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Realization of the Najafi-Golestanian microswimmer
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A paradigmatic microswimmer is the three-linked-spheres model, which follows a minimalist approach for
propulsion by shape shifting. As such, it has been the subject of numerous analytical and numerical studies.
In this Rapid Communication, an experimental three-linked-spheres swimmer is created by self-assembling
ferromagnetic particles at an air-water interface. It is powered by a uniform oscillating magnetic field. A model,
using two harmonic oscillators, reproduces the experimental findings. Because the model remains general, the
same approach could be used to design a variety of efficient microswimmers.
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The development of artificial microswimmers, microscopic
robots that swim in a fluid like sperm cells and motile
bacteria, could cause a leap forward in various fields such as
microfluidics, microsystems, or minimally invasive medicine.
At small scale, the viscous dissipation in a fluid prevails
over inertia, therefore governing the swimming dynamics
of microorganisms and micro-objects. In this regime, flows
are described by the Stokes equations which are linear,
independent of time, and therefore time reversible. However,
in order to propel itself, i.e., to sustain a movement without
the help of an external net force, a body must produce a net
flow in the direction opposite to its motion. A microswimmer
must therefore break the time reversibility of the flow,
for example, by undergoing a nonpalindromic sequence of
deformations [1,2].

Nature provides plenty of examples of efficient microswim-
mers. For instance, microbes use their flagella, cilia [1], or
the deformations of their membrane [3] to propel themselves.
Several strategies of propulsion have been studied experimen-
tally, such as externally actuated flagella [4], rotating helical
tails [5], or propulsion by chemical gradients [6]. However,
a bottom-up approach, looking at the simplest ingredients
needed to generate a microswimmer, can lead to a deeper
understanding of the swimming problem. This approach could
also provide us with designs more suited to technological or
medical applications.

Simple kinematic models based on the idea of nonreciprocal
deformations have been extensively studied. The most well
known are Purcell’s three-link model [2], where three arms are
linked by two hinges around which they can rotate, and Najafi
and Golestanian’s three-linked-spheres model [7], where three
in-line spheres are linked by two arms of varying length. The
former resembles a discrete, simplified flagellum [8]. The latter
moves by shifting mass forward, mimicking ameboids [3] and
recoil swimmers [9]. It has the added advantage of involving
translational degrees of freedom in one dimension, which
allows analytical studies [10].

While these kinematic models offer a convenient basis for
theoretical studies, small-scale experimental implementations
are scarce. Indeed, such models impose the shape of the
swimmer at all times, as if controlled by micromotors and
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actuators, which leads to serious technological limitations. In
the case of the three-linked-spheres model, Leoni et al. repro-
duced the deformation sequence using optical tweezers [11].
However, this has the consequence of pinning the swimmer in
a potential well, meaning that a continued translational motion
is impossible [11].

By contrast, this Rapid Communication examines an
experimental realization of the three-linked-spheres swimmer
by self-assembly, using submillimetric spheres actuated by an
external force. Instead of rigid, extensible arms, this model
is based on harmonic oscillators [12]. The breaking of time
reversibility comes from a spontaneous phase shift between
the oscillators.

Three ferromagnetic steel spheres are placed at an air-water
interface and exposed to magnetic induction fields using triaxis
Helmholtz coils, as seen in Fig. 1. These particles attract due
to the deformation of the air-water interface they induce [13].
In the presence of a vertical induction field Bz, large enough to
counter this attraction, the particles self-assemble [12,14,15].
This process is characterized by the magnetocapillary number
Mc, defined as the ratio between magnetic and capillary
forces [12,15]. The self-assembly can reach two possible
configurations: an equilateral one [16] and a collinear one [15].
The latter is only stable with the addition of a horizontal field
Bx larger than a critical value B∗

x , which is a function of
Mc [15]. A sketch of this configuration is given in Fig. 2(a).
For a typical experimental value of Mc ≈ 0.1, the collinear
state is stable for a relatively narrow range of parameters, as
B∗

x is close to the value for which contact occurs between the
particles.

