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When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has
been found that small quantities (∼100 ppm) of polymer additives such as polyethylene oxide can significantly
increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy
dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical
energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-
thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction
is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or
non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during
drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity
drops.
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When a liquid droplet impacts on a high-temperature
surface, one may observe bouncing back of the droplet off
the surface due to the creation of a thin vapor film between
the drop and surface upon impact. This phenomenon is
known as “dynamic Leidenfrost phenomenon” [1–3], and is
encountered in various industrial applications including spray
cooling, fire suffocation [4], and spray quenching [5]. So far,
research efforts to understand the Leidenfrost phenomenon
were mainly focused on Newtonian fluids such as water [6,7].
However, there is a growing interest in non-Newtonian drops
because of their role in food, cosmetics, and biopharmaceutical
industries, among others. Thus a better understanding of
Leidenfrost drop impact behaviors of both Newtonian and
non-Newtonian fluids and the physical mechanisms behind
them is necessary to improve such industrial processes.

The impact morphology of Leidenfrost drops is relatively
simple: upon impact, the drop spreads over the vapor film
in a short time (about 5 ms); after maximum spreading, two
different outcomes are possible depending on the impact
velocity, the fluid properties, and the surface temperature. For
high impact kinetic energies, the drop will disintegrate into
smaller droplets; otherwise, it will recoil under the action of
surface forces, to minimize the surface energy, and eventually
bounce off the surface if there is sufficient kinetic energy at the
end of the recoil. The drop impact dynamics is characterized by
competition between inertial and capillary forces, represented
by the dimensionless Weber number We = ρv2

zD0/σ , where
ρ is the fluid density, vz denotes the vertical impact velocity,
and D0 denotes the equilibrium drop diameter prior to
impact. However, drops of viscous fluids can dissipate rather
than convert most of their kinetic energy on impact. To
account for viscous effects, one can introduce the Reynolds
number Re = ρvzD0/μ, representing the ratio of inertial to
viscous forces, and the Ohnesorge number Oh = √

We/Re,
representing the ratio of viscous to capillary forces, where
μ is the shear viscosity of the fluid. Rebound is eased by
the vapor film [8], which acts as a lubricant layer, reducing
frictional energy dissipation during both the initial inertial
spreading of the drop and the following recoil. Since the liquid
is not in contact with the surface, bouncing Leidenfrost drops
represent a unique model system to investigate the dynamics

of drop impact independently of wetting and contact angle
hysteresis [9,10]. In particular, the energy dissipation during
the whole impact process and rebound can be easily calculated
as the difference between the gravity potential energies of the
drop when it is released at its initial position above the target
surface and when it reaches the maximum bouncing height.

Recently, it has been found that small quantities
(∼100 ppm) of polymer additives such as polyethylene oxide
can significantly increase the maximum bouncing height of
drops at relatively high Weber numbers (We ∼ 100) [10–12].
It has been suggested that this effect may be due to a reduction
of energy dissipation during the drop retraction and rebound,
resulting in higher mechanical energy for bouncing in the
case of non-Newtonian drops. This is surprising because
the apparent shear viscosity of a polymer solution is higher
than that of the solvent. However, it was also observed
that the retraction velocity of non-Newtonian drops is
of the same order of magnitude as water drops [10]; if there
was a significant reduction of energy dissipation during the
retraction stage, one would expect to see an increased velocity.

In the present work, we show that frictional energy dissi-
pation and non-Newtonian effects do not explain the higher
rebounds observed in polymer solutions, but the bouncing
height differences are likely to be caused by a redistribution of
mechanical energy among the different degrees of freedom of
the drop. Our experimental results enable us to find a reason-
able physical mechanism which explains why low-viscosity
Newtonian drops bounce much lower than high-viscosity
Newtonian or non-Newtonian drops in the Leidenfrost regime.
This is achieved by comparing the virtual maximum bouncing
height (calculated by transforming rotational kinetic energy
into additional potential energy) of low-viscosity Newtonian
drops with the maximum bouncing height of high-viscosity
Newtonian and non-Newtonian drops with the same rheology.
The top view images of the retracting droplet show “fingers”
developing on the rim surrounding the lamella, which may
coalesce to create nonaxisymmetric flow, resulting in a rotation
of low-viscosity Newtonian drops at high impact We numbers.

