approached asymptotically for large H1

(such that x/
√

H1 
 1 and B/H1 
 1) according to

a0 � − x

3 × 21/4
√

H1
+ B

3
√

2H1

+ O
(
H−2

1

)
. (64)

In the same limit of large H1, at the wall ζ̂ = 0, the approximate
expression in Eq. (62) turns into

m(ζ = −1/2) � 21/4
√

H1 − x

3 × 21/4
√

H1
+ B

3
√

2H1

. (65)

We remark that, if terms of O(ζ̂ ) or higher are included in the
ansatz in Eq. (62), these, in contrast to a0, do not vanish in
the limit H1 → ∞, but constitute corrections to the leading
behavior. The SDE which emerges in this limit is constructed
below. Furthermore, although the ansatz in Eq. (62) solves the
ELE up to an error of O((B

√
H1 + xH1)ζ̂ ), this does not imply

that the value of m at the wall (ζ̂ = 0) is predicted exactly by
Eq. (62). The reason is that including higher-order terms in ζ̂

in the ansatz in Eq. (62) (not only in the case x = B = 0 for
which a0 = 0) leads to a coupling between their coefficients,
affecting in particular also a0 (and thus the dependence on
x and B). We thus conclude that, for finite H1, the distant
wall affects the SDE in general already at O(ζ̂ 0). This is also
expected from the fact [109] that the boundary value problem
described by Eqs. (24) and (25) can be equivalently represented
by an initial value problem, in which m′(ζ = −1/2) = −H−

1
is given and the value m(ζ = −1/2) is a free parameter which
must be determined such that the imposed boundary condition
for m′ at the distant wall (ζ = 1/2) is obtained at the end of
the integration. This implies a dependence of m(ζ = −1/2)
on m′(ζ = 1/2), i.e., on the properties of the distant wall.

The regime in which the SDE in Eq. (62) provides a reliable
approximation of the solution of the full ELE [Eq. (24)] close
to the walls can be self-consistently estimated by requiring the
perturbative correction a0 to remain smaller than the dominant
term given by Eq. (61). In Fig. 3, this condition is graphically

FIG. 3. Ranges of the parameters H1 and x within which the
SDE in Eq. (62) provides an accurate solution of the ELE in Eq. (24)
close to the walls. The shaded and hatched areas represent, for three
different values of the bulk field B (indicated by the corresponding
labels), the regions where a0 [Eq. (63)] is less than an arbitrarily
chosen factor of 1/3 of the leading term m(−1/2) of the OP at the wall
given by Eq. (61) for ζ̂ = 0, i.e., |a0| < 21/4

√
H1/3. The shaded areas

correspond to B = 0, the hatched areas with full lines correspond
to B = 50, and the hatched areas with broken lines correspond to
B = −50.

evaluated for ζ̂ = 0. A detailed calculation reveals furthermore
that, asymptotically for large H1, the condition reduces to∣∣∣∣ B

21/4H
3/2
1

− x

H1

∣∣∣∣ 
 1. (66)

Consistently with Fig. 3, this implies that, for fixed B and
sufficiently large H1, the SDE is only valid for x 
 H1.
Comparison with Fig. 1 shows, in particular, that the SDE is not
reliable deep in the domain of validity of linear MFT. This is
expected because, in contrast to the solution of linear MFT, the
SDE [Eq. (61)] is constructed as a solution of the nonlinear
ELE, which becomes accurate at criticality and sufficiently
close to one wall, accounting for the effect of nonzero x or B

via small corrections.
For H1 = ∞, Eq. (64) implies a0 = 0 and the leading

dependencies of m∗ ≡ m|H1→∞ on x and B can be incorpo-
rated by higher-order polynomial terms of the dimensionless
distance ζ̂ from the near wall:

m∗(−1/2 + ζ̂ ) =
√

2

ζ̂
+

∞∑
i=1

ai ζ̂
i . (67)

The coefficients ai are fixed by inserting this ansatz into the
ELE in Eq. (24), expanding the result in terms of ζ̂ , and
requiring, by setting the corresponding coefficients to zero, that
the ELE is fulfilled up to a certain order in ζ̂ . In general, a term
∝ζ̂ i , i � 1, in the ansatz in Eq. (67) produces, at leading order,
a contribution ∝ζ̂ i−2 in the ELE. The term a3ζ̂

3 is exceptional
because, when inserted into the ELE together with the term√

2/ζ̂ , it appears at O(ζ̂ 3) instead of at O(ζ̂ ). We find that,
by this procedure, the coefficients a1 and a2 of the ansatz in
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Eq. (67) are determined uniquely and the ELE is satisfied up
to an error of O(ζ̂ 2) or higher. We remark that, in this way,
one would also obtain a0 = 0 in the case that a term a0ζ̂

0 is
added to the right-hand side of Eq. (67) instead of invoking
the limit H1 → ∞ in Eq. (64) beforehand. In summary, in the
case H1 = ∞, we obtain the SDE

m∗(−1/2 + ζ̂ ,x,B) =
√

2

[
1

ζ̂
− 1

6
xζ̂ + 1

4
√

2
Bζ̂ 2

]
, (68)

which, in terms of the original dimensional quantities, reads

φ∗(−L/2 + ẑ,τ,μ) =
√

12

g

[
1

ẑ
− 1

6
τ ẑ +

√
g

8
√

3
μẑ2

]
. (69)

In order to uniquely determine the coefficients ai for i � 3,
the boundary condition at the distant wall would have to be
considered as well. However, here we do not aim at the full
power-series solution of the OP profile. Instead, we are content
with the result in Eq. (68), which represents the dominant
contribution to the OP profile in the film near one wall in the
limit H1 → ∞. Note that the expression in Eq. (68) coincides
with the corresponding SDE for the semi-infinite geometry
up to O(ζ̂ 2) [96]. This is consistent with Eq. (60), which
predicts [since d∗ = 4 in MFT and m∞/2(ζ̂ → 0) � m∗(ζ →
0) ∼ 1/ζ̂ ] the distant wall correction to affect the SDE in
the strong adsorption regime only at O(ζ̂ 3) or higher. We
thus conclude that, while the solution of Eq. (24) requires the
boundary conditions [Eq. (25)] at both walls, up to O(ζ̂ 2) the
SDE for |H1| = ∞ reflects only the boundary condition at
the near wall. The second boundary condition enters into the
solution at O(ζ̂ 3).

2. Canonical ensemble

For (++) conditions with |H1| = ∞, the divergence ∝1/ζ̂

of the mean-field OP upon approaching the wall, as implied by
the SDE [Eq. (68)], is not integrable and therefore violates the
constraint of a fixed and finite total amount of mass (per area)
in the system. In fact, as demonstrated below, the constraint-
induced bulk field B̃ diverges logarithmically with |H1| → ∞.
Accordingly, within MFT of the canonical ensemble, H1 must
necessarily be kept finite in this case and the SDE must
formally start with a constant term, as given by Eqs. (62) and
(63). The SDE can be understood as a local approximation of
the actual OP profile obtained for fixed B̃ = B̃(M), which is
asymptotically accurate upon approaching each single wall.
The field B̃, however, is determined by imposing the mass
constraint, which therefore requires the knowledge of the
whole profile. For instance, this can be obtained numerically,
as discussed below. In the canonical case, the value of the
OP at the wall thus depends on the total mass M, which is a
global property. Despite these restrictions, the result in Eq. (62)
together with Eq. (64) demonstrates that also in the canonical
case the mean-field OP profile approaches the characteristic
behavior ∝1/ζ̂ near the wall for sufficiently large H1. For (+−)
boundary conditions the limit |H1| → ∞ is well defined since
the diverging contributions to the total mass from the profile
at the two walls asymptotically cancel [see Eq. (68)], at least
as long the surface fields are taken to be of equal strength.

E. Numerical results: MFT

Numerical results for the nonlinear MFT are obtained
by directly solving the associated ELE in Eqs. (24) and
(25), as well as by explicit minimization of the free-energy
functional in Eq. (23) via the conjugate-gradient method. We
find the latter approach to be slightly more robust if bulk or
surface fields are strong. We have checked in a number of
cases that the results provided by both methods agree. In the
film geometry, the critical point is generally shifted from its
bulk value (xc,Bc) = (0,0) to (xc,cap,Bc,cap), with xc,cap < 0
and Bc,cap < 0 [for (++) boundary conditions] or Bc,cap = 0
[for (+−) boundary conditions] [51,68]. For (++) boundary
conditions and temperatures below the capillary critical point,
the film undergoes a first-order “capillary” phase transition
between two OP profiles corresponding to two competing
free-energy minima [51]. Similarly to two-phase coexistence
in the bulk, the transition occurs upon crossing the capillary
condensation line Bcap(x) such that one of the two possible
profiles is stable for B infinitesimally above or below Bcap.
For (+−) boundary conditions and T < Tc the +/− interface
undergoes a transition between a configuration localized near
one of the two walls and a delocalized configuration positioned
in the middle of the film [67]. However, in the following we
focus mostly on the region above the capillary critical point,
where the film necessarily remains homogeneous in the lateral
directions.

1. OP profiles

We first discuss the OP profiles for (++) boundary
conditions and M = 0. Figure 4(a) shows typical OP profiles
across a film at bulk criticality (x = M = 0) for various
strengths of the surface field H1, as obtained numerically
from the ELE in Eqs. (24) and (25). We observe that, for
large H1, the profile varies most strongly near the boundaries
(ζ = ±1/2), while it is practically constant in the center of
the film (ζ = 0). As seen in Fig. 4(b), the SDE in Eq. (62)
accurately captures the profile of the OP near the boundary,
including the characteristic 1/ζ̂ behavior expected for large
but finite H1 at intermediate distances from the wall. For finite
H1, the effective power law ∝1/ζ̂ always crosses over towards
a constant upon approaching ζ̂ = 0 [see Eq. (62)].

The OP at the boundary and at the center of the film exhibits
characteristic scaling behaviors in both the weak and the strong
surface adsorption regimes. For M = 0 and sufficiently weak
surface fields one can approximate the OP profile by the
constrained solution in Eq. (35) of the linear ELE [Sec. II C 4].
In particular, for x = 0, Eq. (53) implies that linear MFT
is valid for |H1| 
 100. From Eq. (38), we then infer the
behavior of the OP as

m(±1/2) � H1/6, m(0) � −H1/12, (70)

for |H1| 
 100 and M = 0 at the wall and in the center of
the film, respectively, in agreement with Figs. 4(c) and 4(d).
For strong surface fields H1 > 0, the behavior of the OP at
the wall follows from the SDE (Sec. II D), which predicts [see
Eq. (65)] for x = 0 and asymptotically for H1 � B (which is
fulfilled in the present case, see below) m(±1/2) � 21/4

√
H1,

in agreement with Fig. 4(c). In order to rationalize the behavior
for large H1 observed at the center of the film, we recall that
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FIG. 4. (a) OP profiles across a film with (++) boundary conditions fulfilling M = 0, as obtained from the numerical solution of the
ELE in Eq. (24) for x = 0 and various values of H1 ranging from H1 = 1.6×102 (center top) to H1 = 1.6×106 (center bottom). In order to
have M = 0, the bulk field B is fixed, correspondingly, at B = 2.0×102, 6.4×102, 1.5×103, 2.9×103, and 4.9×103. The confining walls are
located at ζ = ±1/2. Due to the spatial symmetry of the problem, the profile is plotted only across the left half of the film. (b) Short-distance
behavior of the profiles in (a) (solid lines), compared with the theoretical prediction of the SDE [Eqs. (62) and (63), dashed lines, same color
code as in (a)]. (c) Value of the OP at the boundary (ζ = ±1/2) as a function of H1. The numerical results (•) agree well with the theoretical
predictions of the SDE [Eq. (65), dashed line]. (d) Value of the OP profile at the center of the film (ζ = 0) as a function of H1. The logarithmic
dependence on H1 is predicted theoretically for large H1 by Eq. (72) (dashed line, with the proportionality constant c ≈ 1.2). The dotted lines
in (c) and (d) represent the prediction of Eq. (70), which is accurately recovered for small H1.

the profile varies most strongly close to the boundaries [see
Fig. 4(a)], while the central part is approximately spatially
constant so that its contribution to M is proportional to m(0).
This allows one to estimate the dependence of the total amount
of massM on H1 by integrating the profile over a small interval
from ζ = −1/2 to a certain position ζ = −1/2 + 	ζ (with
0 < 	ζ < 1/2) which, upon making use of Eq. (62) (with
a0 � 0 due to H1 � 1), yields

	M ∼ ln(	ζ × H1). (71)

In order to keep M = 0, the profile in the film center must
thus behave as

m(0) ∼ −	M � −s ln H1, (72)

in agreement with the numerical results shown in Fig. 4(d) for
H1 � 100, with a numerical prefactor s � 1.2 as determined
from a fit.

Figure 5(a) displays OP profiles for various values of the
rescaled temperature x in the supercritical regime x > 0. As
in the case x = 0 illustrated in Fig. 4(a), these profiles are
obtained via a numerical solution of the ELE in Eqs. (24) and
(25) withM = 0. Upon decreasing x from large values, the OP
value at the wall (at the center of the film) gradually increases

(decreases) and the spatial variation of the profiles becomes
more pronounced. This behavior is expected because, corre-
spondingly, the bulk correlation length increases and so does
the distance from the walls at which the effect of the boundaries
is present. For large x, the behavior of the OP at the boundaries
and at the center follows the linear MFT predictions given in
Eq. (40), independently of H1 (not shown). We find from the
present numerical solution that, for x 
 √

H1 and B̃ 
 H1,
the bulk field B̃ required to keepM = 0 does not vary anymore
significantly with x upon approaching bulk criticality x = 0.
Under these circumstances, the SDE predicts, according to
Eq. (65), the OP at the wall to approach its value for x = 0 as
[m(ζ,x = 0) − m(ζ,x)]ζ=±1/2 � x/(3×21/4

√
H1). As shown

in Fig. 5(b), the numerical solution of the ELE follows this
scaling behavior for sufficiently small values of x/

√
H1. The

slight difference in the overall magnitude between the data
and the analytical prediction reflects the influence of the
distant wall, which is not accounted for in the SDE. [See the
discussion in Sec. II D. We emphasize that the actual values
m(ζ = ±1/2,x � 0) of the numerically obtained profile differ
by less than 1% from the corresponding prediction of the
SDE in Eq. (65); see also Fig. 4(b).] While the above results
pertain to M = 0, we expect similar scaling behaviors to hold,
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FIG. 5. (a) OP profiles across a film with (++) boundary conditions and fulfilling M = 0, as obtained from the numerical solution of
the ELE in Eqs. (24) and (25) for H1 = 1.6×104 and various values of x ranging from x = 1.6×104 (center top) to x = 0 (center bottom).
In order to have M = 0, the bulk field B is fixed, correspondingly, at B = 2.6×104, 8.4×103, 2.3×103, and 1.5×103. Due to the symmetry
of the problem, the profile is plotted only for the left half of the film. (b) Approach of the OP at the wall (ζ = ±1/2) to its value at bulk
criticality (x = 0) in the supercritical regime. The figure shows the difference between m(ζ,x = 0) and m(ζ,x) at ζ = ±1/2 as a function
of x/

√
H1 for various values of x and H1 (symbols). The dashed line represents the expression x/(3×21/4

√
H1), which is a prediction for

[m(ζ,x = 0) − m(ζ,x)]ζ=±1/2 � 0, as obtained from the SDE in the limit of large H1 [see Eq. (65) and the discussion in the main text].

at least asymptotically for |H1| → ∞, for any nonzero value
of M. This is so because the scaling properties of the profile
for H1 � 1 are controlled by the SDE in Eq. (62), which, in
this limit, is dominated by its first term. This term, however,
is independent of M (or, correspondingly, the associated bulk
field B).

For (+−) boundary conditions, the constraint M = 0 is
realized for B = 0 for all temperatures above the capillary
critical temperature xc,cap, while B = 0 yields M = 0. As
a rather large value of H1 is used to obtain the numerical
solution in the present case, xc,cap is located well below the
bulk critical point [67,68] and is not covered by the present
results. Figure 6 shows the OP profiles obtained numerically,

0.4 0.2 0.0 0.2 0.4

40

20
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20

40

Ζ

m
Ζ

, H1 5100

xc,cap x 20

x 1

FIG. 6. Typical behavior of the OP profiles across a film with
(+−) boundary conditions. Profiles shown by solid lines are obtained
for x = −20 and four bulk fields B = 0,11,110,770 (from bottom to
top), while the dashed lines are obtained for x = 1 and bulk fields B =
0,−110,−330,−770 (from top to bottom). The values of the mass
corresponding to these bulk fields are M = 0, 3.7, 7.1, and 11.0
for x = −20 and M = 0, −1.7, −3.8, and −6.2 for x = 1. The
walls are located at ζ = ±1/2 and exert opposing surface fields of
magnitude H1 � 5100.

which are representative of systems with temperatures above
(x = 1) or below (x = −20), respectively, the bulk critical
point with various values of the bulk chemical potential and
thus of M. The observed qualitative behavior of the profiles
is well known [68] and therefore we do not discuss it further.

2. Bulk chemical potential

Figure 7 shows the bulk chemical potential (bulk field) B̃

which has to act in the film in order to enforce the constraint
M = 0 of vanishing total mass in the presence of (++) bound-
ary conditions. The corresponding data have been obtained via
a numerical solution of the ELE (24), including the nonlinear
term. In Fig. 7(a), we display the constraint-induced bulk field,
normalized by its analytical value B̃0 [Eq. (34)] for x → ∞,
as a function of the ratio between the scaled temperature and
surface field, x/H1 = 1/

√
σ , which was identified in Eq. (44)

as an inverse smallness parameter controlling the onset of the
strongly nonlinear regime for σ � 1. In agreement with the
perturbative study (Sec. II C), the bulk field B̃ approaches
the limit B̃0 for x � |H1|, whereas nonlinear effects dominate
for x � |H1| and increase in magnitude upon increasing H1.
The dependence of B̃ on H1 for x = 0 is shown in Fig. 7(b).
For x = 0 and for weak surface fields [more precisely, for
|H1| 
 100 as implied by Eq. (53)], the behavior of B̃ can be
rationalized from Eq. (34), which predicts

B̃ � −2H1, (73)

consistent with the numerical data in Fig. 7(b). In the opposite
limit of strong surface fields, we recall that the OP profile in
the central region of the film is almost constant [see Fig. 4(a)].
Accordingly, as a direct consequence of the ELE in Eq. (24),
we may approximately relate the value of the OP at the center to
the chemical potential via the bulk equation of state, m(0) ∼
sgn(B)|B|1/δ , with δ = 3 and, in the present case (H1 > 0),
sgn(B) = −1. Together with Eq. (72) this yields the scaling of
the constraint-induced bulk field (for x = 0 and H1 � 100) as

B̃ ∼ −(s ln H1)3, (74)
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FIG. 7. Bulk chemical potential B̃ numerically determined in such a way that the constraint M = 0 of vanishing mass is fulfilled in a film
with (++) boundary conditions. (a) Dependence of B̃ on the ratio between the scaled temperature and the scaled surface field x/H1 [=1/

√
σ , see

Eq. (44)], normalized by its limiting value B̃0 obtained for x → ∞ [Eq. (34)], for surface fields H1 = 25,52,160,260,370,1600,8200,1.6×106

(from top to bottom). (b) Dependence of B̃ on the surface field H1 for x = 0. For small H1, B̃ calculated numerically (symbols) approaches the
prediction given by Eq. (73) (dotted line). For large H1, instead, B̃ � −(s ln H1)3 [dashed line, Eq. (74)], with a constant s � 1.2 [see Eq. (72)].

where s is a numerical factor determined previously.
Figure 7(b) shows that this prediction is in good agreement
with the numerical mean-field solution.