In the collinear state, particles are arranged similarly to
the model shown in Fig. 2(b). Indeed, the magnetocapillary
interaction between two particles acts as a spring force for
small displacements [12]. Let us consider two oscillators
with two different natural frequencies fa and fb. The in-
teraction between the two outermost spheres is neglected.
This configuration allows one to break time-reversal symmetry
using a single excitation force, without needing independent
forcings [10,17,18] or self-propelled components [19]. For
this, particles of different diameters must be used. Two
spheres of diameter D = 500 μm and one of D = 397 μm
are used throughout this Rapid Communication, but different
combinations of sizes have been tried with similar results. We
therefore have two magnetocapillary bonds: bond “500-500”
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FIG. 1. Photograph of the magnetocapillary swimmer. It is
composed of two steel spheres of diameter 500 μm and one of
397 μm, partially immersed in water. The meniscus around the
spheres allows flotation and generates an attraction.

of elongation ya and spring constant ka; and bond “500-397”
of elongation yb and spring constant kb. The corresponding
natural frequencies are fa = 1.810 Hz and fb = 2.093 Hz.
Rest lengths of the bonds are approximately equal, denoted
L [20]. In the experiments, we typically have L ≈ 2D. If each
particle has a mass m and a viscous damping coefficient μ, we
find μ/m = 14.6 s−1 for 397 μm beads and μ/m = 9.2 s−1

for 500 μm beads. The quality factor Q = πf m/μ associated
with each oscillator is Qa = 1.09 and Qb = 1.89. Note that the
quality factor must be nonzero for at least one of the oscillators,
so that a phase difference that is not a multiple of π can appear
around the resonance frequency.

When a time-dependent horizontal field Bx(t) = Bx,0 +
δB sin(ωt) is added, with ω = 2πf , the interdistances change
periodically, which can generate locomotion. A spatiotemporal
diagram illustrating the dynamics is given in Fig. 2(c). Please
note the phase shift in the elongation of oscillators a and
b. Thanks to this phase shift, locomotion on the surface is
possible. Indeed, despite a reciprocal evolution of Bx(t), the
subsequent dynamics of the beads is nonreciprocal.

Figure 3 shows the swimming speed as a function of the
excitation frequency f . Each point is averaged over three

FIG. 2. (a) In the experiment, three beads experience a combi-
nation of magnetic dipole-dipole interactions and an attraction due
to surface deformation. (b) The model is composed of three aligned
particles linked by two springs of rest length L and spring constants
ka and kb. (c) A spatiotemporal montage shows a nonreciprocal
deformation sequence in the experiment.
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FIG. 3. Experimental swimming speed V is plotted against the
excitation frequency f . Error bars represent the standard deviation
on three experiments. Dashed and dotted lines account for the model
[Eq. (6)] with 397 μm spheres and 500 μm spheres, respectively. The
linear relation between speed V and efficiency W is illustrated in the
inset.

independent experiments, for a total of 27 measurements. For
each measurement, between 20 and 60 oscillation periods are
recorded, depending on f . We have Bz = 4.5 mT, Bx,0 =
2.2 mT, and δB ≈ 0.5 mT. For low frequencies, the speed
is almost equal to zero. As the frequency f approaches
the natural frequency of the oscillators, the speed increases.
A maximum speed of around 12 μm/s is typically reached
between 2 and 3 Hz. Above 3 Hz, the speed drops drastically.
Above 5 Hz, the speed remains close to zero.

Note that if the amplitudes of the oscillating motions are
too high, the swimmer can leave the region of stability of the
collinear state, causing contact between the spheres or reaching
the equilateral state [15]. This limits the possible values of
amplitude δB and, in turn, swimming speed. It is possible,
however, to further increase δB by using a confinement
potential to maintain the swimmer in the collinear state. By
placing the swimmer in a rectangular dish, with a concave
meniscus perpendicular to the swimming direction, we can
obtain such a confinement. Higher speeds up to 76 μm/s were
obtained in this case.

In the kinematic model of Najafi and Golestanian [7], the
swimming speed is given by

V = αAaAbω sin(φa − φb) = αW, (1)

where Aa and Ab are the amplitudes of elongation and φa

and φb are their respective phase relative to the external field.
This means that the swimming direction is determined by
the sign of φa − φb. We can define the swimming efficiency
W = AaAbω sin (φa − φb). The linear relation between V and
the experimentally measured value of W is plotted in the inset
of Fig. 3. The proportionality coefficient α given by a fit on
the experimental data is αexpt. = 8.46 ± 2.44 × 10−5 μm−1.
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FIG. 4. (a) Experimental deformation cycles in the plane (ya,yb),
for four values of the excitation frequency. (b) Deformation cycles
predicted by the model. Units are arbitrary, as the solutions depend
linearly on the excitation amplitude.