To disentangle different non-Newtonian effects, model
fluids with different rheological behavior (Newtonian,
shear-thinning, and viscoelastic) were prepared by
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FIG. 1. Flow curves of the model fluids measured with an
MCR302 rheometer (Anton Paar) equipped with a cone-plate ge-
ometry (75 mm diameter; 2◦ angle): ©, 100 ppm XG; �, 80 ppm
PAA, �, 400 ppm XG, and•, 300 ppm PAA. Solid lines represent the
Carreau-Yasuda model fit curves of the average values of measured
XG and PAA data. Dashed lines and dot-dashed lines indicate the
constant viscosities of GLY with infinite-shear viscosity and GLY
with zero-shear viscosity, respectively.

dissolving in deionized water (Barnstead Easypure)
glycerol (ρ = 1250 kg/m3), xanthan gum (ρ=1500 kg/m3;
average MW = 4 × 106 to 12 × 106 Da), and polyacrylamide
(ρ=1130 kg/m3; average MW = 27 × 106 Da), respectively.
While xanthan gum (XG) solutions are purely shear thinning,
polyacrylamide (PAA) solutions exhibit both shear-thinning
and viscoelastic behaviors; to isolate viscoelastic effects,
polymer concentrations were adjusted to obtain fluids with
matching flow curves, as shown in Fig. 1. Flow curves were
fitted with the Carreau-Yasuda model, to obtain the values
of the zero-shear viscosity (μ0) and infinite-shear viscosity
(μ∞):

μCY = μ∞ + (μ0 − μ∞)/[1 + (λCYγ )a]n/a. (1)

Finally, Newtonian glycerol solutions (GLY) were prepared
with viscosities equal to the zero-shear viscosity (μ0) and
infinite-shear viscosity (μ∞) of the corresponding XG and
PAA solutions.

In the case of Leidenfrost drops, the vapor film between the
drop and the surface removes the no-slip boundary condition,
therefore the velocity gradient in the vertical direction is likely
to be very small. As a consequence, the rate of shear will be
small, and the relevant part of the flow curves will be near the
zero-shear rate.

Drops with an equilibrium diameter of ∼3 mm were
generated using a blunt hypodermic (gauge 21, i.d.
0.495 mm) and impacted on a polished aluminum surface, kept
at the temperature of 400 ◦C. Temperature could be controlled
within ±1 ◦C by a PID controller driven by a K thermocouple
placed 1 mm below the point of impact. This temperature
is high enough to keep the vapor film stable and avoid the
formation of secondary droplets [13]. Adjusting the position
of the dispensing needle with a digital height gauge allowed
changing the impact velocity, hence the impact Weber number.
A detailed description of the experimental setup can be found
in [10].

FIG. 2. Maximum bouncing height of the drops normalized with
respect to the equilibrium drop diameter of model fluids as a function
of the impact Weber number: (a) ©, 100 ppm XG; ♦, 80 ppm PAA;
�, GLY with infinite-shear viscosity, and �, GLY with zero-shear
viscosity. (b) ©, 400 ppm XG; ♦, 300 ppm PAA; �, GLY with
infinite-shear viscosity, and �, GLY with zero-shear viscosity.