Figure 8 shows the total mass M (color coding) of a film
near criticality as a function of the scaled temperature x and
bulk field B for (++) and (+−) boundary conditions. The data
in Fig. 8 have been obtained via a numerical conjugate-gradient
minimization of the Ginzburg-Landau functional in Eq. (23).
We recall that the mass M is the appropriate scaling variable
corresponding to the mass density [see Eq. (9e)]. The solid
curves in the plot serve to illustrate the temperature dependence
of the constrained bulk field B̃(x)|M for selected values of M.
Owing to the large value of H1 � 5100 used in the present case,
the data pertain to the strongly nonlinear mean-field regime
according to Eq. (44). The overall behavior of the bulk field
resulting from imposing the constraint is consistent with the
trends revealed by the perturbative solution (see Sec. II C;

note that the absolute values are different, as they depend,
in particular, on H1). For comparison, the constraint-induced
field for a homogeneous bulk system would be simply given
by B̃hom(x) = xM + M3, corresponding, as a function of x

with fixed M, to straight lines of slope M. As seen in Fig. 8,
the presence of the surface field H1 leads to significant changes
compared to the homogeneous case, which are most evident
for (++) boundary conditions. In fact, for (+−) boundary
conditions, the bulk field asymptotically approaches such a
straight line already for rather small positive values of x.

The thick solid line in Fig. 8(a) indicates the capillary
condensation line, ending at the capillary critical point
(xc,cap,Bc,cap) � (−25,−166). We have determined the loca-
tion of this point from a study of the OP value at the center
of the film [51] and its location is in good agreement with
the one previously reported for the strong adsorption regime
[96]. Due to the large value of H1 chosen in our analysis, the

(a) (b)

FIG. 8. Total mass M (corresponding to a scaled mean mass per volume, see Eq. (9e); color coding) as a function of the scaled temperature
x and the bulk field B for the Ginzburg-Landau model [Eq. (23)] with H1 � 5100 and (a) (++) boundary conditions and (b) (+−) boundary
conditions. The solid lines are curves of constant mass, with the values of M indicated by the labels. The bulk critical point (xc,b,Bc,b) = (0,0)
is marked by a dot (•) and the capillary critical point (xc,cap,Bc,cap) � (−25,−166) by a cross (×). In (a) the thick line ending at the cross is the
line of first-order capillary condensation transitions. The dashed line in (b) represents, for comparison, the constraint-induced bulk field B̃hom

of a homogeneous bulk system with a density corresponding to M = 1. In (b) the lines are symmetric with respect to B = 0.
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capillary critical point in the case of (+−) boundary conditions
is actually outside the range of values of x considered in
Fig. 8(b) [68]. For x < xc,cap, we infer from Fig. 8(a) that
there ceases to exist a corresponding value of B for certain
values of the mass M (which is visible in the plot by a gap
in the color coding upon crossing the capillary condensation
line). In the canonical ensemble, preparing a spatially extended
but finite system with a value of M within this gap results in
phase-separation into domains with densities corresponding to
those just above and below the capillary condensation line.

F. Numerical results: 3D Ising model

In the grand canonical ensemble it is well known (see, e.g.,
Ref. [53]) that, in the limit of strong adsorption, the MFT
divergence ∝1/ẑ of the critical OP profile near the wall at a
distance ẑ is changed by non-Gaussian fluctuations, leading to
a weaker singularity,

φ(z) ∼ ẑ−β/ν, (75)

where β/ν � 0.52 is the value of the exponent for the
three-dimensional Ising universality class (see Table II). This
behavior has been investigated via field-theoretical methods in
the semi-infinite geometry [61,84,85,110–113] and by Monte
Carlo simulations of the Ising model in a film geometry
[88,92]. The prediction in Eq. (75) has been confirmed also
experimentally (see, e.g., Refs. [95,114] as well as references
therein).

An explicit numerical test of the scaling behavior given by
Eq. (75) within the canonical ensemble is postponed to future
studies, as it requires rather large wall-to-wall distances of the
necessarily finite simulation cell and is therefore computation-
ally demanding. Here, instead, we consider smaller systems
and focus on the dependence of the profiles on the transverse
system size Lz in the canonical and grand canonical ensembles.
To this end, we present Monte Carlo (MC) simulation data of
the three-dimensional Ising model on a cubic lattice of volume
LxLyLz = ALz with unit lattice spacing a = 1 and Lz even.
A spin si = ±1 is located at each site i = (1 � x � Lx, 1 �
y � Ly, −Lz/2 + 1 � z � Lz/2) of the lattice. Along the x

and y directions periodic boundary conditions are applied. The
Hamiltonian of the Ising model is given by

H = −J

⎡
⎣∑

〈i,j〉
sisj + h−

1

∑
(bot.)

sj + h+
1

∑
(top)

sj + μ
∑

k

sk

⎤
⎦,

(76)

where J is an interaction energy (which rescales the thermal
energy kBT ) and μ is a bulk field (chemical potential); h−

1 and
h+

1 are surface fields acting on the bottom (z = −Lz/2 + 1)
and the top (z = Lz/2) layer, respectively. The first sum in
Eq. (76) runs over nearest neighbor sites 〈i,j 〉 on the lattice,
while the last one runs over all lattice spins. The sum with the
subscript (bot.) is taken over the bottom layer z = −Lz/2 + 1
and the one with (top) is taken over the top layer z = Lz/2.
Note that, for simplicity, we denote the Ising model parameters
by the same symbols as their counterparts in the Ginzburg-
Landau free-energy functional [Eq. (19)]. However, the former
carry no engineering dimensions and we therefore just report

their numerical values as used in our simulations. We generally
use finite values of h∓

1 ∈ {+1,−1} for the surface fields in
order to realize (++) and (+−) boundary conditions and
henceforth, for convenience, suppress the superscript ∓ of
h1. (Here we choose a rather small value of h1 in order to
facilitate the simulation via the multispin technique in the
canonical ensemble; see below.) The fact that, in Eq. (76), the
interaction constant J in the bulk is the same as at the surface
gives rise, within MFT, to a nonzero surface enhancement
c = 1/a in the coarse-grained continuum counterpart of the
Ising model [52,53]. Accordingly, the asymptotic critical
behavior is governed by the ordinary surface universality class
(see Sec. II A) and the scaling variable H1 in Eq. (9d) is
given by H1 = h1(Lz/l

(0)
h1,ord)	

ord
1 /ν , where 	ord

1 � 0.46 (see

Table II) and the length scale l
(0)
h1,ord � 0.21 [115]; this differs

from the special surface universality class studied within the
above continuum MFT. The total magnetization � is given by
the thermal average � = 〈∑x,y,z sx,y,z〉. Note that, differently
from before, here we do not consider thermodynamically ex-
tensive quantities to be implicitly normalized by the transverse
area A.

Simulations in the grand canonical ensemble are performed
via a hybrid MC algorithm [116]. Each MC step consists of
a flip of a Wolff cluster followed by LxLyLz attempts to flip
a randomly selected spin in accordance with the Metropolis
criterion. The mean magnetization per spin ϕ = �/(LxLyLz)
as well as the magnetization profile (per transverse area)
φ(z) = 〈∑x,y sx,y,z〉/(LxLy) are computed as a thermal av-
erage 〈· · · 〉, based on the statistical weight exp(−βH) and
β ≡ 1/(kBT ), over 106 MC steps, which are split into ten
series in order to determine the statistical accuracy.

As a preliminary step, we first determine the relationship
between the bulk field μ and the magnetization �, which
will be needed also later for the computation of the critical
Casimir force. In order to compute the value of μ which
yields a certain assigned �, we proceed as follows. For a
given value of the reduced temperature t and of the system
size L we compute the mean magnetization ϕ as a function of
the bulk field μ, which is reported in Fig. 9(a) in terms of the
rescaled quantities (L/l(0)

ϕ )β/νϕ vs (L/ξ (0)
μ )	/νμ, with L = Lz.

Here l(0)
ϕ = ξ

(0)
+ (φ(0)

t )
ν/β � 1.36 [Eq. (12)], where we have

used ξ
(0)
+ � 0.50 [117] and φ

(0)
t � 1.69 [118]. Furthermore,

we have ξ (0)
μ � 0.617 [119], which, in contrast to the standard

definition [76], includes a factor δ1/(2−η) � 2.22 according
to our convention [see Eq. (5b)]. The values of the critical
exponents can be found in Table II. In a second step, for a
given magnetization �, the equation ϕ(μ,T ) = �/(LxLyLz)
is solved numerically for μ, resulting in the plot of Fig. 9(b)
in terms of the scaled temperature x = (L/ξ

(0)
+ )1/ν t , with

βcJ � 0.221 654 52(8) [120].
Simulations in the canonical ensemble have been per-

formed by using Kawasaki dynamics [121] and the multispin
technique [122], which allows 64 independent systems to
be simultaneously simulated by taking advantage of bitwise
operations. Briefly, each site in the lattice is represented by a
64-bit integer variable, where the kth bit corresponds to the kth
system. The average is performed over 2×105 MC steps, one
MC step consisting of 10LxLyLz attempts of pair Kawasaki
exchanges.
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FIG. 9. MC simulation data of the Ising model in a film of thickness L ≡ Lz with (++) boundary conditions in the grand canonical
ensemble. (a) Dependence of the scaled mean magnetization (L/l(0)

ϕ )β/νϕ [see Eq. (9e)] on the bulk magnetic field μ for various scaled

temperatures x = (L/ξ
(0)
+ )1/ν(T/Tc − 1). (b) Dependence of the scaled bulk magnetic field μ on x for various values of the scaled mean

magnetization. Solid lines are drawn as a guide for the eye. A system of size Lx×Ly×Lz = 100×100×20 is used.

Since fluctuations are restricted in the canonical ensemble,
one may expect the canonical OP profiles to increasingly devi-
ate from the grand canonical ones upon decreasing the lateral
system size. This is indeed corroborated by Fig. 10, where
OP profiles for various temperatures and lateral system sizes
Lx,y (keeping Lz fixed) are compared. While for Lx,y = 100
[Fig. 10(b)] the corresponding profiles in the two ensembles
are practically indistinguishable, visible deviations appear for
Lx,y = 20 [Fig. 10(a)] and their magnitude increases upon
approaching Tc. Accordingly, for sufficiently large lateral
system size, a film in the canonical ensemble can, at least
as far as the behavior of the OP profiles is concerned, be fully
described by a film in the grand canonical ensemble once the
relation μ(t,�,h1,L) is known.

III. CRITICAL CASIMIR FORCE

In this section we study the CCF in the canonical and in the
grand canonical ensemble, taking advantage of our analysis
of critical adsorption in the previous section. The CCF K is
defined in terms of the singular contribution to the residual

finite-size free energy (per transverse area A and in the limit
A → ∞) Fres of a film of thickness L as

K = −dFres

dL
, (77)

where Fres is obtained by subtracting the bulk and surface
contributions from the total film free energy Ff (per area). In
an expansion in decreasing powers of the system size L one
has, for films of sufficiently large lateral extent,

Ff = L(−pb) + fs + Fres, (78)

where pb is the bulk pressure and fs is the surface free-energy
per area associated with the presence of the two walls confining
the system. In the grand canonical ensemble fs does not
contribute to K. The residual finite-size part of the free energy
per area at bulk criticality is known to vary (in units of
kBTc) asymptotically for large L as Fres = 	̂/Ld−1, where
d is the spatial dimensionality of the bulk system and 	̂

is a universal critical Casimir amplitude which depends on
the bulk universality class of the system and on the surface
universality classes of the two confining walls [4,80]. (Note
that, below, we introduce a critical Casimir amplitude 	 in
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FIG. 10. OP profiles [interpolated and scaled according to Eq. (11)] resulting from MC simulations of the Ising model for total magnetization
� = 0 and (++) boundary conditions. Profiles in the canonical ensemble (solid lines) are compared with those in the grand canonical ensemble
[with the bulk field μ inferred from Fig. 9(b); dashed lines] for various scaled temperatures x (increasing from bottom to top at z = 0) and
system sizes Lx×Ly×Lz of (a) 10×10×20 and (b) 100×100×20. In panel (b), the corresponding canonical and grand canonical results are
practically indistinguishable. In order to enhance visibility, only the left half of the spatially symmetric profiles is shown. Contrary to the visual
appearance, the profiles do not all intersect at the same point.
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terms of the scaling function of the CCF rather than the residual
free energy.) Intriguingly, in the canonical ensemble it will turn
out that, if the decomposition of Ff in Eq. (78) follows the
usual finite-size scaling arguments, one may obtain a surface
free energy for which dfs/dL = 0, yielding a nonzero “surface
pressure” contribution to the CCF.

Alternatively, the CCF may be determined directly as the
difference between the pressure of the confined fluid film,
pf = −dFf /dL, and the pressure pb of the surrounding bulk
fluid phase:

K = pf − pb. (79)

This definition is natural if one assumes that the confining
surfaces of the film are exposed to a bulk fluid surrounding the
film; therefore, it directly relates to typical experiments. In the
grand canonical ensemble, the bulk fluid can exchange mass
with the film and, being in thermodynamic equilibrium, both
are governed by the same chemical potential μ. In contrast,
in the canonical case, the film is isolated with respect to
particle exchange from its surroundings. Hence, the pressure
pb of the bulk fluid—and thus also the CCF K—depends
on the experimental setup and thus is required to be fixed
by a definition. In our investigation we generally follow the
convention of defining pb as the limit of pf as L → ∞:

pb = lim
L→∞

pf . (80)

The limit is taken such that, besides temperature, the relevant
thermodynamic control parameter of the bulk fluid is the same
as the one of the film. In the grand canonical ensemble, this
control parameter is the chemical potential μ, whereas in the
canonical ensemble it is the mean mass density ϕ = �/L.
It will turn out that only this convention leads to a force
which can be interpreted as a CCF. Furthermore, we shall
see that it is precisely the different nature of the respective
control parameters in the two ensembles which, within MFT,
is ultimately responsible for the difference between the CCFs
in the two ensembles.

Given a mean-field free-energy functional such as the one
in Eq. (19), a stress tensor Tij can be constructed [77,123],
which expresses the change of the total free energy Ff of
the film upon a change of the configuration of the boundaries.
Specifically, for a film of thickness L, which is homogeneous in
the lateral, i.e., x and y, directions, the film pressure pf = Tzz

is equal to the change of the free energy of the film upon
varying L:

pf = Tzz[φeq] = − d

dL
Ff [φeq]. (81)

Here φeq is the equilibrium OP profile which minimizes the
free-energy functional Ff . Furthermore, in equilibrium, the
stress tensor is constant across the system; in particular, Tzz

does not depend on the distance from the confining surfaces.
Analogously to Eq. (81), the pressure pb of the bulk system
surrounding the film can be obtained as pb = Tzz(φb), with φb

being the corresponding equilibrium value of the bulk OP. The
stress tensor thus allows one to circumvent the calculation of
the free energy and its derivative, rendering the definition in
Eq. (79) convenient whenever these quantities are difficult to
determine explicitly. This applies, for instance, to the analysis
of the nonlinear Ginzburg-Landau model considered here.

The stress tensor and, in particular, Eq. (81) are typically
considered in the grand canonical ensemble, in which Tij

and Ff depend on the externally imposed bulk field μ. In
the present study we show that an analogous equation [see
Eqs. (89) and (90) below] applies in the canonical ensemble as
well. We see further that, even if Eq. (80) is used to define pb,
the definitions in Eqs. (77) and (79) are not fully equivalent
in the canonical case, because in Eq. (79) only bulk and no
surface contributions are subtracted from the film pressure.

In the following, we study the CCFs in the canonical
and grand canonical ensembles for symmetric [(++)] and
antisymmetric [(+−)] boundary fields. In order to simplify
the notation, we explicitly indicate the boundary conditions
only when confusion might occur. While some results in the
grand canonical ensemble are known from previous studies
[65,69,72–74,79,96,102,124], they are briefly rederived here
along with the canonical ones in order to provide a self-
contained and easily accessible presentation.