According to [10], α can be expressed as a function of bead
diameters and interdistances. Using our experimental parame-
ters, and with L = 10−3 m, we find αth = 6.68 × 10−5 μm−1,
which lies in the 95% confidence interval of the fit. As the
spheres are partially immersed, we can correct the Stokes force
by a factor 0.86 as determined in [12]. By adding this correction
to the expression in [10], we find αth = 7.77 × 10−5 μm−1.

Experimental deformation cycles, in the plane defined by
the elongations ya and yb, are depicted in Fig. 4(a). The four
cycles correspond to four points in Fig. 3. It can be shown that
the area enclosed in the elliptical trajectory of the oscillators in
the (ya,yb) plane is given by πW/ω. It is therefore proportional
to the swimming speed. Cycle A shows that the oscillators are
in phase at frequencies close to zero. This motion is reciprocal,
such that the speed is also close to zero in Fig. 3. The cycles
open up progressively, between 0.5 and 3 Hz, resembling
an ellipse as oscillators get out of phase. This is correlated
with the increase in speed observed in Fig. 3. Around 3 Hz,
oscillators are in quadrature and cycle C is approximately
circular. This is the optimal phase for swimming, but not
necessarily where the maximum speed is reached, as seen in
Fig. 3. Indeed, oscillation amplitudes decrease with increasing
frequency, which in turn decreases W . At higher frequencies,
the oscillators are close to being in phase opposition, as seen
on cycle D. Furthermore, oscillation amplitudes decrease to
zero, with the oscillation of bond 500-397 (yb) decreasing
faster than that of bond 500-500 (ya). This is correlated with a
decrease in speed in Fig. 3.

Let us now investigate the model sketched in Fig. 2(b),
which consists of three particles linked by two linear springs.
For the sake of simplicity, each particle has the same mass
m and experiences the same viscous damping μ. Oscillators
also have the same natural length. The Reynolds number in
the experiment is defined as Re = DAf/ν where ν is the
kinematic viscosity of water. It is typically comprised between
10−3 and 10−1, meaning that the viscous dissipation dominates
over inertia in the flow. However, the inertia of the particles is
not neglected in the model. Indeed, the quality factor of each
oscillator is close to 1, meaning that the oscillators are close
to critical damping [12]. The equations of motion are obtained

via Newton’s law:

mẍ1 + μẋ1 − ka(x2 − x1 − L) = −F sin(ωt),

mẍ2 + μẋ2 + ka(x2 − x1 − L) − kb(x3 − x2 − L) = 0,

mẍ3 + μẋ3 + kb(x3 − x2 − L) = F sin(ωt), (2)

where F sin (ωt) is the external forcing at angular frequency
ω and amplitude F . This forcing is identical for each pair
of beads. As expected, the central particle is not submitted
to any net forcing. Please note that the sum of all internal
and external forces is equal to zero. We will now study the
oscillators in terms of the elongations ya and yb. Defining
t = ωt , �a = ka/mω, �b = kb/mω, and β = μ/2mω, one
has

ya + 2βya + 2�2
aya − �2

byb = sin(t),

yb + 2βyb + 2�2
byb − �2

aya = sin(t), (3)

where overlined symbols are derived by means of t and the
elongations y are expressed in mω2/F units. The whole dy-
namics is described thanks to three dimensionless parameters:
natural frequencies �a and �b, and viscous damping β. Those
equations can be studied in Fourier space by considering
the complex amplitudes of oscillation ŷa = Aa exp(−iφa) and
ŷb = Ab exp(−iφb). The solutions for both oscillators are

ŷa,b = 3�2
b,a − 1 − 2iβ

(
2�2

a − 1 − 2iβ
)(

2�2
b − 1 − 2iβ

) − �2
a�

2
b

. (4)

From this, we can find an expression for amplitude A and
phase φ.