Figure 2 displays the normalized maximum bouncing
height of XG, PAA, and the matching GLY drops as a function
of the impact Weber number. The maximum bouncing height
(Hmax) denotes the maximum height reached by the drop center
of mass during rebound. Under certain conditions satellite
drop(s) may be created during rebound [see Fig. 3(a)], there-
fore the corresponding reported data in Fig. 2 were corrected
by taking the kinetic energy of satellite drop(s) into account. As
shown in Fig. 2(a), the maximum bouncing heights of 100 ppm
XG, and 80 ppm PAA and GLY with zero-shear viscosity drops
are almost consistent in the considered Weber number range. It
can also be observed that the maximum bouncing height tends
to reach a constant value at high Weber numbers for these three
fluids. However, the maximum bouncing height of GLY with
infinite-shear viscosity drops starts to decrease at a critical
Weber number ∼30. Coincidentally, this feature can also be
seen in a higher concentration case with the same critical
Weber number as shown in Fig. 2(b). One may conclude that
the GLY with infinite-shear viscosity drops (i.e., those with
the lowest viscosity) are subjected to large energy dissipation
during impact, which leads to less potential energy restored
when reaching maximum height.

Interestingly, the bouncing drops of glycerol with infinite-
shear viscosity were observed to “somersault” beyond this
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FIG. 3. (a) Rebound morphology of Leidenfrost drops of different
model fluids at We ≈ 70. The time between two consecutive images
is 5 ms. (b) Spreading and retracting morphology of Leidenfrost
drops of different model fluids at We ≈ 70. The time between two
consecutive images is 1 ms.

critical Weber number (∼30) and no distinct rotational motion
can be observed below this critical Weber number for all
the other types of drops. Figure 3(a) shows the rebound
morphology of Leidenfrost drops of different model fluids at
We ≈ 70. It can be clearly seen that the GLY with infinite-shear
viscosity drops rotate during rebound, while drops of the
other three model fluids exhibit only symmetric oscillations
in the direction of rebound [see Supplemental Material video
1 (rotating drop) and video 2 (nonrotating drop) [14]]. The
dashed red lines parallel to the stretching direction of the
drops in the first row of images in Fig. 3(a) approximately
represent the transient vibrational direction of the bouncing
drops, while the vibrational directions of the other three
types of drops remain almost vertical. Thus, the angular
velocity of the rotating drops can be roughly estimated as the
ratio of the angle of rotation in two images over the time
between the images: ω = �θ/�t . In general, this introduces
an error because the rotation angle is measured in the plane
of the field of view, while the actual rotation occurs in a
three-dimensional space; however, the error can be removed
provided the rotation angle is measured taking reference points
on the axes of an orthogonal Cartesian coordinate system (for
example, the angle corresponding to one revolution, �θ = 2π ,
remains the same for any reciprocal position of the rotation
plane and the field of view). Thus, there is only one case
where the angular velocity is not measurable, that is, when the
rotation is exactly in the plane perpendicular to the field of
view.

The calculated values of mean angular velocities of infinite-
viscosity GLY drops are displayed in Fig. 4 for Weber
numbers beyond ∼30 (critical We). The overall result of
this complex oscillation dynamics is that the drop center of
mass does not move along the same vertical trajectory during
drop rebound, but combines the vertical, ascending movement

FIG. 4. Maximum bouncing height (modified data for GLY with
infinite-shear viscosity) of the drops normalized with respect to the
equilibrium drop diameter of model fluids as a function of the impact
Weber number: (a) ©, 100 ppm XG; ♦, 80 ppm PAA; �, GLY with
infinite-shear viscosity, and �, GLY with zero-shear viscosity. (b) ©,
400 ppm XG; ♦, 300 ppm PAA; �, GLY with infinite-shear viscosity,
and �, GLY with zero-shear viscosity. Error bars represent the mean
square value of the errors on the center of mass height and on the
virtual lengths obtained from Eq. (4).

with a rotational movement of smaller amplitude. The energy
associated with the drop dynamics must be independent of the
reference frame; thus, we estimate this energy in a reference
frame moving with the drop center of mass, as if the drop
was rotating instead of oscillating. In order to estimate the
rotational kinetic energy of the tumbling drops we use the
moment of inertia of a solid cylinder as an approximation,
although the shape of the bouncing drop is changing due to
vibration:

I = m

(
R2

4
+ l2

12

)
= 1

72
πρD5

0

(
1 + 2k3

2k

)
, (2)

where l = kD0 is the cylinder length, measured from images,
and R is the cylinder radius, calculated imposing volume
conservation. By inserting the moment of inertia into Eq. (2)
the rotational kinetic energy can then be expressed as