A. General scaling considerations

Before turning to the analysis of a specific model, we
first consider the general scaling behavior expected for the
CCF, building upon the discussion in Sec. II A. In the grand
canonical ensemble, the scaling form of the residual finite-size
free energy [Eq. (78)] (per transverse area and per kBT ) can
be written as [53,80]

F (gc)
res (t,μ,h1,L)

= L−d+1
(gc)

((
L

ξ
(0)
+

)1/ν

t,

(
L

ξ
(0)
μ

)	/ν

μ,

(
L

l
(0)
h1

)	1/ν

h1

)
,

(82)

with 
(gc)(x,B,H1) as the corresponding scaling function. The
scaling form of the CCF (per transverse area and kBT ) follows
from Eq. (77) as (note that here 	 is a critical exponent and
not a Casimir amplitude)

K(gc)(t,μ,h1,L)

= L−d�(gc)

((
L

ξ
(0)
+

)1/ν

t,

(
L

ξ
(0)
μ

)	/ν

μ,

(
L

l
(0)
h1

)	1/ν

h1

)
,

(83)

with the scaling function

�(gc)(x,B,H1) = (d − 1)
(gc)(x,B,H1)

−1

ν
x∂x


(gc)(x,B,H1)

−	

ν
B∂B
(gc)(x,B,H1)

− 	1

ν
H1∂H1


(gc)(x,B,H1). (84)

In the canonical ensemble, instead of the chemical potential
μ, the total mass � is fixed. In Sec. II A we have identified
the mean mass density ϕ and its scaled counterpart M as the
proper scaling variables. Accordingly, the scaling form of the
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canonical residual finite-size free energy is proposed as

F (c)
res (t,ϕ,h1,L)

= L−d+1
(c)

((
L

ξ
(0)
+

)1/ν

t,

(
L

l
(0)
ϕ

)β/ν

ϕ,

(
L

l
(0)
h1

)	1/ν

h1

)
,

(85)

where 
(c)(x,M,H1) is the corresponding scaling function.
Crucially, in order to compute the CCF [based on Eq. (77)]
in the canonical ensemble, we have to take into account the
constraint of having a fixed total mass �. This implies a
dependence of the mean density ϕ = �/L [Eq. (10)] on L:

∂ϕ

∂L
= −ϕ

L
. (86)

The canonical CCF follows from Eqs. (77) and (85) as

K(c)(t,ϕ,h1,L)

= L−d�(c)

((
L

ξ
(0)
+

)1/ν

t,

(
L

l
(0)
ϕ

)β/ν

ϕ,

(
L

l
(0)
h1

)	1/ν

h1

)
,

(87)

with the scaling function

�(c)(x,M,H1) = (d − 1)
(c)(x,M,H1)

− 1

ν
x∂x


(c)(x,M,H1)

−
(

β

ν
− 1

)
M∂M
(c)(x,M,H1)

− 	1

ν
H1∂H1


(c)(x,M,H1). (88)

Note that, within MFT, one has β/ν = 1 so that in Eq. (88)
the term involving ∂M
(c) vanishes. In Eq. (88) the presence
of the term M∂M
(c) [in addition to −(β/ν)M∂M
(c)] is
a genuine consequence of the mass constraint. Since �(gc)

and �(c) are functions of different variables (B and M,
respectively), in order to asses their difference based on the
general scaling relations above, an equation of state relating
B and M must be specified. Instead of following this route
further, below we explicitly compute the CCF analytically
within linear MFT and numerically within full MFT.

The values of the scaling functions 
 and � at the fixed
points of the renormalization-group flow define universal
critical Casimir amplitudes 	̂ and 	, respectively [4,77,78].
The fixed point of the normal surface universality class
[111] corresponds to x = B = 0 and |H1| = ∞. Under these
conditions one obtains from Eqs. (84) or (88) the simple
relation 	 = (d − 1)	̂ between the amplitude 	 of the CCF
and the amplitude 	̂ of the residual free-energy scaling
function. However, as discussed in Sec. II (and, in particular, in
Sec. II D 2), within MFT and for (++) boundary conditions,
the limit |H1| → ∞ violates the constraint of a fixed total
number of particles. Consequently, in this case, in Eq. (88)
one cannot simply set |H1| = ∞ but, instead, one must take
into account that the value of the scaling function at criticality
still depends on H1 = ∞.

B. Mean-field theory

Within MFT it can be shown [see Appendix C and, in
particular, Eq. (C18) therein] that the stress tensor T

(c)
ij of

a system in the canonical ensemble is given by the grand
canonical stress tensor T

(gc)
ij with the bulk field μ taking the

value μ̃(�) of the Lagrange multiplier required to satisfy the
OP constraint in Eq. (2):

T
(c)
ij [φeq] = T

(gc)
ij ([φeq]; μ = μ̃). (89)

Here φeq is the solution of the ELE which minimizes the corre-
sponding free-energy functional and satisfies the constraint in
the case of the canonical ensemble. We recall that within MFT
(see Sec. II B) and for a given value of the total mass �, the
equilibrium profile φeq is, by construction, exactly the same
in the canonical and the grand canonical ensemble. As shown
in Appendix C, Eq. (89) holds for any free-energy functional
and boundary conditions, as long as the system is in a unique
thermodynamic equilibrium state. For the pressure pb of a
bulk system, a relation corresponding to the one in Eq. (89)
with Tzz(φeq,b) = pb is, in fact, well known and can be easily
derived from thermodynamics [see Eq. (C23) in Appendix C].

In this study, we consider only films which are translation-
ally invariant along the lateral directions (i.e., perpendicular
to the z coordinate), excluding the case of lateral phase
separation. (In the presence of two-phase coexistence, stresses
in the system are not necessarily anymore homogeneous and
the analysis of this case requires an extension of the present
model.) For a laterally homogeneous film, Eq. (89) implies the
equality of the canonical and grand canonical film pressures
p

(c,gc)
f ≡ T

(c,gc)
zz in MFT, i.e.,

− d

dL
F (c)

f [φeq] = p
(c)
f [φeq] = p

(gc)
f ([φeq]; μ̃)

= − d

dL
F (gc)

f ([φeq]; μ̃) (90)

provided pf is evaluated for both ensembles under the same
thermodynamic conditions, i.e., using, in the grand canonical
case, the bulk field μ̃ corresponding to the imposed total mass
� [Eq. (2) with φ ≡ φeq]. Here and in the following pressures
are given per kBT and therefore have the unit of an inverse
volume.

For the grand canonical Ginzburg-Landau free-energy
functional in Eq. (19), the mean-field stress tensor is given
by (see Appendix C)

T
(gc)
ij ([φeq]; μ) = (∂iφeq)(∂jφeq) −

[
1

2
(∂kφeq)(∂kφeq)

+ 1

2
τφ2

eq + 1

4!
gφ4

eq − μφeq

]
δij (91)

(where summation over repeated indices is implied), and the
corresponding film pressure for a laterally homogeneous film
is

p
(c,gc)
f = T (c,gc)

zz = 1

2
(∂zφeq)2 − 1

2
τφ2

eq−
1

4!
gφ4

eq + μ̃φeq

= 	0

L4

[
1

2
(∂ζmeq)2 − 1

2
xm2

eq − 1

4
m4

eq + B̃meq

]
. (92)
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The second line above follows from introducing the scaling
variables defined in Eqs. (9) and (22), where 	0, defined
in Eq. (18), is a nonuniversal mean-field amplitude, which
eventually will be absorbed in the Casimir amplitudes studied
further below.

Having discussed the pressure within a film, we now turn to
the description of the corresponding bulk systems. In the grand
canonical ensemble the bulk free-energy functional analogous
to Eq. (19) is

F (gc)
b

(
φb,μ

(gc)
b

) ≡
∫

ddr

[
1

2
τφ2

b + 1

4!
gφ4

b − μ
(gc)
b φb

]
. (93)

The bulk pressure p
(gc)
b of a homogeneous grand canonical

system is identical to the negative of the equilibrium bulk
free-energy density and follows from the expression of
T

(gc)
zz (φb,μ

(gc)
b ) [Eq. (91)] as

p
(gc)
b

(
μ

(gc)
b

) = 1
2τφ2

b + 1
8gφ4

b, (94)

where φb is the spatially constant equilibrium solution of the
bulk equation of state:

τφb + 1
6gφ3

b = μ
(gc)
b = μ. (95)

Accordingly, p
(gc)
b is a function of the bulk chemical potential

μ
(gc)
b , which, in the grand canonical ensemble, is identical to the

one of the film (μ) due to the thermodynamic coupling between
the bulk and the film. For μ

(gc)
b = 0 and τ < 0,F (gc)

b [Eq. (93)]
yields the two coexisting, symmetric equilibrium states ±φb,eq

with φb,eq ≡ √−6τ/g, which give rise to identical bulk
pressures in Eq. (94). We anticipate here that for a film
with, e.g., (++) boundary conditions, we find that the two
equilibrium densities at the capillary condensation line lead to

different film pressures [see Fig. 13(d) further below and the
related discussion].

For a film in the canonical ensemble, particle exchange
between film and bulk is prohibited and the mass densities in
the bulk and in the film are therefore a priori not related. It turns
out, however, that, for the purpose of isolating the canonical
CCF, it is crucial that the bulk system has the same mass density
ϕ = �/L as the film. This way the equivalence between a film
in the limit L → ∞ and a bulk system is ensured [see Eq. (80)].
In contrast, the choice of the ensemble used to describe the bulk
is immaterial, because in the thermodynamic limit all ensem-
bles are equivalent. Furthermore, Eq. (89) implies that, within
MFT, the stress tensor is identical in both ensembles under
the same thermodynamic conditions, i.e., for the same mass
density ϕ. Thus, when referring to a bulk system, we use hence-
forth the notion “canonical” in order to indicate that the bulk
is coupled to the film by imposing the same mass density in
both. In the case τ > 0, the canonical bulk pressure coincides,
according to Eq. (89), with the expression in Eq. (94) with φb =
ϕ. In the case τ < 0, the possibility of phase separation pre-
cludes a direct application of Eq. (89). Now φb = ϕ minimizes
the free energy F (gc)

b in Eq. (93) with μ
(gc)
b given by Eq. (95)

only if ϕ is outside the binodal region, i.e., if |ϕ| � φb,eq =√−6τ/g. The case τ < 0 and |ϕ| < φb,eq does not admit such
a spatially uniform minimum φb and can, instead, be only real-
ized via phase-separation into domains of local density ±φb,eq

corresponding to the symmetric equilibrium states of F (gc)
b for

μ
(gc)
b = 0. As noted previously, the associated bulk pressure

p
(gc)
b is, however, insensitive to this phenomenon. In summary,

the pressure of a bulk system which is “canonically” coupled
to the film, i.e., has the same mass density ϕ as the latter, is
given by

p
(c)
b (φb) = 1

2
τφ2

b + 1

8
gφ4

b, with

{
φb = ±φb,eq, τ < 0 and − φb,eq � ϕ � φb,eq,

φb = ϕ, otherwise. (96)

Furthermore, the chemical potential associated with a canonical bulk system of mass density ϕ is given by

μ
(c)
b =

{
0, τ < 0 and − φb,eq � ϕ � φb,eq,

τϕ + 1
6gϕ3, otherwise.

(97)

The pressures in Eqs. (94) and (96) are identical in bulk
systems with the same mean density ϕ, as expected on
general grounds due to the equivalence of ensembles in the
thermodynamic limit. For the present purposes, however, we
have to compare bulk pressures which emerge by coupling the
bulk either canonically or grand canonically to a film of a given
total mass �. In the case of a grand canonical coupling, the
corresponding bulk pressure p

(gc)
b is a function of the chemical

potential μ = μ̃(�) required to satisfy the constraint of fixed
mass � in the film [125]. In contrast, in the case of a canonical
coupling, the pressure p

(c)
b is not a function of μ̃, but it is

determined from the condition that the mean mass densities
ϕ in the film and in the bulk must be the same. Since, in the
presence of surface fields, the chemical potential of a film
generally assumes a value different from the one for a bulk
system with the same mean density (see Secs. II C and II E and,
in particular, Fig. 8), we have p

(gc)
b = p

(c)
b . However, because

generally p
(gc)
f = p

(c)
f [Eq. (90)], the difference between the

bulk pressures directly implies [via Eq. (79)] a difference
in the CCFs between the canonical and the grand canonical
ensembles. This crucial insight is confirmed in the following
by analytical calculations within linear MFT and numerically
for the nonlinear MFT.

1. Linear MFT: Critical Casimir force deduced
from the free energy

Linear MFT of the Ginzburg-Landau model [i.e., Eq. (19),
neglecting the quartic interaction term involving the coupling
constant g] offers the advantage that analytical results, which
already capture essential features of the nonlinear case, can be
obtained easily. The linear theory considered in the following is
based on the results of Sec. II C and thus it is generally expected
to provide an accurate approximation of the nonlinear model
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for large values of the scaled temperature x and sufficiently
small values of the scaled mass M and of the surface fields
H1 (see Sec. II C 4 and the related discussion).

Neglecting the quartic coupling in Eq. (19), the grand
canonical free energy (per transverse area) of a near-critical
film with symmetric [(++)] boundary conditions is given by

F (gc)
f ([φ]; τ,μ,h1,L)

=
∫ L/2

−L/2
dz

[
1

2
(∂zφ)2 + 1

2
τφ2 − μφ

]
− 2h1φw, (98)

where φw ≡ φ(−L/2) = φ(L/2) is the value of the OP at the
walls. Evaluated for the equilibrium solution φ = φ0 obtained
within linear MFT [Eq. (33)], we find

F (gc)
f (τ,μ,h1,L)

= −L
μ2

2τ︸ ︷︷ ︸
bulk

−2h1μ

τ
− h2

1√
τ︸ ︷︷ ︸

surface

−2h2
1√
τ

1

exp(L
√

τ ) − 1︸ ︷︷ ︸
residual

. (99)

Since, in the grand canonical ensemble, μ is independent of
L, this expression displays the expected decomposition of the
total free energy (per area) F (gc)

f into a bulk (∝L), a surface
(∝L0), and a residual finite-size part [see Eq. (78)], which
are highlighted in Eq. (99) by the braces. We remark that
the bulk part in Eq. (99) coincides, within the linear mean-
field approximation, with the result obtained by evaluating
Eq. (93) for the equilibrium solution τφb = μ as determined
by Eq. (95).

In the canonical ensemble, instead, the film free energy
F (c)

f for (++) boundary conditions follows, after neglecting
the quartic coupling in Eq. (17), as

F (c)
f ([φ]; τ,h1,L) =

∫ L/2

−L/2
dz

[
1

2
(∂zφ)2 + 1

2
τφ2

]
− 2h1φw.

(100)
Evaluated for the constrained mean-field solution φ = φ̃0

reported in Eq. (37), F (c)
f becomes

F (c)
f (τ,�,h1,L) = 1

2
Lτ

(
�

L

)2

︸ ︷︷ ︸
bulk

−2h1
�

L
− h2

1√
τ︸ ︷︷ ︸

surface

+ 2h2
1

Lτ
− 2h2

1√
τ

1

exp(L
√

τ ) − 1
.︸ ︷︷ ︸

residual

(101)

Alternatively, F (c)
f can also be obtained directly from F (gc)

f via
a Legendre transform [noting that, in accordance with Eqs. (2)
and (98), ∂F (gc)

f /∂μ = −�],

F (c)
f (τ,�,h1,L)

=
[
F (gc)

f ([φ]; τ,μ,h1,L) + μ

∫ L/2

−L/2
dzφ(z)

]
φ=φ0,μ=μ̃0(�)

,

(102)

with the bulk field taking (within linear MFT) the value
μ̃0 = ϕτ − 2h1/L [Eq. (36)] in order to satisfy the constraint

of constant mass �. Note that also the bulk contributions in
Eqs. (99) and (101) are related via a Legendre transform, which
explains, in particular, the different signs of these terms.

For a meaningful comparison of a film and a bulk system in
the canonical ensemble, both must have the same mass density
ϕ = �/L. Indeed, it has turned out in Sec. II A that in this case
ϕ is the natural finite-size scaling variable. Accordingly, in
Eq. (101), the various finite-size contributions to the canonical
free energy have been identified based on their scaling behavior
with L, assuming, for this purpose, �/L to be fixed [126]. We
emphasize, however, that the quantity which, by definition, is
actually constant for a system in the canonical ensemble is
the total mass �. This implies, in particular, that computing
a derivative with respect to L in the canonical ensemble must
take into account Eq. (86).

Note that, if one were interested merely in the free energies
F (c,gc)

f of the film in the two ensembles, the value μ̃0 for the
constraint field would have to be used instead of μ in Eq. (99) in
order to determine the grand canonical free energy. This would,
however, not be appropriate for deriving the finite-size scaling
behavior, which is based on the idea of comparing systems of
different L while keeping all other thermodynamic parameters
fixed. In particular, in the limit L → ∞, the canonical film is
supposed to match a homogeneous system with the specified
mean density ϕ, whereas the grand canonical film acquires the
mean density ϕ(μ) which is determined by the value of the
external field μ.

As an artifact of linear MFT, the residual free energies in
Eqs. (99) and (101) turn out to be independent of the chemical
potential μ and of the imposed total mass �. In the nonlinear
mean-field model (see Sec. III B 3 further below), they do
acquire a dependence on μ and �, respectively. Apart from this
deficiency, F (gc,c)

res in Eqs. (99) and (101) can, after introducing
the scaling variables defined in Eqs. (9) and (22), be cast into
the scaling forms given in Eqs. (82) and (85) (for d = 4) with
the scaling functions


(gc)(x,H1)/	0 = −2H 2
1√
x

1

exp
√

x − 1
and (103a)


(c)(x,H1)/	0 = 2H 2
1√
x

[
1√
x

− 1

exp
√

x − 1

]
, (103b)

respectively. The nonuniversal amplitude 	0 = 6/g [Eq. (18)]
contains the coupling g, which is unknown within
MFT [127]. The scaling functions in Eq. (103) are
displayed in Fig. 11(a). Remarkably, they have oppo-
site signs and decay differently for large x: While
the grand canonical scaling function 
(gc) decays expo-
nentially modified by a power law, i.e., 
(gc)(x � 1)/
	0 � −2H 2

1 exp(−√
x)/

√
x, the canonical scaling function


(c) decays algebraically, i.e., 
(c)(x � 1)/	0 � 2H 2
1 /x. As

an artifact of linear MFT, 
(gc) and 
(c) diverge for x → 0,
i.e., upon approaching the bulk critical point. Specifically,
we have 
(gc)(x 
 1)/	0 � −2H 2

1 /x and 
(c)(x 
 1)/	0 �
H 2

1 /
√

x for small positive values of x. Accordingly, one
cannot infer a proper critical Casimir amplitude from these
expressions. This will be achieved in Sec. III B 3 when
discussing the nonlinear model, which renders finite critical
Casimir free energies and forces. There, it will turn out that,
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FIG. 11. Scaling functions 
 and � of (a) the residual finite-size free energy [Eq. (103)] and of (b) the CCF [Eq. (104)], respectively, within
linear MFT for the canonical and the grand canonical ensembles of a film with (++) boundary conditions as a function of the temperature
scaling variable x = L2τ = (L/ξ

(0)
+ )1/ν t . The dashed lines indicate the characteristic power laws for small and large values of x as given in the

main text. In (a) the negative of 
(gc) is plotted. The inset in (b) shows the scaling functions of the main panel in a double-logarithmic scale in
order to highlight their different asymptotic behaviors. 
 and � are normalized by 	0H

2
1 , which, within MFT, appears as a common overall

prefactor. For large x one has 
(gc)(x � 1)/(	0H
2
1 ) � 2 exp(−√

x)/
√

x and �(gc)(x � 1)/(	0H
2
1 ) � −2 exp(−√

x). As an artifact of linear
MFT, here the residual finite-size free energies as well as the grand canonical CCF do not depend on the imposed mass M or the bulk field B

and diverge for x → 0. However, linear MFT correctly predicts the sign as well as the decay behavior for large x of the CCF (see Sec. III B 3
further below).

despite the incorrect behavior of linear MFT for x → 0, the
essential features of the CCFs in nonlinear MFT—in particular
their sign and decay for x � 1—are captured correctly by the
linear approximation.

