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Extracting critical exponents for sequences of numerical data via series extrapolation techniques
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We describe a generic scheme to extract critical exponents of quantum lattice models from sequences of
numerical data, which is, for example, relevant for nonperturbative linked-cluster expansions or nonperturbative
variants of continuous unitary transformations. The fundamental idea behind our approach is a reformulation of
the numerical data sequences as a series expansion in a pseudoparameter. This allows us to utilize standard series
expansion extrapolation techniques to extract critical properties such as critical points and critical exponents. The
approach is illustrated for the deconfinement transition of the antiferromagnetic spin-1/2 Heisenberg chain.
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I. INTRODUCTION

Our understanding of correlated quantum-many body sys-
tems is an important topic of current research in physics, since
fascinating types of complex quantum phases and associated
collective behavior are already known and more is to be discov-
ered in the future. These systems are notoriously complicated
to treat theoretically, which is especially true close to quantum
critical points where quantum fluctuations become long range
due to the diverging correlation length. Often, theoretical
approaches treat finite systems numerically and one relies on a
proper scaling in system size towards the thermodynamic limit,
e.g., this applies to exact diagonalizations (EDs), quantum
Monte Carlo simulations, or density matrix renormalization
group (DMRG) calculations.

This is different for other real-space approaches, which
work directly in the thermodynamic limit, but introduce
other truncation parameters, e.g., the perturbative order in
high-order linked-cluster expansions (LCEs), the number of
sites in nonperturbative linked-cluster expansions (NLCEs),
or the spatial extension of operators in continuous unitary
transformations (CUTs). Close to criticality, one aims at an
extrapolation of all these parameters to infinity in order to
cover the diverging real-space correlations properly.

In many cases a simple scaling towards this limit is not
known and also not expected. In contrast, powerful extrapo-
lation schemes, corresponding to an extrapolation to infinite
order in the perturbation parameter, exist in the established
field of LCEs. Here, the linked cluster theorem is used to
determine physical quantities in the thermodynamic limit
by performing calculations on finite linked clusters. These
extrapolation schemes represent sophisticated resummation
techniques allowing us to extract critical properties such as
critical points and, most importantly, critical exponents.

The nonperturbative counterpart of LCEs is commonly
referred to as numerical linked-cluster expansions or NLCEs.
The essential idea behind all NLCEs is a nonperturbative
treatment of graphs, achieved via an exact (block) diagonal-
ization, yielding results in the thermodynamic limit after an
appropriate embedding procedure. The underlying idea can be
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traced back to Irving and Hamer in 1984 who replaced the
series expansion of the ground-state energy per cluster by the
corresponding numerically exact value for this cluster using
exact diagonalization [1]. In principle, it is possible to modify
all high-order series expansions via LCEs in this fashion.
However, the power of this concept remained unheeded for
some time but received more attention recently and many
exciting developments have been achieved in this direction
[2–14]. Apart from different physical questions tackled by
NLCEs, also different techniques to treat the systems on the
graphs have been used. While most works applied ED (except
Refs. [10,14] using DMRG) on graphs, it has been established
that nonperturbative CUTs on graphs (so-called gCUTs [5])
give exciting new perspectives on NLCEs due to the additional
freedom during the flow on the graphs [12].

Overall, NLCEs represent a highly versatile approach.
The reason for this lies in the simple requirements for this
technique; the quantities of interest in the thermodynamic
limit must exist on finite clusters. Consequently, NLCEs will
probably also be applicable for many other challenges in the
future. Nevertheless, powerful extrapolation schemes such as
in LCEs allowing us to extract critical properties such as
critical points and critical exponents do not exist. In contrast to
LCEs, NLCEs and all nonperturbative real-space approaches
mentioned above provide sequences of numerical data points.
While first extrapolation schemes are applied for NLCEs [8,9],
we present extrapolation schemes for the extraction of critical
exponents.

Here we propose a scheme to extrapolate such numerical
data sequences. To this end the numerical data points are
mapped to a series expansion in a pseudoperturbation pa-
rameter. As a result, one can implement the standard series
expansion techniques, which give, as we argue, access to
critical points as well as critical exponents.