Erot = 1

2
Iω2 = 1

144
πρω2D5

0

(
1 + 2k3

2k

)
. (3)

The increment in maximum bouncing height (normalized with
respect to the equilibrium drop diameter) if all the rotational
kinetic energy was converted into potential energy can be
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written as

�h

D0
= Erot

mgD0
= D0ω

2

24g

(
1 + 2k3

2k

)
, (4)

where ω denotes the mean angular velocity, and g the gravity
acceleration.

If �h/D0 defined by Eq. (4) is added to the original
maximum bouncing height data of the infinite-viscosity GLY
drops for Weber numbers higher than ∼30, a new graph
which displays the normalized maximum bouncing height of
XG, PAA, and the matching GLY drops with respect to the
equilibrium drop diameter as a function of the impact Weber
number can be plotted (see Fig. 4).

It is important to observe that the measured angular veloc-
ities are in quantitative agreement with the shape oscillation
frequencies reported in [12], which confirms that the drop
rotation in the relative coordinate system corresponds to
nonsymmetric drop oscillations and deformations in a fixed
reference frame.

The fact that the “virtual maximum bouncing height” of
infinite-viscosity GLY drops is consistent with the measured
maximum bouncing height of other types of drops indicates
that the total kinetic energy carried by low-viscosity Newto-
nian drops during retraction is only partly transformed into
rotational kinetic energy rather than dissipated. The small
difference of maximum bouncing height between Newtonian
and non-Newtonian drops in Fig. 4(b) implies that non-
Newtonian effects play little role in the energy distribution.

To investigate the physical mechanism of symmetry break
(i.e., why some drops exhibit symmetric oscillations during
rebound, and others do not), the high-speed camera was
inclined with respect to the impact surface with an angle
of ∼20◦ in order to view the morphology of spreading and
retracting drops from the top [see Fig. 3(b)]. One can observe
distinct fingerlike protrusions on the rim in the case of GLY

with infinite-shear viscosity drops at Weber numbers beyond
∼30, which indicate the onset of the well-known rim instability
eventually leading to splashing. Similar disturbances on the
rim are also observed for drop impact onto a solid surface [15]
and, as is well known, they become more pronounced in the
case of low-viscosity fluids [15,16]. These protrusions grow
during the inertial spreading stage, and form an axisymmetric
crown at maximum spreading; however, at the onset of recoil
one can observe that some of the protrusions coalesce to
create bigger fingers during retraction, while others do not.
This is likely to be caused by another instability of the rim,
which can be modeled as a toroidal ring subject to radial
compression. Thus, the mass distribution in the retracting
droplet becomes nonuniform, which induces asymmetries
both in the drop shape and in the internal flows, and
eventually causes the drop to rotate during rebound (see
Supplemental Material [14] for a video of the generation of
asymmetry).

In conclusion, our work demonstrates that the total kinetic
energy carried by low-viscosity Newtonian drops during
retraction is partly transformed into rotational kinetic energy
rather than dissipated when compared with high-viscosity or
non-Newtonian drops. By comparing the virtual maximum
bouncing height (calculated by transforming rotational kinetic
energy into extra potential energy) and top view images in
the retraction phase of low-viscosity Newtonian drops with
those of high-viscosity Newtonian and non-Newtonian drops,
we showed that the somersault effect is due to the symmetry
break observed during the retraction of low-viscosity drops.

Note added. We recently became aware of a paper where a
very similar approach is used to investigate drop tumbling
on an inclined plate [17]; that paper also includes lattice
Boltzmann simulations showing that tumbling is due to the
internal angular velocity of the fluid, which justifies the
analogy with a tumbling solid body.
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[2] D. Quéré, Annu. Rev. Fluid Mech. 45, 197 (2013).
[3] A.-L. Biance, F. Chevy, C. Clanet, G. Lagubeau, and D. Quéré,
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