The CCFs K(gc,c)(τ,h1,L) = −dF (gc,c)
res (τ,h1,L)/dL fol-

lowing from the residual free energies defined in Eqs. (99)
and (101) obey the scaling form given in Eqs. (83) and (87)
with d = 4, where the scaling functions �(gc,c) are obtained
from Eq. (103) as

�(gc)(x,H1)/	0 = H 2
1

1 − cosh
√

x
and (104a)

�(c)(x,H1)/	0 = 2H 2
1

x
+ H 2

1

1 − cosh
√

x
. (104b)

Analogously to the residual free energies [Eq. (103)], these
CCFs do not depend on the chemical potential B or on the
imposed total mass M. This artifact of the linear mean-
field approximation disappears in the nonlinear theory (see
Sec. III B 3 below). The leading dependence of the CCF on
large M can be derived from the generalized perturbation
theory discussed in Appendix B, which amounts to replacing
the temperature scaling variable x by x + 3M2 in Eq. (104).
The scaling functions in Eq. (104) are plotted in Fig. 11(b).
Similarly to the free energies, also the CCF behaves differently
in the two ensembles: Most strikingly,K is repulsive (K(c) > 0)
in the canonical case, in contrast to being attractive (K(gc) < 0)
in the grand canonical case. For large x, the scaling functions
of the canonical CCF decay within linear MFT as

�(gc)(x � 1)/	0 � −2H 2
1 exp(−√

x) and (105a)

�(c)(x � 1)/	0 � 2H 2
1

x
. (105b)

For small positive values of x the scaling function of the grand
canonical CCF diverges as �(gc)(x → 0)/	0 � −2H 2

1 /x,

which, however, is an artifact on linear MFT. In contrast, the
scaling function of the canonical CCF attains a finite limit
within linear MFT:

�(c)(x → 0)/	0 = 1
6H 2

1 . (106)

As discussed in Sec. II C 4, in the canonical ensemble linear
MFT for critical adsorption renders an accurate approximation
of the nonlinear theory even for x → 0, provided H1 is
sufficiently small. We expect this to be the case also for the
CCF discussed here.

We now briefly summarize the case of a film with
antisymmetric [(+−)] boundary conditions. Using the results
for the profile given in Sec. II C 5 and proceeding as above,
we find within linear MFT

F (gc)
f,+−(τ,μ,h1,L) = −L

μ2

2τ︸ ︷︷ ︸
bulk

− h2
1√
τ︸ ︷︷ ︸

surface

+ h2
1√
τ

2

1 + exp(L
√

τ )︸ ︷︷ ︸
residual

(107)
in the grand canonical and

F (c)
f,+−(τ,ϕ,h1,L) = 1

2
Lτϕ2

︸ ︷︷ ︸
bulk

− h2
1√
τ︸ ︷︷ ︸

surface

+ h2
1√
τ

2

1 + exp(L
√

τ )︸ ︷︷ ︸
residual

(108)
in the canonical ensemble. The bulk part in Eq. (107) coincides,
within linear MFT, with the one obtained by evaluating Eq. (93)
for the equilibrium solution determined by Eq. (95). The
expression for F (c)

f,+− in Eq. (108) can be obtained from a

Legendre transform of F (gc)
f,+− according to Eq. (102), with φ0

given by Eq. (57a) and μ̃(�) = �τ/L [Eq. (57b)]. The two
indicated residual finite-size free energies [see Eq. (78)] are
identical and yield the scaling functions for the CCF,

�
(gc)
+−(x,H1)/	0 = �

(c)
+−(x,H1)/	0 = H 2

1

1 + cosh
√

x
, (109)
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which feature an exponential decay to zero for large x and a
finite value at x = 0:

�
(gc,c)
+− (x � 1)/	0 � H 2

1 exp(−√
x) and (110a)

�
(gc,c)
+− (x = 0)/	0 = 1

2H 2
1 . (110b)

As in the case of symmetric boundary conditions and as an
artifact of linear MFT, these results are independent of the
chemical potential B and of the imposed total mass M, but
none of the two diverges upon approaching bulk criticality.

The asymptotic results in Eqs. (105a) and (110a) pertaining
to linear MFT can be compared with the generally expected
behavior within the Ising universality class in the grand
canonical ensemble for B = 0 and H1 = ∞. In this case,
local-functional approaches [72,128], exact results for the
Ising strip [129], and estimates based on the transfer-matrix
method [130] indicate that

�
(gc)
++(x � 1,B = 0,H1 = ∞) ∝ −x2−α exp(−xν) and

(111a)

�
(gc)
+−(x � 1,B = 0,H1 = ∞) ∝ x2−α exp(−xν). (111b)

The exact results for the asymptotic behavior of the nonlinear
MFT considered in Ref. [79] are recovered by Eq. (111)
upon inserting mean-field values for the critical exponents
(see Table II) [131]. Differently from linear MFT, �(c,gc)(x →
0,B,H1 = ∞) is finite within nonlinear MFT and, generally,
within the Ising universality class, for both (++) and (+−)
boundary conditions [see Eqs. (123) and (136) below].

2. Linear MFT: Critical Casimir force deduced
from the stress tensor

In this section we illustrate the calculation of the CCF based
on Eq. (79) and on the explicit expression in Eq. (92) for the
stress tensor. This will not only provide an independent check
of the results obtained in the previous section, and therefore
of the fundamental relation in Eq. (89), but it also allows
us to highlight a subtlety associated with the canonical CCF,
which will lead to an expression different from the one in
Eq. (104b). Focusing first on a film with symmetric (++)
boundary conditions, the film pressure pf = Tzz within linear
MFT follows from Eqs. (33) (writing μ instead of μ0) and (91)
in the grand canonical ensemble as

p
(gc)
f (τ,μ,h1,L) = μ2

2τ︸︷︷︸
from bulk

+ h2
1

1 − cosh(L
√

τ )︸ ︷︷ ︸
from residual

, (112)

which equals −dF (gc)
f /dL [Eq. (81)] with the grand canonical

film free energy F (gc)
f in Eq. (99). The braces indicate the

terms in F (gc)
f from which the respective contributions in p

(gc)
f

originate. In a spatially homogeneous bulk system, within
linear MFT the OP value φb induced by the external field
μ is φb = μ/τ [Eq. (95)], resulting in a grand canonical bulk
pressure [see Eqs. (94) and (95)],

p
(gc)
b (τ,μ) = μ2

2τ
, (113)

consistent with Eqs. (80) and (112). Accordingly, the CCF is
given by

K(gc)(τ,μ,h1,L) = p
(gc)
f − p

(gc)
b = h2

1

1 − cosh(L
√

τ )
. (114)

After introducing the scaling variables defined in Eq. (9), this
expression turns out to be identical to the one reported in
Eq. (104a), which was obtained by taking the derivative of the
grand canonical residual free energy according to Eq. (77).

In the canonical ensemble, instead, Eq. (89) implies
p

(c)
f (τ,�,h1,L) = p

(gc)
f (τ,μ̃(�),h1,L), with the constraint-

induced bulk field μ̃(�) = (�τ − 2h1)/L as given by Eq. (36)
and p

(gc)
f given by Eq. (112) within linear MFT. Accordingly,

the canonical film pressure for (++) boundary conditions
results in

p
(c)
f (τ,�,h1,L) = 1

2τ

(
ϕτ − 2h1

L

)2

+ h2
1

1 − cosh(L
√

τ )

= 1

2
τϕ2

︸ ︷︷ ︸
from bulk

−2h1ϕ

L︸ ︷︷ ︸
from surface

+ 2h2
1

L2τ
+ h2

1

1 − cosh(L
√

τ )︸ ︷︷ ︸
from residual

, (115)

where ϕ = �/L is the mean mass density within the film. This
result equals −dF (c)

f /dL [Eq. (81), evaluated at fixed �], with

the canonical film free energy F (c)
f in Eq. (101). As discussed

above, in the canonical case, we generally consider a bulk
system which has the same mean mass density ϕ as the film.
The corresponding bulk pressure p

(c)
b follows from Eq. (96) in

linear MFT immediately as

p
(c)
b (τ,ϕ) = 1

2τϕ2, (116)

which can be equivalently obtained from Eqs. (80) and (115)
or, alternatively, from Eq. (113) by inserting in the latter the
constraint-induced bulk field μ̃b = ϕτ [see Eq. (97) for τ > 0].
The canonical CCF for (++) boundary conditions resulting
from Eqs. (115) and (116) is therefore given by

K(c)(τ,�,h1,L) = p
(c)
f − p

(c)
b

= −2h1ϕ

L
+ 2h2

1

L2τ
+ h2

1

1 − cosh(L
√

τ )
,

(117)

with ϕ = �/L and can, after introducing the scaling variables
in Eqs. (9), be cast into the scaling form given in Eq. (87) with
d = 4 and

�(c)(x,M,H1)/	0 = −2H1M + 2H 2
1

x
+ H 2

1

1 − cosh
√

x
.

(118)

Due to the first term, −2H1M [which corresponds the second
term in Eq. (115)], this result differs from Eq. (104b); the latter
equation was obtained based on identifying the residual finite-
size free energy in Eq. (101). By calculating the derivative
with respect to L of the canonical film free energy F (c)

f in
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Eq. (101), we find that this additional term originates from the
contribution −2h1�/L, which was identified in Eq. (101) as
a surface free-energy term. The appearance of such a contri-
bution is a direct consequence of the fact that, in the canonical
ensemble, the total mass �, rather than the density ϕ = �/L, is
kept constant. Indeed, as indicated in Eq. (115), the first term
on the right-hand side of Eq. (117) emerges precisely from
inserting the constraint-induced bulk field μ̃ [Eq. (36)] for μ

into the grand canonical film pressure [Eq. (112)]. We thus
conclude that, in the canonical ensemble, the calculations of
the CCF via the residual finite-size free energy [Eq. (77)] and
via the stress tensor approach [Eq. (79)] are not necessarily
equivalent, because the subtraction procedure employed in
the latter method removes only the bulk contribution to the
pressure.

We finally comment on the fact that, in the canonical
ensemble, film and bulk cannot exchange particles. As a
consequence, and in contrast to the situation in the grand
canonical ensemble, the precise value of the bulk pressure
p

(c)
b which is subtracted in Eq. (117) depends on the actual

experiment performed. However, as evidenced by Eq. (115),
for any choice of p

(c)
b other than the one in Eq. (116), the

critical Casimir contribution may be concealed by a possible
residual difference in the bulk pressures between film and
environment. The present analysis of linear MFT thus provides
further support to our choice [see Eqs. (80) and (96) and the
related discussion] of defining the appropriate p

(c)
b based on

the condition that the bulk has the same mass density ϕ as the
film.

In the case of antisymmetric [(+−)] boundary fields, the
film pressures resulting within linear MFT from Eqs. (57) and
(92) are

p
(gc)
f,+−(τ,μ,h1,L) = μ2

2τ
+ H 2

1

1 + cosh(L
√

τ )
and (119a)

p
(c)
f,+−(τ,ϕ,h1,L) = 1

2
ϕ2τ + H 2

1

1 + cosh(L
√

τ )
, (119b)

which turn out to be identical if the expression μ̃ = ϕτ

[Eq. (57b)] for the constraint-induced bulk field is inserted.
Upon subtracting the corresponding bulk pressures [Eqs. (113)
and (116)] we find the same scaling functions for the CCF as
those reported in Eq. (109), which have been inferred from
taking the derivative of the residual free energy.

The mean-field expressions for the CCFs given in
Eqs. (114), (117), and (109) have been obtained from a
perturbation theory constructed around an OP profile with
vanishing mean value (ϕ = 0) and are therefore applicable
only to rather small values of ϕ. Expressions valid for large |ϕ|
are derived in Appendix B and indicate that the dominant mass
dependence for large |ϕ| can be accounted for by replacing in
the expressions in Eqs. (114), (117), and (109) the reduced
temperature τ with an effective one:

τ̂ = τ + 1
2gϕ2. (120)

In the grand canonical ensemble, the mass density ϕ in
Eq. (120) is to be understood as a function of the given bulk
field μ and can be determined by evaluating the mass constraint
[see Eq. (B8)].

3. Nonlinear MFT

We now turn to the CCF, which arises from the Ginzburg-
Landau model [Eq. (19)] including the quartic interaction term
proportional to the coupling constant g. The CCF [Eq. (79)]
in the grand canonical and the canonical ensembles exhibits
the general scaling forms given in Eqs. (83) and (87), respec-
tively. The mean-field results discussed below exhibit these
scaling properties (with d = 4) but carry an undetermined
prefactor g−1 which, as before, will be accounted for by
an appropriate normalization. Within nonlinear MFT, closed
analytical expressions for the scaling functions �(gc,c) for finite
H1 and arbitrary bulk field B are not available. We thus
solve the nonlinear Ginzburg-Landau model for the OP profile
numerically by integrating the ELE in Eqs. (24) and (25) as
well as via conjugate-gradient minimization of the free-energy
functional in Eq. (23). As before, the mass constraint is
imposed by determining, for each value of the surface field H1,
the bulk field B necessary to recover the prescribed total mass
M in the film. The CCF is obtained from the stress tensor
[Eq. (89)] as the difference between the film and the bulk
pressures [Eq. (79)], where the bulk pressure is computed for
a homogeneous bulk system according to Eqs. (94) and (96).
Equivalently, the bulk pressure may also be obtained simply
as the pressure of a film in the limit of a macroscopically large
thickness L. We mention that close to the boundaries, where
the OP profiles rapidly increase upon approaching the surfaces,
the numerical accuracy of the solution (and, in particular,
its derivative) typically deteriorates. As a consequence, and
contrary to the expectation, the film pressure computed
numerically from Eq. (92) is, in general, not fully constant
across the film, but only sufficiently far from the boundaries.

Here we mention two possibilities to overcome this
problem. One option is to solve the ELE via a so-called
symplectic integration method [132,133], which, by construc-
tion, yields a constant pressure. To this end one introduces
the “momentum” p ≡ ∂L/∂m′ = m′ conjugate to the OP
m, where the prime denotes a derivative with respect to
ζ = z/L andL = (m′)2/2 + xm2/2 + m4/4 − Bm is the bulk
free-energy density, i.e., the integrand in the Ginzburg-
Landau functional in Eq. (23). In this formulation the one-
dimensional ELE in Eq. (24) is equivalent to the Hamiltonian
“equations of motion” m′ = ∂H/∂p, p′ = −∂H/∂m, where
the bulk Hamiltonian density H(m,p) = pm′ − L(m,m′) =
p2/2 − xm2/2 − m4/4 + Bm is the Legendre transform of
L. The Hamiltonian H coincides with the dimensionless,
rescaled film pressure (L4/	0)pf [Eq. (92)] and is, as the
latter, conserved for a solution of the Hamiltonian equations
of motion [the conservation of the “energy” H also follows
from Noether’s theorem due to the absence of an explicit
dependence on ζ of the bulk free-energy density in Eq. (23)].
Numerically solving the Hamiltonian equations of motion via
a symplectic integration method guarantees the conservation
of H and allows us to directly obtain the film pressure pf as
pf = (	0/L

4)H(m,p). This approach avoids the numerically
inaccurate calculation of the derivative m′. If, instead, the OP
profile is obtained via a direct numerical integration of the
ELE in Eq. (24) or by the minimization of the functional
in Eq. (19), one can still obtain reliable results for the film
pressure, provided the latter is computed as an average over
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only a small interval near the center of the film where the OP
profile is approximately constant and m′ is small. We have
found that both approaches yield similar results, except for
(+−) boundary conditions and large values of the bulk field,
for which a symplectic integration method has to be used in
order to accurately capture the film pressure.

We first study the amplitudes of the CCFs, defined by
[compare Eqs. (83), (84), (87), and (88)]

	
(c)
++(H1) ≡ �

(c)
++(x = 0,M = 0,H1), (121a)

	̃
(gc)
++(H1) ≡ �

(gc)
++(x = 0,B = B̃(H1),H1), (121b)

	
(c)
+−(H1) ≡ �

(c)
+−(x = 0,M = 0,H1), (121c)

	̃
(gc)
+−(H1) ≡ �

(gc)
+−(x = 0,B = B̃(H1),H1) = 	

(c)
+−(H1).

(121d)

In Eqs. (121b) and (121d), B is chosen as a function B̃(H1)
such that, at x = 0, one has M = 0. For (+−) boundary
conditions, this is realized for B = 0 independently of H1,
so that 	

(c)
+− = 	̃

(gc)
+− . Here the distinction of being canonical

or grand canonical refers to the nature of the coupling between
film and bulk: In the canonical case, film and bulk are taken
to have the same mean mass density ϕ, while in the grand
canonical case they have the same chemical potential μ [see
also the discussion related to Eq. (96)]. We therefore use a
tilde in Eq. (121b) in order to distinguish 	̃

(gc)
++ from the more

common grand canonical critical Casimir amplitude

	
(gc)
++(H1) ≡ �

(gc)
++(x = 0,B = 0,H1) (122)

defined at a fixed bulk field B = 0. Note that the amplitudes
defined in Eq. (121) carry a dependence on H1. As discussed
below, for (++) boundary conditions within MFT, the con-
straint M = 0 causes the limit H1 → ∞ to be ill defined
(see also Sec. II E). For (+−) boundary conditions, the limit
H1 → ∞ is well defined within MFT even in the presence of
a mass constraint M = 0. In the grand canonical ensemble,
the critical Casimir amplitudes 	

(gc)
++ and 	

(gc)
+− are finite in the

limit H1 → ∞ and are known analytically [79],

	
(gc)
++,∗ ≡ 	

(gc)
++(H1 → ∞) = �

(gc)
++(x = 0,B = 0,H1 → ∞)

= −4	0K
4(1/

√
2) � −47.3	0, (123a)

	
(gc)
+−,∗ ≡ 	

(gc)
+−(H1 → ∞) = �

(gc)
+−(x = 0,B = 0,H1 → ∞)

= −4	
(gc)
++,∗ � 189	0, (123b)

	
(c)
+−,∗ ≡ 	

(c)
+−(H1 → ∞) = �

(c)
+−(x = 0,M = 0,H1 → ∞)

= 	
(gc)
+−,∗ ≡ 	+−,∗ , (123c)

where K is the complete elliptic integral of the first kind [134]
and 	0 is defined in Eq. (18). Equation (123a) allows one
to express the amplitude 	0 used in the present study in
terms of |	++| ≡ |	(gc)

++,∗|, which has been used previously
and which, beyond MFT, is a universal number. As a check,
we verified that in terms of g these values of 	

(gc)
++,∗ and 	+−,∗

are accurately recovered by our numerical solutions. Within
linear MFT discussed in the previous section, one has 	

(c)
++ =

	0H
2
1 /6 [Eq. (106)] and 	

(c)
+− = 	0H

2
1 /2 [Eq. (110b)],

whereas the grand canonical amplitude 	
(gc)
++ diverges for

x → 0 [see Eq. (104a)]. Importantly, within nonlinear MFT,
the CCF remains finite for x → 0 in both ensembles, justifying
the definitions in Eq. (121).