The paper is organized as follows. We describe our extrap-
olation scheme in Sec. II and we apply it to the deconfinement
transition of the spin-1/2 Heisenberg chain in Sec. III. Finally,
we give conclusions in Sec. IV.

II. EXTRAPOLATION SCHEME

This section contains all general and technical aspects of
our extrapolation scheme for numerical data sequences. We
start by giving a brief introduction into the well-established
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extrapolation techniques for LCEs. For a more detailed
overview over this vast topic, we refer the interested reader
to the well-written introduction by Guttmann [15]. On this
basis, we describe how to use these techniques to extrapolate
numerical data sequences from nonperturbative approaches
such as NLCEs.

A. Extrapolating series expansions

We consider a series expansion of the form

F (λ) =
m∑

n�0

anλ
n = a0 + a1λ + a2λ

2 + · · · amλm (1)

with λ ∈ R and ai ∈ R. The function F (λ) represents an
approximant of the actual function F̃ (λ) = limn→∞ F (λ).
Here, F̃ (λ) may represent the excitation gap, the entanglement
entropy, or any other quantity accessible via LCEs. Naturally,
depending on the quantity and the value of λ, the approxima-
tion can become deficient.

The fundamental idea behind extrapolation schemes is the
derivation of extrapolants from F (λ). These extrapolants are
functions whose form differs from the plain series expansion,
which leads to a better approximation, i.e., the form of the
extrapolant is generically more suited to mimic the behavior
of the actual physical function F̃ (λ) than a plain series.

A standard extrapolation scheme is the Padé extrapolation
defined by

P [L/M]F := PL(λ)

QM (λ)
= p0 + p1λ + · · · + pLλL

q0 + q1λ + · · · qMλM
(2)

with pi ∈ R and qi ∈ R and q0 = 1. The latter can be achieved
by reducing the fraction. The real coefficients are fully defined
by the condition that the Taylor expansion of P [L/M]F about
λ = 0 up to order L + M with L + M � m recovers the
corresponding Taylor expansion of the original series F (λ).

Naturally, Padé extrapolants are more versatile than a plain
series and are specifically suited for scenarios where a rational
function is approximated. Poles of an extrapolant can either
reflect physics of the system or they can simply be an artifact of
the extrapolation technique. If such a spurious pole is located
close to or between λ = 0 and the considered λ value, the
corresponding extrapolant is called defective and should be
discarded.

There is no single blueprint distinguishing physical and
defective poles and this must be decided in the respective
context and matched with the expectations. The extrapolation
is considered to work if several combinations of L and M

yield similar results. Specifically relevant is the convergence
of the families defined by L − M = const. Padè extrapolants
constitute a valid extrapolation scheme, however, especially
close to quantum criticality, the rational functions fail to
capture the characteristic behavior.

In these cases, it is advisable to implement the so-called
Dlog-Padé extrapolation, which are applicable to quantities
of definite sign such as energy gaps or spectral weights.
Most importantly, this scheme allows the extraction of critical
exponents, i.e., the extrapolants are suited to describe power-
law behavior.

If one assumes power-law behavior near a critical value λc,
the function F̃ (λ) close to λc is given by

F̃ (λ) ≈
(

1 − λ

λc

)−α

A(λ). (3)

If A(λ) is analytic at λ = λc, we can write

F̃ (λ) ≈
(

1 − λ

λc

)−α

A|λ=λc

(
1 + O

(
1 − λ

λc

))
. (4)

Near the critical value λc, the logarithmic derivative is then
given by

D̃(λ) := d

dλ
ln F̃ (λ) ≈ α

λc − λ
{1 + O(λ − λc)}. (5)

In the case of power-law behavior, the logarithmic derivative
D̃(λ) is expected to exhibit a single pole. In this case, Padé
extrapolations are perfectly suited to approximate D̃(λ). These
extrapolants are defined by the corresponding series D(λ),
which is, due to the derivative, only known up to order m − 1,
i.e., L + M � m − 1. The resulting Dlog-Padé approximants
of F (λ) are then defined by

dP [L/M]F (λ) = exp

(∫ λ

0
P [L/M]D dλ′

)
(6)

and represent physically grounded extrapolants in the case of a
second-order phase transition. The poles of P [L/M]D(λ) can
either indicate a critical value λc or be spurious. In practice,
this is decided essentially by the location of these poles. The
corresponding critical exponent of a pole λc is given by