Figure 12 shows the amplitudes of the CCF defined in
Eq. (121) as a function of the scaled surface field H1 within
nonlinear MFT, as obtained from the numerical solution.
Considering first (++) boundary conditions [panels (a) and
(b)], we observe that, consistently with linear MFT [see
Fig. 11(b)], the canonical CCF is repulsive, whereas the
grand canonical CCF, under the same condition of M = 0, is
attractive. Furthermore, we have seen previously [see Eq. (72)]
that, for (++) boundary conditions and within MFT, the value
of the OP at the center of the film diverges logarithmically for
H1 → ∞, as a consequence of imposing a certain value of the
mass M. As shown in Fig. 12(a) for the case M = 0, also the
amplitude 	

(c)
++ of the canonical CCF diverges logarithmically

upon increasing H1, implying that also for this quantity the
limit H1 → ∞ is ill defined. The amplitude 	̃

(gc)
++ [Fig. 12(b)],

obtained by imposing the same chemical potential in both
the film and the bulk under the additional constraint M = 0
in the film, depends nonmonotonically on H1 and vanishes
in the limit H1 → ∞. The observed limiting behaviors can
be quantitatively understood from the known behavior of the
OP at the center of the film [Eqs. (70) and (72)] and of
the constraint-induced field B̃ [Eqs. (73) and (74)]: Since
the stress is constant across the film (and therefore can be
conveniently evaluated at its center, where m′ = 0) and p

(c)
b =

0 in the present case [φb = 0 in Eq. (96) for τ = ϕ = 0], from
Eq. (92) one asymptotically finds in the canonical ensemble
for x = M = 0,

	
(c)
++/	0 = L4

	0

(
p

(c)
f − p

(c)
b

) = −1

4
m4(0) + B̃m(0)

�
{ 1

6H 2
1 , for H1 → 0,

3
4 s4 (ln H1)4, for H1 → ∞,

(124)

in agreement with the numerical data shown in Fig. 12(a).
The numerical constant s � 1.2 is defined in Eq. (72), where
it has been estimated from a fit. The above prediction for
H1 → 0 is consistent with Eq. (106), confirming that linear
MFT provides a reliable approximation of the full mean-field
behavior of the CCF in the canonical ensemble for sufficiently
small values of x and M. In the grand canonical case under
the condition M = 0 [Fig. 12(b)], the chemical potential
μ̃ = (	1/2

0 /L3)B̃(M = 0) [Eq. (22)] of the film determines
the pressure p

(gc)
b [Eq. (94)] via the bulk equation of state

[Eq. (95)]. Asymptotically, one finds

L4

	0
p

(gc)
b

∣∣∣∣
M=0

� 3

4
B̃4/3

�
{

(3/22/3)H 4/3
1 , for H1 → 0,

(3/4)s4 (ln H1)4, for H1 → ∞,
(125)

where Eqs. (73) and (74) have been used, respectively. Since,
under the same thermodynamic conditions, one generally
has p

(c)
f = p

(gc)
f [Eq. (90)], in the case M = 0 the limiting

behaviors obtained in Eq. (124) apply to p
(gc)
f as well. This
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FIG. 12. Dependence of the critical Casimir amplitudes 	
(c)
++, 	̃

(gc)
++, 	

(gc)
++ , and 	+− = 	

(c,gc)
+− = 	̃

(c,gc)
+− [Eqs. (121) and (122)] on the

adsorption strength H1 for a film at bulk criticality x = 0 and for vanishing imposed total mass M = 0 [except (c)] within nonlinear MFT.
The amplitudes in panels (a) and (b) are normalized by the mean-field amplitude 	0 defined in Eq. (18), while the amplitudes in panels (c)
and (d) are normalized by their limits 	++,∗ and 	+−,∗ for H1 → ∞ given in Eqs. (123a) and (123c), respectively. The symbols represent
the data obtained by numerically solving the ELE in Eq. (24). In panel (b), the grand canonical amplitude 	̃

(gc)
++ is computed with a bulk field

B(H1) chosen such as to satisfy the constraint M = 0 and has to be distinguished from the amplitude 	
(gc)
++ [Eq. (122)] defined at a fixed bulk

field B = 0, which is shown in (c). The dashed and dotted lines represent the analytical predictions of Eqs. (124), (126), (127), and (110b),
as indicated by the corresponding labels. Panels (a) and (b) show that, for (++) boundary conditions, the limit H1 → ∞ is ill defined in the
presence of a mass constraint M = 0, in contrast to the situation with a fixed bulk field B = 0 [panel (c)], for which the critical Casimir
amplitude attains a finite limit for H1 → ∞ [79]. For (+−) boundary conditions, as illustrated in panel (d), the limit H1 → ∞ is well defined,
too, both in the canonical case and in the grand canonical case.

leads to the following asymptotic behaviors of the grand
canonical CCF for x = M = 0:

	̃
(gc)
++/	0 = L4

	0

(
p

(gc)
f − p

(gc)
b

)
�
{
−(3/22/3)H 4/3

1 , for H1 → 0,

0, for H1 → ∞,
(126)

which is confirmed by the numerical data in Fig. 12(b). We
mention that the analysis of the numerical data in Fig. 12(b)
further reveals that 	̃

(gc)
++(H1 → ∞) vanishes algebraically as

	̃
(gc)
++ ∝ −H−2

1 . In the grand canonical case, for a fixed bulk
field B = 0 in Fig. 12(c) the critical Casimir amplitude 	

(gc)
++

is shown as function of H1. As expected, the analytically
predicted asymptotic mean-field value 	

(gc)
++,∗ is approached

for H1 → ∞. In contrast to the constrained case, linear MFT
is not applicable in the unconstrained situation for (++)
boundary conditions because the corresponding OP profile
[Eq. (31)] diverges at x = 0. Therefore, the behavior exhibited
in Fig. 12(c) corresponds to a nonlinear effect even for small

H1. In order to rationalize the scaling behavior in this limit,
we note that [compare Fig. 4(a)] for small H1 the OP profile is
approximately constant across the film. Hence, one may argue
[73] that the surface field acts similarly to a bulk field, such
that the value of the OP at the center of the film is given by
m3(0) ∼ H1, in accordance with Eq. (24). Since p

(gc)
b = 0 for

τ = μ = 0 [see Eqs. (94) and (95)], Eqs. (79) and (92) yield
the scaling behavior of the grand canonical critical Casimir
amplitude for x = B = 0 and H1 → 0 [73],

	
(gc)
++/	0 � 3

4H
4/3
1 , (127)

in agreement with the data in Fig. 12(c). In the case of (+−)
boundary conditions, the canonical critical Casimir amplitude
	

(c)
+−, which coincides with its grand canonical counterpart

studied in Ref. [73], is shown in Fig. 12(d) as a function of
H1 for M = 0. For H1 � 10, 	

(c)
+− follows the prediction of

linear MFT in Eq. (110b), while for H1 → ∞ it approaches
the limit 	

(c)
+−,∗ given in Eq. (123c).

Since, as discussed above, the scaling of the CCF, under
the mass constraint M = const for (++) boundary conditions
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FIG. 13. Critical Casimir force in a film with (++) boundary conditions in the grand canonical and the canonical ensembles within nonlinear
MFT, computed according to Eq. (79) via the stress tensor and the numerically determined OP profiles. (a) Dependence of the (differently)
normalized scaling functions �(c,gc) of the CCF [see Eqs. (83) and (87)] on the scaled temperature x = (L/ξ

(0)
+ )1/ν t for vanishing mass M = 0.

The inset shows the normalized scaling functions (with a minus sign for �(gc), i.e., −�(gc)) on a double-logarithmic scale together with the
predictions of linear MFT [Eqs. (104a) and (104b), corresponding to the dotted and the dashed lines, respectively]; their asymptotic decay
is given by Eq. (105). (b)–(d) Dependence of the CCF scaling functions on the scaled temperature x and on the scaled bulk field B. Curves
of constant total mass M (compare Fig. 8) are indicated by the black isolines labeled by the corresponding value of M. Note that the grand
canonical CCF is negative over the whole domain plotted in panel (b), but the linear color scale is insufficient to resolve its strong variation.
Therefore, panel (c) shows the same data on a logarithmic scale. All scaling functions are normalized by the absolute value of the appropriate
amplitude, i.e., 	(c)

++ [Eq. (121a)] and 	
(gc)
++,∗ [Eq. (123a)], respectively. The locations of the bulk and the capillary critical point in panels (b)–(d)

are indicated by a dot (•) and a cross (×), respectively, while the thick line ending at the cross is the line of first-order capillary condensation
transitions [see also Fig. 8(a)]. In (a), H1 = 1000 has been used and H1 � 5100 in (b)–(d), representing the strong adsorption regime.

and large H1, is essentially a consequence of the characteristic
shape of the OP profile in that limit, it is expected that the
scaling behavior of the amplitudes exhibited in Figs. 12(a)
and 12(b) will be obtained asymptotically in the limit H1 → ∞
for any nonzero and finite value of M. We thus conclude that,
for (++) boundary conditions and within MFT, the presence
of a mass constraint M = const introduces a nontrivial
dependence of the amplitude of the CCF on the surface
adsorption strength H1, rendering the limit H1 → ∞ to be
ill-defined in this case.

Figure 13(a) shows the scaled temperature dependence of
the scaling functions of the CCF computed from Eqs. (79),
(83), and (87) within nonlinear MFT in a film with (++)
boundary conditions, M = 0, and a fixed value of the surface
field H1. As before, in the canonical ensemble, film and
bulk are assumed to have the same mean mass density
(here ϕ = 0), while in the grand canonical ensemble, they
have the same chemical potential. In the case of the grand

canonical ensemble, the constraint M = 0 is achieved for
a certain field B = B̃(x,H1) [see Figs. 13(b)–13(d)]. We
find that the repulsive character of the canonical CCF and
the attractive one of the grand canonical CCF persists for
all values of x considered here. In agreement with linear
MFT [see Fig. 11(b) and Eq. (105b)], the canonical CCF
decays as �(c)(x � 1) � 2	0H

2
1 /x for large x (see the inset),

while the grand canonical CCF vanishes asymptotically as
�(gc)(x � 1) � −2	0H

2
1 exp(−√

x) [Eq. (105a)]. We remark
here that for B = 0, large H1, and intermediate values of x, our
numerical solutions follow, as a function of x, the asymptotic
prediction given in Eq. (111a) which, in turn, has been derived
for H1 → ∞ within nonlinear MFT in Ref. [79]. For any finite
H1, however, the ultimate decay of �(gc) for large x is governed
by the solution of the linear MFT. In contrast to the linear
case, the grand canonical CCF remains finite at criticality.
At x � −100, the capillary condensation line is reached for
the film setup considered in Fig. 13(a) [compare panels (b)
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FIG. 14. (a) Pressure pf [see Eq. (92)] in films of fixed thicknesses L and 10L, respectively, with (++) boundary conditions, as well as
the grand canonical (p(gc)

b ) and canonical (p(c)
b ) bulk pressures, shown as functions of the imposed mass density ϕ = �/L of the film at the

bulk critical point t = 0. The bulk pressure p
(gc)
b is a function of the chemical potential μ of the film and, therefore, depends implicitly also

on L. Since p
(gc)
b (10L) practically coincides with pf (10L), only p

(gc)
b (L) is plotted here. (b) Canonical CCF K̂(c) as defined by Eq. (129),

obtained by subtracting from pf both the bulk and the “surface” pressures [with p(c)
s given by Eq. (128)], as a function of the scaled mass

density M [Eq. (9e)]. The inset compares the dependence on M of the surface pressure p(c)
s [Eq. (128), dashed line] with the canonical CCF

K(c) = pf − p
(c)
b defined by Eq. (79) (the data are normalized as in the main panel). Accordingly, the curve in the main panel is the difference

between the solid blue and the dashed red curve in the inset. The pressures p and the CCF are all divided by kBT and are normalized by the
value of the critical Casimir amplitude 	

(c)
++ [Eq. (121a)]. Since both pressure (if expressed as a function of ϕ/φ

(0)
t ) and 	

(c)
++ are proportional

to 	0, their ratio is independent of g. All data have been obtained from a numerical integration of the ELE [Eqs. (20) and (21)]. For illustrative
purposes, we have used the parameter values L/ξ

(0)
+ = 1 and H1 = 100. The basic features shown here persist for other parameter values, but

are less pronounced for larger L or smaller H1.

and (c) therein]. Note that �(gc) is normalized by |	(gc)
++,∗|, but

�(c) is normalized by |	(c)
++| because 	

(c)
++(H1 → ∞) diverges

[Fig. 12(a)] so that 	
(c)
++,∗ = ∞.

In Figs. 13(b)–13(d), the CCF within nonlinear MFT is
displayed for (++) boundary conditions and for various values
of the total mass M. In order to better visualize the strong
variation of the grand canonical CCF, panel (c) shows the
same data as panel (b) but on a logarithmic color scale. While
the grand canonical CCF K(gc) is sizable only within a small
region below the bulk critical point (see panels (b) and (c) and
compare Refs. [90,102,124]), the canonical CCF K(c) has a
significant strength across the whole phase diagram, decaying
only rather slowly for large scaled temperatures x [see panel
(d)]. In addition, Figs. 13(b)–13(d) explicitly demonstrate that
the film pressure varies discontinuously upon crossing the
capillary phase coexistence curve (thick line ending at a cross,
×). Within nonlinear MFT, K(gc) acquires a dependence on
the bulk field, but remains attractive over the entire phase
diagram [panel (b)]. By contrast, as illustrated in panel (d),
the canonical CCF K(c), as defined by Eq. (79), changes its
sign from being repulsive (M � 5) to attractive (M � 5),
depending on the total mass M (indicated by the isolines).
Remarkably, the decrease of the singular canonical CCF upon
increasing the mean density M in the film is opposite to
the commonly experienced behavior of a fluid, the pressure
of which increases upon increasing the density. (One should
keep in mind, however, that the total pressure is the sum
of an analytic background contribution and of the singular
contribution considered here.)

In order to gain further insight into the behavior of the CCF
for large values of the mass, in Fig. 14(a) we compare the
pressure pf of a film with (++) boundary conditions with

the canonical and the grand canonical bulk pressure p
(c)
b and

p
(gc)
b , respectively, as a function of ϕ = �/L at the bulk critical

temperature (t = 0). To properly elucidate the dependence of
the film pressure pf on the film thickness L, we consider
here quantities which are dimensionless but not scaled by
L [see Eq. (22)]. The grand canonical bulk pressure p

(gc)
b ,

computed for a chemical potential μ which ensures the given
density ϕ in the film, deviates from the film pressure pf [recall
that p

(c)
f = p

(gc)
f ≡ pf ; see Eq. (90)] only in a limited region

(around ϕ/φ
(0)
t � 3 for the present setting). This marks the

region where the grand canonical CCF K(gc) = pf − p
(gc)
b is

quantitatively significant. For t = 0, we obtain, from Eqs. (94)
and (95), p(gc)

b = (3/4)	1/3
0 μ4/3, where μ = μ̃(t = 0,ϕ,h1,L)

is the (numerically determined) chemical potential of the film
(compare Eq. (36) and note that p

(gc)
b ∝ 	0 if considered

as a function of ϕ/φ
(0)
t [135]). The grand canonical bulk

pressure p
(gc)
b depends on μ and becomes, upon imposing

μ = μ̃, an implicit function of the thermodynamic parameters
t, ϕ, h1, and the thickness L of the film [recall also the
remark after Eq. (97)]. It approaches pf for sufficiently large
values of ϕ [see Fig. 14(a)]. In contrast, in the canonical
ensemble, the bulk pressure p

(c)
b is the one of a uniform

system having the same mean mass ϕ as the film, which, for
t = 0, is simply given by p

(c)
b = 3ϕ4/(4	0) [see Eq. (96) and

note that p
(c)
b = (3/4)	0(ξ (0)

+ )−4(ϕ/φ
(0)
t )4] and which deviates

significantly from pf even for large |ϕ|. We shall see below
that this deviation, which turns out to increase ∝ϕ, causes
the strong dependence of K(c) on the total mass in the film
already noted in Fig. 13(d). The canonical film pressure pf ,
which equals the grand canonical film pressure [see the full
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purple and the gray dash-dotted curves representing pf (L) and
pf (10L), respectively, in Fig. 14(a)] approaches the pressure
p

(c)
b of a uniform bulk system (green dashed curve) only as

the thickness L of the film increases (e.g., from L to 10L),
becoming identical to p

(c)
b for L → ∞.

In order to be applicable to large values of ϕ, the linear
mean-field calculations of the previous section have to be
extended, as discussed in Appendix B. This yields the result in
Eq. (B16) for the canonical CCF. According to that analysis,
the asymptotic behavior of K(c) for large |ϕ| is governed by
the term

p(c)
s ≡ −2h1ϕ

L
= −2H1M

	0

L4
, (128)

which is a surfacelike contribution to the pressure, as was
already suggested by Eqs. (117) and (118). This is confirmed
by the inset of Fig. 14(b), where the canonical CCF K(c) =
pf − p

(c)
b is compared with p(c)

s for t = 0 as a function of the
scaled mass density M. Indeed, the dependence of K(c) on
M displayed in Fig. 13(d) is consistent with the dependence
of p(c)

s on M. The surface pressure p(c)
s has been identified

in Sec. III B 2 to stem from a surface contribution to the
free energy and is a genuine consequence of the canonical
constraint. In particular, it contributes to the experimentally
measurable canonical CCF for systems in which the bulk fluid
exhibits no preferential adsorption (i.e., H1 = 0) at the outer
surfaces bounding the film. The canonical CCF K̂(c) stemming
only from the residual finite-size free energy can be obtained
by subtracting from pf , in addition to p

(c)
b as required by

Eq. (79), also the surface pressure p(c)
s :

K̂(c) ≡ pf − p
(c)
b − p(c)

s . (129)

In the main panel in Fig. 14(b), K̂(c) is plotted as a function
of the mass M for t = 0. It turns out that the canonical
CCF defined this way indeed tends to zero for large absolute
values of M. In Fig. 14(b), the decay of K̂(c) upon increasing
M is slower than exponential, but the agreement with the
perturbative result in Eq. (B16) is not yet reached. Actually,
we expect the linear mean-field behavior to be attained only
for values of M significantly larger than those covered in
Fig. 14(b). However, these larger ones are beyond the reach of
our numerical approach. The structural behavior around M =
0 exhibited in the main panel of Fig. 14(b) should be considered
with caution, because the expression for p(c)

s in Eq. (128) is
based on linear MFT, which is not expected to be valid around
criticality for the strong surface fields considered here.

Figure 15 illustrates the behavior of the CCF within MFT
for (+−) boundary conditions. In contrast to the case of (++)
boundary conditions (Fig. 13), the CCF attains a well-defined
limit for H1 → ∞ [see Fig. 12(d)] even under the mass
constraint. We therefore normalize the scaling functions by
	+−,∗ given in Eq. (123c). First, considering in Fig. 15(a)
the case of vanishing mass, M = 0, we find that in this case
the canonical and grand canonical CCFs are identical for all
values of the scaled temperature x studied. This is expected
because, above the capillary critical temperature (which is
located at a large negative value of x not covered by the
present data), M = 0 is realized by B = 0 in the film as
well as in the bulk for both ensembles. The value of H1

chosen in panel (a) is sufficiently large so that the scaling
functions �

(gc)
+−(x,B,H1) fall on top of the analytical prediction

of Ref. [79] derived for H1 = ∞. This finding also provides
a welcome, independent check of our numerical calculations.
For M = 0, the perturbative solution in Eq. (59) as well as
the solution of the nonlinear MFT depicted by the solid curves
in Fig. 8(b) indicate that the constraint field B̃ is different
from the corresponding one of a homogeneous system with
the same mass density [corresponding to B̃hom in Fig. 8(b)].
This implies that the bulk pressures and hence the CCFs differ
for the canonical and grand canonical ensembles. Indeed, the
difference in the CCFs is clearly exhibited by comparing panel
(b) [highlighted on a logarithmic scale in panel (c)] with
panel (d) in Fig. 15. Generally, for (+−) boundary conditions,
both canonical and grand canonical CCFs K(c) and K(gc) are
repulsive over the whole range of parameters considered.
However, similarly to the case of symmetric boundary fields
(Fig. 13), K(gc) is largest around the line B = 0, whereas K(c)

increases significantly for larger, nonzero values of M.
The data shown in Fig. 15(d) pertain to the strong adsorption

regime (H1 → ∞), for which it turns out to be numerically
difficult to study large values of M. Therefore, in Fig. 16 we
show the scaling function �

(c)
+− as a function of M at bulk

criticality but for a smaller value of |H1|. Similarly to the
canonical CCF shown in Fig. 14(b), �

(c)
+− attains a maximum

at a nonzero value of |M| and decreases for larger |M|; the
latter feature is in agreement with the predictions of linear MFT
discussed in Appendix B. However, the range of M covered in
Fig. 16 does not allow us to reliably test the detailed prediction
given in Appendix B concerning the exponential decay of �

(c)
+−

as a function of the parameter x̂ ≡ √
x + 3M2 for x̂ � 1.

Upon increasing |H1|, we find that the pronounced maxima of
�

(c)
+− move towards larger values of |M|, but the shape of the

curve remains essentially the same.

C. Monte Carlo simulations of the 3D Ising model

In order to assess the relevance of thermal fluctuations
for the CCFs discussed above, we have carried out MC
simulations of the three-dimensional Ising model [Eq. (76)]
in film geometry. The basic simulation setup is described in
Sec. II F. The CCF at an inverse temperature β = 1/(kBT ) on
a lattice with transverse area A = LxLy and thickness L is
defined in the two ensembles via finite differences following
Refs. [90,136,137], i.e.,

K(gc)(β,μ,h1,A,L)= −β	F (gc)(β,μ,h1,A,L)

A
+βf

(gc)
b (β,μ),

(130a)

K(c)(β,ϕ,h1,A,L) = −β	F (c)(β,ϕ,h1,A,L)

A
+ βf

(c)
b (β,ϕ),

(130b)

where 	F (gc,c)(β,μ|ϕ,h1,A,L) ≡ F (gc,c)(β,μ|ϕ,h1,A,L + 1
2 )

− F (gc,c)(β,μ|ϕ,h1,A,L − 1
2 ) is the free-energy difference and

the indicated dependence on μ or ϕ pertains to the grand
canonical and canonical cases, respectively. The bulk free
energy fb coincides with the negative bulk pressure. Moreover,
we have reinstated explicitly the transverse area A. The
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FIG. 15. Critical Casimir force in a film with (+−) boundary conditions in the grand canonical and the canonical ensembles within nonlinear
MFT, computed according to Eq. (79) via the stress tensor and the numerically determined OP profiles. (a) Dependence of the normalized
scaling functions �

(gc,c)
+− of the CCF [see Eqs. (83) and (87)] on the scaled temperature x = (L/ξ

(0)
+ )1/ν t for vanishing mass M = 0. The dotted

curve represents the analytical expression of �
(gc)
+− for H1 = ∞ [79], which coincides with the numerical data for �

(c)
+− and �

(gc)
+− with M = 0,

indicated by the indistinguishable solid and dashed lines, respectively, across the considered range of x. Panels (b)–(d) show the dependencies
of the CCF scaling functions �

(gc,c)
+− on the scaled temperature x and on the scaled bulk field B. Curves B = B̃(x) of constant total mass M

[see also Fig. 8(b)] are indicated by the black isolines labeled by the corresponding value of M. M = 0 corresponds to B̃(x) = 0. In order
to highlight the variations of the grand canonical CCF, panel (c) shows the same data as panel (b), but on a logarithmic scale. The scaling
functions are normalized by the critical Casimir amplitude 	+−,∗ given by Eq. (123c). The location of the bulk critical point is indicated by •.
The strength of the surface field is taken to be |H1| � 5100 for all four panels.

thickness L ≡ Lz − 1
2 , to which the CCF is formally attributed,

is half-integer because it is expressed via the difference of slabs
of actual thicknesses Lz and Lz − 1. In general, half-integer
values L = Lz − 1

2 are used for the variable in terms of which
the CCF is expressed, while integer values Lz are used for the
thickness of the system in which computations are performed.

Before proceeding, here we derive the expressions which
follow from the computational scheme described in Eq. (130)
for the high-temperature limit (β → 0) of the free energy and
of the CCF. These results will be useful for interpreting our
MC results further below, because there we vary the scaling
variable x via changing the reduced temperature t in our sim-
ulations. (Accordingly, the limit x → ∞ is realized by taking
the limit β → 0.) For β → 0 and finite bulk and surface fields,
the grand canonical partition function is of purely entropic
nature and is given by the number of spin configurations,
Z(gc) = 2ALz . This yields a free energy βF (gc) = −ALz ln 2
for β → 0 and, correspondingly, a bulk free-energy density
βf

(gc)
b = limALz→∞ βF (gc)/(ALz) = − ln 2. Accordingly, in

the limit β → 0 the two terms in Eq. (130a) cancel so that
we obtain, as expected, a vanishing CCF, K(gc)(β → 0) = 0.
In contrast, in the canonical ensemble with vanishing total
magnetization � = 0, an equal number ALz/2 of up and down
spins have to be distributed on the lattice, yielding a total
number Z(c) = (ALz)!/[(ALz/2)!]2 of possible configura-
tions. Accordingly, employing the Stirling approximation, the
high-temperature limit of the canonical free energy is given by

βF (c)(ϕ = 0,A,Lz)|β→0 � −ALz ln 2 + 1
2 ln(πALz/2),

(131)

whereas the corresponding bulk free-energy density is
βf

(c)
b = limALz→∞ βF (c)/(ALz) = − ln 2, coinciding, as

expected, in this limit with βf
(gc)
b . Hence, Eq. (130b) yields

the canonical CCF

K(c)(β → 0,ϕ = 0,A,Lz) � − 1

2A
ln

Lz

Lz − 1
(132)
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FIG. 16. Scaling function �
(c)
+− of the canonical CCF as function

of the mass M for (+−) boundary conditions and at bulk criticality
t = 0. �(c)

+− is symmetric inM and decays towards zero for |M| � 1.
The data have been obtained from a numerical integration of the ELE
[Eqs. (24) and (25)] for |H1| = 100. Due to this rather small value of
|H1|, the amplitude of �

(c)
+− at M = 0 has not yet reached the value

	+−,∗ corresponding to the limit H1 → ∞ [see Figs. 12(d), 15(a),
and 15(d)] in which �

(c)
+−(M = 0)/	+−,∗ = 1.

in the high-temperature limit. The above reasoning can be
easily extended to nonzero total magnetizations �, for which
one obtains a value of K(c)(β → 0) which depends on �.
Thus, in the high-temperature limit and for Ising slabs of finite
extent, the canonical CCF computed according to Eq. (130b)
generally attains a finite value, which, however, vanishes if
either A → ∞ or Lz → ∞.

In the grand canonical ensemble, 	F (gc) is computed in our
MC simulations via the coupling parameter approach [136].
For (++) boundary conditions under the constraint � = 0, the
computation of the grand canonical bulk free energy f

(gc)
b in

Eq. (130a) turns out to be difficult. In this case, we consider
instead the difference between the CCFs of a film of thickness

L and of a significantly thicker one, which we take here to
have a thickness of 2L:

gcas(L) ≡ K(gc)(L) − K(gc)(2L). (133)

In this difference, the contribution of f
(gc)
b present in Eq. (130a)

drops out, leaving only the free-energy differences 	F (gc)

for the two film thicknesses. It can be shown [136] that
this function gcas approximates well the true CCF K(gc). (By
following the approach used in Ref. [136], this approximation
can be systematically improved.) In a few cases we have
checked this also for the present data by directly computing
the bulk free-energy density fb via the energy integration
technique (see Ref. [90] for details). For (+−) boundary
conditions, we generally use Eq. (130a) directly.

In the canonical ensemble we make use of the thermo-
dynamic relation ∂(βF )/∂β = E between the canonical free
energy F and the mean energy E of a system and compute the
free energy F (c) entering into Eq. (130b) via integration of E

over the inverse temperature β, starting from the known value
of F (c) in the high-temperature limit:

βF (c)(β,ϕ,h1,A,L) = βF (c)(β,ϕ,h1,A,L)|β→0

+
∫ β

0
dβ ′ E(β ′,ϕ,h1,A,L). (134)

In the case ϕ = 0, which we focus on here, βF (c)|β→0 is given
by Eq. (131). The energy E of the system is computed by using
the Kawasaki method with multispin coding (5×105 MC steps,
with one step being an attempt of LxLyLz updates) for 100
different values of the inverse temperature β. Subsequently,
the numerical integration according to Eq. (134) is carried out
by using a cubic spline interpolation of these data.

The scaling form (for a film in d = 3) of the CCF in the
grand canonical and canonical ensembles is given in Eqs. (83)
and (87), respectively, which we rewrite here in a slightly
modified form in order to account for a number of simulation-
specific issues:

K(gc)(β,μ,h1,A,L) = β−1L−3
eff �

(gc)

⎛
⎝x = t

(
Leff

ξ
(0)
+

)1/ν

,B = μ

(
Leff

ξ
(0)
μ

)	/ν

,H1 = h1

(
Leff

l
(0)
h1

)	1/ν

,ρ

⎞
⎠, (135a)

K(c)(β,ϕ,h1,A,L) = β−1L−3
eff �

(c)

⎛
⎝x = t

(
Leff

ξ
(0)
+

)1/ν

,M = ϕ

(
Leff

l
(0)
ϕ

)β/ν

,H1 = h1

(
Leff

l
(0)
h1

)	1/ν

,ρ

⎞
⎠. (135b)

Here �(gc,c) are scaling functions, t = T/Tc − 1 is the reduced
temperature, and ρ ≡ L/

√
A is the aspect ratio of the simu-

lation box. The values of the critical exponents are reported
in Table II and the length scales are stated in Sec. II F. As
discussed there, 	1 ≡ 	ord

1 is the appropriate surface critical
exponent and l

(0)
h1

≡ l
(0)
h1,ord � 0.21 is the associated length scale

for the Ising model [Eq. (76)] employed here. We use finite
values h1 = ±1 of the surface fields in our MC simulations.
Corrections to scaling, inter alia, due to using these finite
values of the boundary fields, are accounted for by introducing

an effective film thickness Leff = L + δL, with δL = 2.60
and δL = 2.65 for (++) and (+−) boundary conditions,
respectively [89,90,115,138]. For reasons of simplicity, we
focus here only on the case of zero total magnetization, � = 0.
In the grand canonical ensemble, this is realized via having
μ = 0 and requires, for each value of the temperature β−1, the
computation of the corresponding value of μ in accordance
with the prescription given in Sec. II F.

Figure 17 shows the numerical results for the CCF scaling
functions [Eq. (135)] obtained from MC simulations in the

022103-32



CRITICAL ADSORPTION AND CRITICAL CASIMIR . . . PHYSICAL REVIEW E 94, 022103 (2016)

20 10 0 10 20 30 40
50
40
30
20
10
0
10
20

x Leff Ξ 0 1 Ν t

,
gc

0

can.

g.c.
101 102 103

10 2
10 1
100
101

x 2

can.g.c.

(a)

can. g.c.

20 0 20 40 60 80
0

2

4

6

8

x Leff Ξ 0 1 Ν t

,
gc

0

20 0 20 40 60
10 2

10 1

100
101

(b)

FIG. 17. Scaling functions �(gc,c) of the CCF obtained from MC simulations of the canonical and grand canonical Ising model in a three-
dimensional film of size Lx×Ly×Lz = 32×32×8 for a vanishing total magnetization � = 0 and for (a) (++) and (b) (+−) boundary conditions.
The effective thickness of the film amounts to Leff = Lz + 2.60 = 10.60 and Leff = Lz + 2.65 = 10.65 for (++) and (+−) boundary conditions,
respectively, both in the canonical and in the grand canonical ensembles. In order to highlight the approach of the canonical CCF towards its
asymptotic value for large x [Eq. (132)], the insets show, presented differently than in the main panel, |�(gc,c)

++ (x) − �
(gc,c)
++ (x → ∞)|/|	(gc)

++,∗| on
(a) a double-logarithmic and (b) a semilogarithmic scale. In the insets, the dashed line indicates a behavior ∝1/x2 (obtained from a fit) in (a)
and ∝x2−α exp(−xν) [Eq. (111b)] in (b), where the values α � 0.11 and ν � 0.63 for the three-dimensional Ising bulk universality class are
used. Error bars are of the order of the symbol size and not shown. Here the variation of x is realized by changing t at fixed Leff . The scaling
functions are normalized by the absolute value of the grand canonical critical Casimir amplitude 	

(gc)
++,∗ � −0.75 obtained without constraint

for T = Tc, μ = 0, and h1 → ∞ in the three-dimensional Ising model [137].

setting described above with a system size of Lx×Ly×Lz =
32×32×8 (in units of the lattice spacing), for vanishing
total magnetization � = 0 and for (a) (++) and (b) (+−)
boundary conditions. These scaling functions are computed
based on Eqs. (130), (134), and (135), with the exception
of �

(gc)
++ , which we obtained from the approximation gcas � K

[Eq. (133)], as described above. The scaling functions reported
in Fig. 17 are normalized by the absolute value of the grand
canonical critical Casimir amplitude 	

(gc)
++,∗ ≡ �(gc)(x = 0,

B = 0,H1 � 1,ρ 
 1) � −0.75 for the three-dimensional
Ising model [137].

Confirming the basic feature of MFT presented in Fig. 13,
the CCF inferred from the MC simulations for (++) bound-
ary conditions is repulsive for the canonical ensemble and
attractive for the grand canonical ensemble [Fig. 17(a)].
The results for the latter case are consistent with previous
MC studies of CCFs in the presence of a bulk magnetic
field [90]. From our data we extract the critical Casimir
amplitude

	
(c)
++,∗ ≡ �(c)(x = 0,M = 0,H1 � 1,ρ = 1/4)

� −16.9	
(gc)
++,∗ � 12.7 (136)

for the three-dimensional Ising model in the canonical en-
semble. Within the considered range of x in the supercritical
region, we cannot unambiguously determine the precise decay
behavior of �(gc) upon increasing x, although a simple
exponential decay appears to describe the data rather well
[139]. In the canonical ensemble, in contrast, the CCF decays
significantly slower, as illustrated in the inset of Fig. 17(a).
However, instead of the decay ∝1/x predicted by MFT
[Eq. (105b) and Fig. 13(a)], we infer from the present data
that the high-temperature limit [Eq. (132)] is approached as
�(c)(x) − �(c)(x → ∞) � 2.5×105|	(gc)

++,∗|/xn, with n � 2,

which, together with the numerical prefactor, has been ob-
tained from a fit. We remark that, upon increasing the range of x

included in the fit, the obtained effective exponent n decreases
slightly. A discrepancy between this value for n obtained for
the Ising model and the mean-field prediction n = 1 should not
be surprising. In fact, analogous differences occur also in the
dependence of �(gc) on x as described in Eq. (111). However,
the equivalent expressions in the canonical case are presently
not available and deserve further studies.

As shown in Fig. 17(b), for (+−) boundary conditions and
� = 0 (which is realized by μ = 0 in the grand canonical
ensemble) and for the considered system size of 32×32×8,
the canonical and grand canonical CCFs are almost indis-
tinguishable. While these data pertain to an aspect ratio of
ρ = Lz/

√
A = 1/4, we expect the CCFs to be identical in the

limit ρ → 0 (see below). Accordingly, we extract the critical
Casimir amplitudes

	
(c)
+−,∗ � 	

(gc)
+−,∗ � −6.7	

(gc)
++,∗ � 5.0, (137)

and remark that 	
(gc)
+−,∗ agrees well with previously reported

results [90]. A fit of the numerical data with the predicted decay
behavior of �

(gc)
+− for large x as given in Eq. (111b) and the

use of appropriate values for the Ising critical exponents yield
reasonable agreement [see inset of Fig. 17(b)]. We remark,
however, that also a simple exponential decay ∝exp(−γ x)
with γ � 0.1 describes the data rather well, within the
considered supercritical range of x.