α ≡ PL(λ)
d
dλ

QM (λ)

∣∣∣∣
λ=λc

. (7)

If the exact value of λc is known, one can obtain better
estimates of the critical exponent by defining

α∗(λ) ≡ (λc − λ)D(λ) ≈ α + O(λ − λc),

where D(λ) is given by Eq. (5). Then

P [L/M]α∗ |λ=λc = α (8)

yields a (biased) estimate of the critical exponent.
It should be noted that Dlog-Padé extrapolants can also

prove to be proper extrapolants if no phase transition is
described. Finally, let us mention that there exist also other
powerful extrapolation schemes for high-order series expan-
sions such as integral approximants, which we do not detail
here.

B. Extrapolating nonperturbative linked-cluster expansions

In contrast to the purely perturbative LCE approaches,
NLCEs yield numerical data sequences for a fixed value of λ.
Since each cluster is treated nonperturbatively, no perturbative
parameter limiting the applicability exists. Yet, only a finite
set of clusters can be treated numerically, which sets a
characteristic length scale L of quantum fluctuations captured.
Consequently, if the physical system has a finite correlation
length, the NLCE converges as long as ξ ∼ L. Specifically
at quantum critical points with ξ → ∞, one must rely on
extrapolation techniques.
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One type of extrapolation of NLCE results relies on an
appropriate scaling inL [8]. A challenge of these scalings is the
assignment of a length scale to a given cluster in more than one
dimension. It is possible to extract universal properties relying
on scaling arguments. It seems, at least in principle, possible
to extract the critical exponent ν in a similar fashion. The other
extrapolation relies on the ε-Wynn and related methods [3,9].
This method does not require a length scale, yet, this approach
does not provide any critical exponents.

In a work of Bernu and Misguich [16], the expansion for
entropy in the inverse-temperature variable is converted to an
expansion for entropy in the internal energy, allowing us to
build the ground-state energy and low-temperature power-law
behavior into the extrapolation of high-temperature expansion.
Our reasoning is in a similar direction.

We suggest a scheme, addressing specifically the power-law
behavior close to quantum criticality. The fundamental idea
behind the approach is a reformulation of the data sequences
as a series expansion in a pseudoparameter, allowing us to
utilize standard series expansion extrapolation techniques to
extract critical properties (see Sec. II A). The reformulation
does not rely on a length scale, yet, the series extrapolation
schemes can be physically motivated. Most importantly, in
addition to critical points, this scheme provides access to
critical exponents.

Let KN,λ denote the physical quantity of interest obtained
via an NLCE calculation including up to N supersites for the
coupling strength λ. Here a supersite represents the building
block of the graph decomposition used in the NLCE, e.g., a
single site, a dimer, or more complicated objects consisting
of more elementary sites. The values KN,λ are, in principle,
expected to converge with increasing N as long as λ < λc.

Next, we introduce the parameter

bN−1,λ = KN,λ − KN−1,λ, (9)

representing the contributions specific to N -site clusters
(K0,λ ≡ 0). We then simply rewrite

KN,λ =
N−1∑
n�0

bn,λ = b0,λ + b1,λ + · · · + bN−1,λ (10)

and define the function

Gλ(τ ) =
m∑

n�0

bn,λτ
n = b0,λ + b1,λτ + · · · + bm,λτ

m (11)

with m = Nmax − 1. The pseudoparameter τ functions as a
substitute for the missing expansion parameter and one aims
at G̃λ(τ = 1) = limn→∞ Gλ(τ = 1). It is therefore possible to
apply the extrapolation techniques presented in Sec. II A for
this high-order series in the parameter τ .

Indeed, the extrapolation techniques applied to data se-
quences in Ref. [3] and Ref. [9] are identical to Padé extra-
polations evaluated at τ = 1. However, here we argue that
Dlog-Padé extrapolations are perfectly suited for this purpose
if the system is close to quantum criticality.