Since for (+−) boundary conditions and � = 0 the mean-
field expressions of the CCF are identical in the two ensembles,
this situation provides a particularly suitable case to study
the effect of fluctuations on the CCF. We expect that the
more severe restriction of the fluctuation spectrum in the
canonical ensemble becomes more significant upon reducing
the lateral system size. For a fixed thickness Lz = 8, (+−)
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FIG. 18. Dependence of the CCF on the aspect ratio ρ = Lz/
√

A

as obtained from MC simulations of the canonical and grand
canonical Ising model in a three-dimensional film for a vanishing
total magnetization � = 0 and (+−) boundary conditions. The film
thickness is fixed at Lz = 8, while the lateral area is chosen as
A = Lx×Ly = 10×10 and 20×20, corresponding to the aspect ratios
ρ of 4/5 (solid curves) and 2/5 (dashed curves), as indicated by
the labels. As in Fig. 17, the scaling functions �

(gc,c)
+− are plotted as

functions of the scaled temperature x and are normalized by the grand
canonical critical Casimir amplitude |	(gc)

++,∗| of the Ising model. The
analytically predicted high-temperature limits of the canonical CCF
[Eq. (132)] are indicated by the crosses ×.

boundary conditions, and zero total magnetization � = 0
the dependence of the CCF on the aspect ratio ρ = L/

√
A

is shown in Fig. 18. We find that, for each ρ, the scaling
functions in the two ensembles indeed increasingly deviate
upon increasing ρ, i.e., upon decreasing the transverse area
A (i.e., the dashed lines are closer to each other than the full
lines). Partially, these differences can be attributed directly
to the nonzero high-temperature limit of the canonical CCF
predicted by Eq. (132), which is indicated by the cross ×
in Fig. 18. However, shifting all scaling functions vertically
such that they approach zero for x → ∞ still does not cause
the curves to fall upon each other for smaller x. Near Tc,
we attribute these remaining differences, which decrease upon
decreasing ρ, to the presence of critical fluctuations and to the
difference in the fluctuation spectra. Since by definition the
bulk pressure is independent of the aspect ratio, we conclude
that, in general, beyond MFT, film pressures can be different
in the two ensembles, leading to a violation of Eq. (90). Below
Tc, additional effects due to phase separation might come into
play. These aspects deserve further and more detailed analyses.

IV. SUMMARY AND OUTLOOK

Theoretically and experimentally, critical phenomena have
been mainly investigated for the grand canonical ensemble in
which the system can exchange particles with a reservoir at
the same fixed chemical potential μ. Here we have studied
critical adsorption and CCFs occurring in a film of thickness
L in the canonical ensemble, i.e., under the constraint of
having a fixed value � of the integrated order parameter,
here referred to as the “mass”; this conserved quantity gives

rise to an additional scaling variable M ∼ �Lβ/ν−1, where β

and ν are standard bulk critical exponents. Such a situation is
encountered naturally in experiments as well as in a variety of
numerical methods, such as in molecular dynamics or in the
lattice Boltzmann method, which involve a mass conservation
law. We have focused here on MFT in the presence of
symmetry-breaking boundary conditions [(++) and (+−)]
described by a surface field h1, but with unbroken translational
symmetry in the directions parallel to the confining walls.
This setup is suitable for describing critical adsorption of
binary fluids [60]. For large lateral system sizes, it is expected
that MFT captures well the dominant contributions to the
canonical and grand canonical partition functions. Within
this setup, MFT of a canonical system can be completely
described in terms of a grand canonical ensemble with a
chemical potential μ = μ̃ chosen such that the imposed value
of � is realized. The qualitative features emerging from our
mean-field analysis are confirmed by Monte Carlo simulations
of the three-dimensional Ising model. In the following we
summarize our main results.

(1) Within MFT, the chemical potential μ arises naturally
as the Lagrange multiplier required for the constrained
minimization of the canonical equilibrium free energy (see
Sec. II B). As a consequence of this relationship, the constraint-
induced chemical potential μ̃ acquires a dependence on various
system parameters, such as the system size, temperature,
“mass” �, and the adsorption strength h1 at the walls. The
ensuing dependencies of μ = μ̃ on these parameters have been
studied analytically and numerically in Secs. II C and II E and
are summarized in the diagram in Fig. 8. These findings have
important repercussions on the behavior of the CCF in the
presence of a mass constraint.

(2) As a crucial consequence of the mass constraint we
have demonstrated that, within MFT and in the case of
symmetric boundary conditions [(++)], the limit of infinitely
strong surface absorption (corresponding to a surface field
h1 → ∞) cannot be taken. The reason is the divergence
∝1/ẑ of the mean-field OP profile as the distance ẑ from
the wall decreases [Figs. 4(a) and 4(b)], which leads to a
macroscopically large amount of adsorbed mass within the
film. As a consequence, not only the parts of the profile at the
wall and near the center of the film [Figs. 4(c) and 4(d)],
but also the constraint-induced bulk field (Fig. 7) and the
mean-field amplitude of the canonical CCF [Fig. 12(a)]
diverge upon increasing h1. Critical fluctuations have the
profound effect of reducing the degree of this singularity
(∝ẑ−0.52) such that the integrated OP profile remains finite
even for h1 → ∞, thereby eliminating the above-mentioned
divergence associated with MFT in the canonical ensemble. If
the boundary conditions are perfectly antisymmetric [(+−)],
the potentially divergent contributions to the excess adsorption
from the region near the two walls cancel out so that, in this
case, the divergence is absent already within MFT. We remark
that the limit h1 → ∞ is of particular interest, because it
corresponds to the renormalization-group fixed point of the
so-called normal surface universality class. It has turned out
that this theoretical concept describes quite accurately even
actual experimental results obtained under conditions of strong
adsorption preference (see, e.g., Refs. [58,60,78,140–142]).
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(3) As revealed by MFT, the mass constraint leads to
a significantly different behavior of the CCF compared to
the unconstrained case. In particular, for � = 0 and (++)
boundary conditions with finite h1 [Fig. 13(a)], the canonical
CCF is repulsive and its scaling function �(c) decays, within
MFT, algebraically ∝1/x for large values of the scaling
variable x = (L/ξ

(0)
+ )1/ν t , where ξ±(t = T/Tc − 1 → 0±) =

ξ
(0)
± |t |−ν is the bulk correlation length. In contrast, under the

same conditions, but in the grand canonical ensemble, the CCF
is attractive and its scaling function �(gc) decays ∝exp(−√

x)
upon increasing x. Instead, for (+−) boundary conditions
and with the constraint � = 0, the canonical and the grand
canonical Casimir forces are identical within MFT [Fig. 15(a)].

(4) The qualitative features of MFT are confirmed by
Monte Carlo simulations of the three-dimensional Ising model
[Fig. 17(a)]: In the case � = 0 with (++) boundary conditions,
the canonical CCF acquires a repulsive character and decays
rather slowly for large x, while for (+−) boundary conditions
(and sufficiently large lateral system sizes), canonical and
grand canonical CCFs are practically indistinguishable. The
asymptotic decay behavior of the CCF for large x differs
from the mean-field prediction. We have further demonstrated
that decreasing the lateral system size for (+−) boundary
conditions enhances the difference between the CCFs in the
two ensembles (Fig. 18), which is due to the effect of critical
fluctuations.

(5) We have shown that in the canonical and in the grand
canonical ensemble the functional forms of the stress tensor,
as obtained from the mean-field free-energy functional, are
identical (see Sec. III B and Appendix C). This not only pro-
vides an alternative approach to study CCFs in the canonical
case, but also implies that, within MFT and under the same
thermodynamic conditions, the film pressures in the canonical
and in the grand canonical ensembles are identical [see
Eq. (90)]. As a crucial consequence of this identity it follows
that the difference between the corresponding CCFs must be
due to the different bulk pressures that are subtracted [Eq. (79)]:
In the grand canonical ensemble, the appropriate bulk pressure
is the one of a homogeneous system with the same chemical
potential μ as the film. In contrast, in the canonical ensemble,
while depending, in principle, on the specific experimental
setup, the most natural choice for the bulk system is one which
has the same mean mass density ϕ = �/L as the film (with �

taken as per transverse area of the film). This choice is indeed
in line with standard finite-size scaling arguments invoked to
extract the CCF from the residual free energy. The ensuing
situation can be most easily understood for (++) boundary
conditions and a constraint of zero total mass, i.e., � = 0.
In the film, the constraint is realized by introducing into the
free-energy functional [Eq. (19)] a chemical potential μ = μ̃

which depends, inter alia, on the film thickness, adsorption
strength, and temperature and which, in general, is nonzero. In
contrast, in the bulk, the analogous constraint of a vanishing
OP density ϕ = 0 requires a vanishing bulk chemical potential,
μb = 0 in the corresponding free-energy functional [Eq. (93)].
Due to the identical forms of the mean-field stress tensors in the
two ensembles, the two distinct chemical potentials give rise to
different bulk pressures. For comparison, for (+−) boundary
conditions, the situation � = 0 is realized with μ = μb = 0,

leading in this case to identical CCFs in the two ensembles.
We expect that, once the effects of fluctuations are taken into
account, film pressures turn out to be different in the canonical
and the grand canonical ensembles, thereby providing a further
contribution to the difference between the corresponding CCFs
(see Fig. 18 and the related discussion).

(6) Within MFT we have found that, once a nonzero
total mass � is imposed, canonical and grand canonical
CCFs generally differ under both (++) and (+−) boundary
conditions. In particular, the canonical CCF shows a strong
variation with the mass � of the film [Figs. 13(b)–13(d)
and 15(b)–15(d)]. For (++) boundary conditions, it turns out
that this dependence can be explicitly attributed to a term
which carries the character of a surface contribution to the
film free energy [see Eq. (117)], the presence of which is a
genuine consequence of the mass constraint in the canonical
ensemble. Once this term is subtracted, the canonical CCF
decays towards zero for large � [Fig. 14(b)]. For (+−)
boundary conditions, the CCF displays maxima for nonzero
values of � and decreases for large values of |�| (Fig. 16).

An experimental test of our predictions requires the real-
ization of a system with a constant value of the integrated
OP. Among the simplest possible examples is a binary liquid
mixture, for which one prohibits particle exchange between a
suitably constructed compartment and its environment. Impor-
tantly, experimental measurements of the CCF in the canonical
ensemble require film and bulk to consist of the same fluid with
identical mean values of the OP, i.e., of the concentration.
Only in this case the bulklike contribution to the film pressure
is balanced precisely by the corresponding one of the same
surrounding binary liquid mixture so that the canonical CCF as
analyzed in the present study is revealed. In the grand canonical
setup, the required cancellation is guaranteed by construction,
because film and bulk fluid are thermodynamically coupled
via the same chemical potential. As we have shown here, the
canonical CCF exhibits novel features compared to the grand
canonical one, such as its significantly slower decay upon
increasing the film thickness and a change of its character
of being attractive or repulsive. Hence, prohibiting mass
exchange between film and environment opens up a further,
and hitherto unexplored, route to tune the CCF. Being able to
control CCFs is highly desirable for micro- and nanoscale
mechanical devices in order to prevent stiction due to the
omnipresent quantum-mechanical Casimir forces which are
typically attractive [143,144].

Besides our Monte Carlo simulations, we have focused on
the already rich MFT of a laterally homogeneous film with
transverse symmetry-breaking boundary conditions, covering
the so-called normal surface universality class [52,53]. We
have seen that, within MFT and as long as the surface
adsorption strength h1 is finite, a canonical system can
be mapped exactly onto a grand canonical one with an
appropriately chosen value of the chemical potential. Hence,
at least within MFT, the ensemble difference for the CCF
is extrinsic in the sense that it is caused by the difference
in the corresponding bulk pressures. Intrinsic differences
between the two ensembles arise due to the different fluctuation
spectra, which lend themselves to future studies. It will be
furthermore interesting to investigate critical adsorption and
CCFs beyond MFT within the canonical ensemble for varying
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surface fields and nonzero total magnetizations. This can be
accomplished, for instance, by suitably extending the present
Monte Carlo simulations of the Ising model. In addition,
further surface universality classes in the canonical ensemble
may be considered and the effect of surface enhancements
under nonsymmetry breaking boundary conditions may be
studied. Finally, the effects of possible lateral inhomogeneities
in finite films due to phase separation below the capillary
critical point await a detailed investigation.
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APPENDIX A: SCALING BEHAVIOR
AND MAPPING RELATION

In Sec. II A we invoke general scaling hypotheses. Here
we check them for the actual MFT under investigation, in
particular concerning the scaling behavior of the OP profiles
φ(z) across the film for finite surface fields. We find that the
profiles obtained for such systems can be scaled onto a single
universal profile corresponding to the case |h1| → ∞, but for a
thicker film, extending the findings in Ref. [73] to the presence
of bulk fields. To this end we consider the function φ̂(z) ≡
bφ(bz), where b is an arbitrary rescaling factor and φ(z) solves
Eq. (20) with the boundary condition in Eq. (21). This leads to

∂2
z φ̂(z) = b3φ′′(bz) = b3

[
τφ(bz) + g

6
φ3(bz) − μ

]

= b2τ φ̂ + g

6
φ̂ − b3μ (A1)

and

d

dz
φ̂(z)

∣∣∣∣
z=±(L/2)/b

= b2φ′
(

±L

2

)
= ±b2h±

1 . (A2)

Accordingly, we conclude that, if φ(z) solves the ELE for the
parameters τ , g, μ, and h±

1 in a film with thickness L, then
bφ(bz) solves the ELE for the parameters b2τ , g, b3μ, and
b2h±

1 , respectively, in a film of thickness L/b. This can be
expressed in terms of the homogeneity relation

φ(z,τ,μ,h1,L) = b−1φ(z/b,b3μ,b2h1,L/b), (A3)

which was anticipated in Eq. (14) for the general case, i.e.,
beyond MFT. The mass constraint in Eq. (2) transforms into
� = ∫ (L/2)/b

−(L/2)/b dz φ̂(z) and thus remains unchanged.
Instead of using the boundary condition (A2) for the

rescaled field h1, one may note [73], alternatively, that φ̂

satisfies, for b < 1, a boundary condition at z = ±L/2,

d

dz
φ̂(z)

∣∣∣∣
z=±L/2

= b2φ′
(

±bL

2

)
≡ ±ĥ±

1 , (A4)

where the last equation defines the effective surface field ĥ±
1 .

Equation (A4) provides an implicit equation for the rescaling
factor b as a function of L and ĥ±

1 . It expresses the trivial
fact that, if a profile φ(z) fulfills the ELE in the domain

(−L/2,+L/2), a part of the profile around z = 0 fulfills
the same ELE in the subdomain (−bL/2,+bL/2), b < 1,
and the boundary conditions are provided essentially by the
slope of φ at the shifted boundaries ±bL/2. In contrast to
Eq. (A3), this transformation of the profile does not respect
mass conservation.

For brevity, in the following we focus on (++) boundary
conditions, i.e., H±

1 = H1. (The case of (+−) boundary condi-
tions can be analyzed analogously.) The considerations above
imply a relationship between the OP profile m∗ corresponding
to the case H1 → ∞ in a film of thickness L∗ and the profile
for finite H1 in a film of size L < L∗. If, for certain values of
τ and μ, the quantities

m∗(ζ ), x, B∗, (A5)

satisfy the ELE in Eq. (24) in a film of thickness L∗ with
surface field H ∗

1 = ∞, then the rescaled quantities

bm∗(bζ ), b2x, b3B∗, (A6)

satisfy the ELE in a film of thickness L = bL∗, with a finite
surface field H1 and with the rescaling factor b < 1 determined
by

H1 = −b2m′
∗

(
−b

2

)
= b2m′

∗

(
b

2

)
. (A7)

Since, for positive H ∗
1 , the slope of m∗ varies between −∞

and 0 (0 and ∞) in the interval −1/2 � ζ � 0 (0 � ζ � 1/2),
for any positive H1 Eq. (A7) renders a solution b(H1). The
case H1 < 0 can analogously be mapped to a universal profile
pertaining to H ∗

1 = −∞. We thus conclude that any profile
m(ζ,x,B) solving the Euler-Lagrange Eq. (24) for finite H1

and given B turns out to be a part of the universal profile m∗,

m(ζ,x,B) = bm∗(bζ,b−2x,b−3B), (A8)

with the rescaling factor b(H1) determined by Eq. (A7). This
fact can be used in order to derive a short-distance expansion
for the profile close to a wall, alternatively to the explicit
construction in Sec. II D.

APPENDIX B: PERTURBATION THEORY FOR ORDER
PARAMETER PROFILES WITH LARGE MEAN VALUES

In this Appendix, we briefly present a perturbative solution
of the Ginzburg-Landau model within mean-field theory,
which is applicable for large values of the prescribed mass
�. In contrast to Sec. II C—where we effectively consider
perturbations around � = 0—here we construct a perturbative
solution around a nonvanishing, spatially constant, mean value

ϕ = 1

L

∫ L/2

−L/2
dzφ(z) = �

L
(B1)

of the OP profile φ(z). To this end we write

φ(z) = ϕ + φ0(z), (B2)

with
∫ L/2
−L/2 dz φ0(z) = 0. With this decomposition, we natu-

rally account for the fact that, sufficiently far from the critical
point, the OP profile φ(z) varies significantly only close to the
boundaries, while it is practically constant in the central region
of the film.
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First, we focus on films with equal surface fields. Upon inserting the decomposition (B2) into the free-energy functional of
Eq. (19) and neglecting terms of higher than second order in φ0, we have, for h+

1 = h−
1 ≡ h1,

F (gc)
f �

∫ L/2

L/2
dz

[
1

2
(φ′

0)2 + 1

2
τ (ϕ + φ0)2 + 1

4!
g
(
ϕ4 + 4ϕ3φ0 + 6ϕ2φ2

0

)− μ(ϕ + φ0)

]
− h1[φ0(−L/2) + φ0(L/2)] − 2h1ϕ.

(B3)

Crucially, for the purpose of deriving the ELE for φ0(z) from
the condition δF (gc)

f /δφ0(z) = 0, we take ϕ to be constant and
not participating in the variation with respect to φ0(z). Once
the solution φ0(z), which depends on ϕ, is obtained, Eq. (B1)
then renders an implicit, self-consistent equation for ϕ. The
corresponding ELE, which by construction is linear in φ0(z),
reads

φ′′
0 = τϕ + 1

6gϕ3 + (
τ + 1

2gϕ2
)
φ0 − μ, (B4)

with the boundary conditions

φ′
0|z=−L/2 = −φ′

0|z=L/2 = −h1. (B5)

This equation is solved by

φ0(z) = μ

τ̂
− ϕ + g

3τ̂
ϕ3 + h1√

τ̂

cosh(z
√

τ̂ )

sinh(L
√

τ̂ /2)
, (B6)

where

τ̂ ≡ τ + 1
2gϕ2 (B7)

is a temperaturelike parameter. For ϕ = 0, the expression in
Eq. (B2) reduces to the one given in Eq. (31). Furthermore,
all considerations in Sec. II C regarding the divergence of the
profile for certain values of τ � 0 apply also to Eq. (B6) after
replacing τ with τ̂ . Due to Eqs. (B6) and (B7), the consistency
condition (B1) turns into

μ = τϕ + 1

6
gϕ3 − 2h1

L
= ϕτ̂ − 1

3
gϕ3 − 2h1

L
. (B8)

In the canonical ensemble, Eq. (B8) directly yields the bulk
field μ̃ = μ as a function of ϕ and renders the constrained
solution

φ̃0(z) = −2h1

Lτ̂
+ h1√

τ̂

cosh(z
√

τ̂ )

sinh(L
√

τ̂ /2)
, (B9)

once the expression for μ is inserted into Eq. (B6). In the
grand canonical ensemble, instead, the bulk field μ is given
and Eq. (B8) has to be inverted for ϕ = ϕ(μ).

The expression in Eq. (B9) can be considered to be
an accurate approximation of the solution of the full ELE
[Eq. (20)] if the terms (g/2)ϕφ2

0 + (g/6)φ3
0 discarded in the

expansion of (ϕ + φ0)3 in Eq. (B4) are small compared to
(g/6)ϕ3 + (g/2)ϕ2φ0, which are kept in Eq. (B4). From the
dependence of φ0 on ϕ and the fact that φ0 vanishes as ϕ →
±∞ [see Eqs. (B6) and (B7)], this condition is easily seen
to be fulfilled for sufficiently large |ϕ|. The detailed condition
depends on h1 and τ and is not stated here. Figure 19 compares
the solution of the linearized ELE in Eq. (B9) (broken lines)
with the numerical solution (solid lines) of the complete ELE
in Eq. (20) for τ = 0, a large value of h1, and various values
of ϕ. The profile φ(z) depends significantly on z only close
to criticality (ϕ = 0), while the spatial variation diminishes

upon increasing ϕ and the analytical solution (broken lines)
of the linearized ELE becomes more accurate. Agreement
between the exact and the analytical solutions improves also
upon reducing the strength of h1. Note that, for ϕ = 0, φ̃0

in Eq. (B9) reduces to the expression given in Eq. (37), the
accuracy of which has been analyzed in Fig. 1.

In order to be consistent with the level of approximation
of the free energy in Eq. (B3), we expand also the transverse
component of the stress tensor in Eq. (91) up to quadratic order
in φ0:

T (gc)
zz = 1

2
(φ′

0)2 − 1

2
τ (ϕ + φ0)2

− 1

4!
g
(
ϕ4 + 4ϕ3φ0 + 6ϕ2φ2

0

)+ μ(ϕ + φ0). (B10)

Accordingly, the grand canonical film pressure p
(gc)
f = T

(gc)
zz

follows by inserting the expression (B6) for the OP profile into
T

(gc)
zz , resulting in

p
(gc)
f = μ2

2τ̂
+ g

6τ̂
ϕ3

(
2μ−3

4
τ̂ ϕ+1

3
gϕ3

)
+ h2

1

1 − cosh(L
√

τ̂ )
,

(B11)
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FIG. 19. Constrained order parameter profiles in a critical film
(τ = 0) with (++) boundary conditions and various values of the
mean mass ϕ [Eq. (B1)]. The colored solid lines represent the profiles
obtained from a numerical solution of the ELE in Eq. (20) with the
bulk field being determined such that a given value of the mean mass
ϕ [Eq. (B1)] is recovered. Broken black lines represent the analytical
solution φ̃0 in Eq. (B9) of the linearized ELE in Eq. (B4) for the same
values of ϕ. The profiles are computed here for fixed values of L

and h1, corresponding to a value of the scaling variable H1 = 100.
As expected from our analysis in Appendix B, the accuracy of the
analytical solution φ̃0 increases upon increasing ϕ.

022103-37



GROSS, VASILYEV, GAMBASSI, AND DIETRICH PHYSICAL REVIEW E 94, 022103 (2016)

where ϕ has to be understood as a function of μ according
to Eq. (B8). In the canonical ensemble, instead, we obtain
the pressure p

(c)
f after inserting Eq. (B8) into the previous

expression:

p
(c)
f = 1

2
τ̂ ϕ2 − 1

8
gϕ4 − 2h1ϕ

L
+ 2h2

1

L2τ̂
+ h2

1

1 − cosh(L
√

τ̂ )
.

(B12)

In order to obtain the bulk pressure p
(gc)
b in the grand

canonical ensemble, we decompose the bulk OP as φb =
ϕ + φb,0 and expand, for reasons of consistency, the bulk
equation of state [i.e., Eq. (B4) with φ0 → φb,0 = const.]
analogously up to first order in φb,0, obtaining τ (ϕ + φb,0) +
(g/6)ϕ3 + (g/2)ϕ2φb,0 = μ instead of Eq. (B8). Solving for
φb,0 and inserting the result into the stress tensor in Eq. (B10),
one finds

p
(gc)
b = μ2

2τ̂
+ g

6τ̂
ϕ3

(
2μ − 3

4
τ̂ ϕ + 1

3
gϕ3

)
. (B13)

The bulk pressure p
(c)
b in the canonical ensemble follows,

instead, from Eqs. (B10) and (B8) (with φ0 = 0 and h1 = 0)
immediately as

p
(c)
b = 1

2τϕ2 + 1
8gϕ4. (B14)

After subtracting the bulk pressures p
(c,gc)
b from the corre-

sponding ones p
(c,gc)
f in the film, we obtain the CCF per area

and kBT [see Eqs. (77), (9), and (22)]

K(gc) = h2
1

1 − cosh(L
√

τ̂ )
= 	0

L4

[
H 2

1

1 − cosh(
√

x̂)

]
(B15)

in the grand canonical ensemble and

K(c) = −2h1ϕ

L
+ 2h2

1

L2τ̂
+ h2

1

1 − cosh(L
√

τ̂ )

= 	0

L4

[
−2H1M + 2H 2

1

x̂
+ H 2

1

1 − cosh(
√

x̂)

]
(B16)

in the canonical ensemble, where x̂ = L2τ̂ . The terms in the
square brackets [including the prefactor 	0 defined in Eq. (18)]
represent the corresponding scaling functions �(gc) [Eq. (83)]
and �(c) [Eq. (87)], respectively, which are obtained after
introducing the dimensionless quantities in Eq. (9) and after
defining

x̂ ≡ x + 3M2 (B17)

in analogy with Eq. (B7).
The expressions in Eqs. (B15) and (B16) incorporate

the leading dependence of the CCF on the mass (density)
ϕ = �/L [Eq. (10)] of the film and become identical to the
expressions of linear MFT reported in Eqs. (114) and (117),
provided therein τ is replaced with the shifted temperature
parameter τ̂ [Eq. (B7)], which reduces to τ for ϕ = 0. For
large ϕ, as considered here, τ̂ is the appropriate quantity
to enter into Eqs. (B15) and (B16). We thus conclude that,
sufficiently far from criticality (|M| � 1), the grand canonical
Casimir force K(gc) decays exponentially upon increasing ϕ,
whereas the canonical oneK(c) scales linearly with ϕ due to the
presence of the “surface pressure” term −2h1ϕ/L. If this term

is subtracted from K(c), the behavior for large ϕ is governed
by the second term in Eq. (B16), which yields the algebraic
dependence K(c)(|ϕ| � √|τ |) + 2h1ϕ/L ∝ 1/ϕ2.

Repeating the above procedure for (+−) boundary con-
ditions yields for the scaling functions of the CCFs the
same expression as the one reported in Eq. (109), again
with τ replaced with τ̂ . Thus, in this case the CCF decays
exponentially as a function of ϕ for both ensembles.

APPENDIX C: DERIVATION OF THE STRESS TENSOR

In the following we derive the stress tensor T
(c)
ij stemming

from a generic free-energy functional in the presence of a
constraint on the integral of the OP, i.e., in the canonical
ensemble. Within MFT, we find that this stress tensor exhibits
the same expression as in the more common unconstrained
(i.e., grand canonical) case (see, e.g., Refs. [77,145]), with
the bulk field playing the role of a Lagrange multiplier. The
derivation consists of evaluating the free-energy difference
between two equilibrium configurations of a fluid confined by
arbitrarily shaped boundaries. For instance, in the case of a
film bounded by two walls, the two configurations can differ
by an infinitesimal displacement of the walls. We consider an
arbitrarily shaped volume V and therefore, differently from the
main text, do not normalize here thermodynamically extensive
quantities by a transverse area. The initial configuration of the
fluid within the volume V in d spatial dimensions is described
by coordinates r, is characterized by an OP field φ(r), and has
the free energy

F =
∫

V

ddrL(φ(r),∇φ(r)) +
∫

S

dSLS(φ(r)), (C1)

where L denotes the bulk free-energy density and LS is
the explicit contribution to its counterpart at the surface.
The second integral in Eq. (C1) runs over the boundary S

of the volume V . In the final configuration, e.g., after the
displacement of the walls of a film, the system with the final
volume V ′ is described by coordinates

r′ = r + u(r), (C2)

where u(r) characterizes the displacement of the local OP. In
general, upon a change of the configuration, the system attains
a new thermodynamic equilibrium state, implying a change of
the OP in addition to the one due to the displacement from
position r to r′. Denoting φ′(r′) (note that here the symbol
′ does not indicate a differentiation) as the OP in the final
configuration, this change is expressed as

φ′(r′(r)) = φ(r) + δφ(r), (C3)

which essentially serves as the definition of δφ(r). In both the
initial and final configurations, the OP is required to obey the
constraint of fixed total mass:

� =
∫

V

ddrφ(r) =
∫

V ′
ddr ′φ′(r′). (C4)

022103-38



CRITICAL ADSORPTION AND CRITICAL CASIMIR . . . PHYSICAL REVIEW E 94, 022103 (2016)

In order to evaluate the free energy

F ′ =
∫

V ′
ddr ′L(φ′(r′),∇′φ′(r′)) +

∫
S ′

dS ′LS(φ′(r′)) (C5)

in the final configuration, we use the fact that, for small
displacements,

ddr ′ = ddr[1 + ∇ · u + O(u2)], (C6)

where the expression in square brackets stems from the
Jacobian determinant associated with the coordinate transform
described by Eq. (C2). Furthermore, for any given function
f̃ (r) and r = r(r′) one can define f (r′) ≡ f̃ (r(r′)), from which
it follows that

∂f (r′)
∂r ′

i

= ∂f̃ (r(r′))
∂r ′

i

= ∂f̃

∂rj

∂rj

∂r ′
i

. (C7)

In addition, from the inversion of Eq. (C2), i.e., r(r′) = r′ −
u(r(r′)), it follows that

∂rj

∂r ′
i

= δij − ∂uj

∂rk

∂rk

∂r ′
i

� δij − ∂uj

∂rk

δki + O(u2) = δij − Eij ,

where

Eij ≡ ∂uj

∂ri

(C8)

is the strain tensor associated with the transformation field u.
Accordingly, to leading order in u, Eq. (C7) turns into

∂f (r′)
∂r ′

i

=
{[

∂

∂ri

− Eij

∂

∂rj

]
f̃ (r)

}∣∣∣∣
r=r(r′)

. (C9)

As a result, the difference 	F between the free energies of
the two infinitesimally different configurations is given by

	F ≡ F ′ − F =
∫

V

ddr (1 + ∇ · u)L[φ + δφ,∂i(φ + δφ) − Eij∂j (φ + δφ)] +
∫

S

dS LS(φ + δφ) − F

=
∫

V

ddr (1 + ∇ · u)

{
L[φ,∂iφ] + ∂L

∂φ
δφ + ∂L

∂(∂iφ)
∂iδφ − ∂L

∂(∂iφ)
Eij∂jφ + O(uδφ)

}
+
∫

dS

{
LS(φ) + ∂LS

∂φ
δφ

}
− F

=
∫

V

ddr

[
(∇ · u)L − Eij

∂L
∂(∂iφ)

∂jφ

]
+
∫

V

ddr

[
∂L
∂φ

− ∂i

∂L
∂(∂iφ)

]
δφ +

∫
S

dS

[
∂LS

∂φ
− ni

∂L
∂(∂iφ)

]
δφ, (C10)

where n is the unit vector normal to the surface S and pointing
towards the interior of the volume V . Note that V ′ and S ′ are
mapped onto V and S under the transformation in Eq. (C2).

In order to evaluate this expression further, we make use
of the fact that φ(r) is an equilibrium configuration of the OP,
i.e., that it minimizes F under the constraint of fixed overall
mass �. Accordingly, we minimize

F̄ ≡ F − μ

[∫
V

ddrφ(r) − �

]
, (C11)

where μ is a Lagrange multiplier which is eventually deter-
mined such that the constraint is obeyed. The variation δF̄ of
F̄ with respect to a variation φ → φ + δφ within the volume
V and at its boundary S yields

δF̄ =
∫

V

ddr

[
∂L
∂φ

− ∂i

∂L
∂(∂iφ)

− μ

]
δφ

+
∫

S

dS

[
∂LS

∂φ
− ni

∂L
∂(∂iφ)

]
δφ. (C12)

This variation vanishes for all possible choices of δφ only if
the quantities in both square brackets vanish. This yields the
Euler-Lagrange equations in the bulk,

∂L
∂φ

− ∂i

∂L
∂(∂iφ)

= μ, (C13)

and the boundary conditions,

∂LS

∂φ

∣∣∣∣
S

= ni

∂L
∂(∂iφ)

∣∣∣∣
S

. (C14)

Using these results, Eq. (C10) turns into (Eii = ∇ · u)

	F =
∫

V

ddrEij

[
Lδij − ∂L

∂(∂iφ)
∂jφ

]
+ μ

∫
V

drδφ(r).

(C15)
We now make use of the fact that δφ(r) must be such that the
OP constraint is obeyed in both configurations and compute
its integral as∫

V

ddrδφ(r)

=
∫

V

ddrφ′(r′(r)) −
∫

V

ddrφ(r)︸ ︷︷ ︸
�

=
∫

V ′
ddr ′φ′(r′)︸ ︷︷ ︸

�

−
∫

V ′
ddr ′[∇′ · u(r(r′))]φ′(r′) − �

= −
∫

V ′
ddr ′[∇′ · u(r(r′))]φ′(r′)

= −
∫

V

ddr(1 + ∇ · u)[(∂i − Eij∂j )ui][φ(r) + δφ(r)]

= −
∫

V

ddr(∇ · u)φ(r) + O(u δφ) + O(u2), (C16)

where we have used Eq. (C4) and the inverse of Eq. (C6),
ddr = ddr ′(1 − ∇′ · u) + O(u2). Accordingly, up to O(u) and
O(δφ), the change of the free energy in Eq. (C15) can be
written as

	F = −
∫

V

ddrEij T̄ij [φeq(r)], (C17)
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where T̄ij is the stress tensor valid for the canonical ensemble,
i.e.,

T
(c)
ij [φ] = T̄ij [φ] ≡ ∂L̄

∂(∂iφ)
∂jφ − L̄δij , with L̄ = L − μφ.

(C18)
It is important to keep in mind that the stress tensor in Eq. (C17)
is evaluated for the equilibrium solution φ as determined by
Eqs. (C13) and (C14) and with the Lagrange multiplier μ taken
such that the OP constraint [Eq. (C4)] is obeyed. We note that
the formal expression of this stress tensor coincides with the
one which can be derived in the grand canonical ensemble
where μ is a fixed external bulk field. The divergence of the
stress tensor is given by

∂i T̄ij =
{
∂i

[
∂L̄

∂(∂iφ)

]
− ∂L̄

∂φ

}
∂jφ = −δF̄

δφ
∂jφ, (C19)

which, according to Eq. (C12), vanishes in equilibrium.
We now apply the general expressions derived above to the

special case of a fluid film confined between two planar and
parallel surfaces and consider an infinitesimal displacement
of the latter. The film is assumed to be homogeneous along
the lateral directions, such that now the thermodynamic limit
of infinite transverse area A can be taken from the outset.
Accordingly, we return to the convention used in the main text
and consider all thermodynamically extensive quantities to be
divided by A. The coordinate in the direction perpendicular to
the two boundaries is denoted by z. In the initial configuration,
characterized by a certain film thickness L, total mass (per
transverse area) �, and surface field h1, the equilibrium state
is realized with a certain bulk field μ and the OP profile φ(z)
solves the corresponding Euler-Lagrange equation [Eq. (C13)
with the boundary condition given in Eq. (C14)]. In the final
configuration, having a wall separation L′ = L + 	L, the
Euler-Lagrange equation is solved with a new value μ′ of
the Lagrange multiplier and a new field φ′(z′). In order to com-
pute the corresponding free-energy change 	F (per transverse
area) according to Eq. (C17), we note that u = (z/L)	L ez

(where ez is the unit vector in the z direction and with
the left and right wall initially located at z = 0 and z = L,
respectively), Eij = (	L/L)δizδjz, and thus

	F = −	L

L

∫ L

0
dzTzz ≡ −	L 〈T̄zz〉 = −	LTzz. (C20)

The last equality in Eq. (C20) is a consequence of the stress
tensor being spatially constant in equilibrium due to Eq. (C19)
and due to the fact that T̄ij does not depend on x and y,
which, in turn, is the case because the system is translationally
invariant in the lateral directions (∂xT̄xj + ∂yT̄yj + ∂zT̄zj = 0
together with ∂xT̄xj = 0 = ∂yT̄yj imply ∂zT̄zz = 0).

The bulk pressure pb is typically defined as the isotropic
part of the stress tensor [123]; within MFT and for a spatially
homogeneous system [φ(r) = φ], the canonical bulk pressure
follows from Eq. (C18) as

pb = 1

3

∑
i

T̄ii = μφ − L[φ] . (C21)

This result is consistent with the well-known thermodynamic
expression for the pressure obtained from the canonical free
energy F (T ,V,N ) of an N -particle system at temperature T

within a volume V . Expressing the homogeneous function F

in terms of the free-energy density f as

F (T ,V,N ) = Vf (T ,φ), (C22)

with φ = N/V , the pressure results indeed as

pb = −∂F

∂V
= −f − V

∂f

∂φ

∂φ

∂V
= −f + V

N

V 2
μ = μφ − f.

(C23)
The chemical potential is given by

μ = ∂F

∂N
= ∂F

∂φ

∂φ

∂N
= V

∂f

∂φ

1

V
= ∂f

∂φ
. (C24)

Equation (C24) corresponds to Eq. (C13) in the spe-
cial case φ = const by noting that L(φ = const) = f and
∂iδL/δ(∂iφ) = 0.
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