Following Eq. (11), the results of an NLCE expansion can
be interpreted as an expansion in τ about the local cluster limits
τ = 0. But in addition to that, the cases τ = 1 and τ 
= 1 can
be identified with the same physical system in an extended

FIG. 1. Sketch of the anticipated phase diagram in the parameters
λ and τ . The perturbative series expansion is carried out about the
λ = 0 limit on the physical axis (τ = 1). The NLCE expansion in τ

is carried out for an arbitrary but fixed value of λ about the τ = 0
limit. The phase transition from phase 1 to phase 2 can be induced by
increasing λ or τ .

parameter space as visualized in Fig. 1. In NLCEs, the local
cluster limit is closely related to the perturbative limit and the
expansion is carried out starting from a specific phase (see,
for instance, the discussion of low-field NLCEs and high-field
NLCEs in Ref. [8]). Due to the close relation between the
limits τ → 0 and λ → 0, it is suggested that the same phase
transition from phase 1 to phase 2 is induced by increasing
λ or τ , respectively, and no intermediate phases occur in τ .
If this assumption does not hold, the NLCE approach seems
overall problematic.

For values of λ close to criticality, one expects that τc is close
to one, i.e., Gλ(τ ) must be evaluated close to criticality and
it is therefore reasonable to apply Dlog-Padè extrapolations
to obtain approximations of G̃λ(τ = 1). If the extrapolation
yields τc < 1 (τc > 1), one deduces λ > λc (λ < λc). Thus,
a scheme of the form λi+1 = λi

τc,i
allows an iteration to

determine λc.
Most importantly, due to the universality of the critical

exponents, it is possible to extract the critical exponent by
applying Eq. (7) or (8) with Gλ(τ ) =̂ F (λ), at least if λ is
in the vicinity of λc. We stress that this extrapolation scheme
does not require any additional numerical overhead and relies
solely on the data available.

III. APPLICATION

To demonstrate the applicability of the extrapolation tech-
niques, we study the dimerized Heisenberg spin-1/2 chain,
which is depicted in Fig. 2(a), using gCUTs. The Hamiltonian
is given by

H =
∑
〈i,j〉

Si · Sj + λ
∑
〈i,j〉′

Si · Sj , (12)

where the first (second) sum represents the intradimer (in-
terdimer) couplings. The different couplings are illustrated
in Fig. 2(a). The system is gapped for all values λ < 1.
Here, the ground state is adiabatically connected to the
product state of singlets in the limit λ = 0 and the elementary
excitations are so-called massive triplons [17] with total spin
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FIG. 2. (a) Illustration of the (dimerized) Heisenberg chain. The
spins 1/2 are sketched as filled circles and the intradimer (interdimer)
couplings by dark (light) lines. The Hamiltonian (12) is studied
about the dimerized limit λ = 0. The system exhibits the translational
symmetry T̂R. (b) Illustration of a chain segment with N = 3 dimers.
The reflection symmetry R̂1 is exploited during the gCUT calculation.

one, which correspond to dressed triplet excitations. At the
quantum critical point λ = 1, the model is exactly solvable
by the Bethe ansatz [18–20]. Moreover, the corresponding
excitation spectrum is exactly known [21] and is constituted by
gapless fractional spinon excitations carrying a spin 1/2 [22].
This transition is known to be a confinement-deconfinement
transition where the triplon gap closes as (1 − λ)zν with the
critical exponent zν = 2/3 [23,24].

Introducing triplet creation and annihilation operators t̂
†
i,α

(t̂i,α) with magnetization α = {−1,0,1} on dimer i, one can
rewrite the Hamiltonian as [25]

H = 3

4
N + Q̂ + λ

n=2∑
n=−2

Tn, (13)

where N denotes the number of dimers, Q̂ counts the number
of triplets, and Tm (T−m) creates (annihilates) in total m triplets
on neighboring dimers. The explicit local matrix elements are
given in Ref. [25].

Here we apply gCUTs to derive an effective triplon-
conserving model Heff with [Heff,Q̂] = 0 similarly as in
Ref. [12] for the triplon excitations of the antiferromagnetic
two-leg ladder. The low-energy Hamiltonian can be expressed
as

Heff = Ẽ0(λ) +
∑
i,δ,α

ãδ(λ) ˆ̃t†i+δ,α
ˆ̃ti,α + H.c. + · · · (14)

where ˆ̃t†i,α ( ˆ̃ti,α) creates (annihilates) a triplon with magneti-
zation α on dimer i. The “. . .” refer to other quasiparticle
conserving operators corresponding to interactions between
triplons, which we do not consider in this work. Due to the
SU(2) invariance, the hopping elements aδ(λ) are independent
of the triplon flavor α. A Fourier transformation then yields
the one-triplon dispersion ω(k). Here, we are specifically
interested in the one-triplon gap 
 ≡ ω(k = π ) at the quantum
critical point λ = 1.

The gCUT is carried out using chain segments of dimers as
depicted exemplarily in Fig. 2(b) for N = 3. Using a basis trun-
cation similar to Ref. [11] and exploiting the reflection symme-
try R̂1 on each cluster, it is possible to reach graph sizes up to
N = 12 dimers. One therefore restricts the maximal number of

basis states dmax on graphs to a specific value and compares the
results when varying dmax. The gCUT is performed at the criti-
cal point λ = 1, making a proper description of the system very
challenging. On a single cluster, a lot of states merge with the
low-energy spectrum and the distinction between genuine and
defective interactions, as demonstrated in Ref. [12], becomes
difficult. This can be also seen in our calculation where we have
chosen the two values dmax = 150 and dmax = 200 as the max-
imal number of basis states on graphs. The little differences
between both calculations can be attributed to this difficulty.

To perform an extrapolation for the numerical data
sequence up to N = 12 of the one-triplon gap at λ = 1, we
reformulate this data sequence as an expansion in τ yielding
an order m = 11 polynomial of the form Eq. (11). The aim

4 5 6 7 8 9 10

0.95

1

1.05

1.1

3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

(a)

(b)

FIG. 3. (a) Critical points τc of 
λ=1(τ ) obtained via Dlog-Padè
extrapolations of the gCUT results. (b) Critical exponents νz of

λ=1(τ ) obtained via biased Dlog-Padè extrapolations of the gCUT
results. The gCUT calculations has been done for dmax = 150 and
dmax = 20. The dashed grey lines represent the analytical result.
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is to extrapolate the resulting series 
λ(τ ) to infinite order.
We argue that the series should vanish like 
λ ∝ (τc − τ )νz,
making Dlog-Padè extrapolations the method of choice.

The resulting critical values τc obtained via Dlog-Padè
extrapolations of 
λ(τ ) (λ = 1) are shown in Fig. 3(a).
Defective extrapolants are omitted and we consider only the
three families with |L − M| � 1. Since the calculation is per-
formed at the critical point, one expects τc ≈ 1. Indeed, this is
consistent with the convergence of the obtained critical values.

Next, we consider the extraction of the critical exponent
νz. We therefore use biased Dlog-Padè extrapolation and
implement Eq. (8) with τc = 1. The resulting critical exponents
are depicted in Fig. 3(b). Interestingly, our results are in
agreement with the known critical exponent νz = 2/3 [23,24]
within two percent, which is, for a sophisticated quantity such
as a critical exponent, fairly accurate.

IV. CONCLUSIONS

We introduced a scheme to extrapolate the numerical
data sequences, which are typically obtained by NLCEs

and related numerical techniques. While the mapping of the
data sequences to a series in a pseudoparameter changes the
perspective, our approach is specifically designed to describe
systems close to or even at criticality. Most importantly, this
scheme allows us to extract critical exponents.

A transfer to other NLCE schemes, for instance to de-
termine the entanglement entropy [8], is straightforward.
The determination of critical exponents would be specif-
ically interesting for the determination of possibly new
universality classes for systems not described by Landau’s
theory similar to Ref. [26]. Additionally, it is appealing
to extend these considerations to time-dependent proper-
ties calculated via NLCEs [27] or many-body localization
[13].

Moreover, the same line of reasoning can be applied to other
numerical techniques yielding also sequences of numerical
data points with a similar relation between the limits τ → 0
and λ → 0. One example are nonperturbative real-space CUTs
in operator space [28]. Furthermore, it would be interesting to
investigate if the scheme can be also applied successfully to
variational tensor network calculations.
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