Figure 4(b) shows cycles of deformation in the plane (ya,yb)
for typical parameters encountered in the experiments [12].
Several features of the experimental cycles are recovered.
Indeed, low frequency cycles are similar. Cycles gradually
open up as frequency f is increased. The optimal phase
difference is reached around 3 Hz. However, amplitude
decreases with f , such that speed is maximal between 2
and 3 Hz, as will be shown below. At higher frequencies,
the shape of the cycles are less accurately predicted, as can
been seen on cycles C and D. However, the model considers
three identical spheres and neglects hydrodynamic couplings.
Indeed, around the resonance frequencies, there is typically
a factor 10 between the hydrodynamic coupling and the
restoring force. Both the effect of size on viscous drag and
the presence of hydrodynamic interactions could explain why
phase difference is larger in the experiment, especially at
higher frequencies. It can be shown that the effect of the
hydrodynamic coupling on the phase scales as ω. As observed
experimentally, a nonreciprocal dynamic is observed despite
the reciprocal evolution of the field Bx(t). The toy model
rationalizes this observation: the distinct resonant frequencies
fa and fb provide the spatial symmetry breaking required for
the nonreciprocal deformation.

Let us quantify the velocity in the swimming regime as a
function of the three dimensionless parameters. In the Fourier
formalism, Eq. (1) reads

W = Im(ŷ†
aŷb), (5)
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FIG. 5. Theoretical prediction for efficiency W as a function of
the dimensionless excitation frequencies. Two values of damping β

are shown. The continuous lines represent the undamped resonance
frequencies, while the dotted line represents a sweep of frequency f

in the experiment. It is close, but distinct from the identity line. Two
points corresponding to the cycles A and C of Fig. 4 are placed on
each plot, as β is a function of f .

which leads to the following dimensionless expression:

W = 6β
(
�2

b − �2
a

)

∣∣�2
a�

2
b − [(

2�2
a − 1

) + 2iβ
][(

2�2
b − 1

) + 2iβ
]∣∣2 ,

(6)

with i being the complex unit. Note that this equation is
antisymmetrical with respect to oscillators a and b and,
consequently, leads to zero if both oscillators are identical.
Indeed, in this case, the oscillations would be in phase. Note
also that with no damping, i.e., with β = 0, the velocity is also
zero, as expected. This equation also indicates the direction of
motion, given by the sign of �2

a − �2
b.

Figure 5 shows the effect of �a and �b on the efficiency W
for two values of β. When β is close to zero, two sharp lines
of high efficiency W are observed at �a,b ≈ 1/

√
2 = �res

a,b,
due to the resonance of each oscillator. Speed is zero along the
diagonal line �a = �b, corresponding to identical oscillators.
As β increases, the maximum efficiency decreases roughly
like β−2. The optimal region widens and shifts towards higher
values of �. This comes from the decrease in the oscillation
amplitudes ŷa,b. Two points that correspond to two cycles of
Fig. 4 are shown. They are in a diagonal line that is close,
but distinct to the identity line. Each point is associated with
a different value of β, as β is a function of the excitation
frequency. As can been seen from their position in the graphs,
cycles C and A correspond to an efficient and an inefficient
swimmer, respectively.

The theoretical expression of W is compared to the
experiment in Fig. 3. Experimental parameters are injected
in Eq. (6), leaving no fitting parameter aside from a vertical
scaling. One observes that the model reproduces correctly the

experimental observations, despite the approximations made
in order to reach an analytical expression for W . As the model
considers identical spheres, the predictions for both 397 and
500 μm spheres are shown.

The experiment was conducted with submillimeter-sized
particles, which are on the larger end of the spectrum of low
Reynolds swimming. One could wonder how efficiency W
would be affected by a downscaling. Decreasing the size of the
spheres and the distances between them changes the values of
β as well as the resonance frequencies of the magnetocapillary
bonds [12]. Let us assume that all length scales decrease with
D and that forcing frequency remains close to the resonant
frequencies. Thanks to dimensional analysis, one finds that the
velocity of a magnetocapillary swimmer scales as V ∼ D−1.
This suggests that a downscaled version of the swimmer would
be able to propel itself effectively. However, particles smaller
than 3.4 μm would experience a capillary force weaker than
thermal agitation [12]. The deformation of the liquid surface
around the particles could be enhanced to lower this bound,
for instance through geometrical constraints, by using denser,
more hydrophobic particles or by applying a vertical force
other than gravity on the particles.

In summary, we realized experimentally the Golestanian-
Najafi swimmer using ferromagnetic spheres linked by mag-
netocapillary bonds. Thanks to the dynamics of the bonds, the
deformation is nonreciprocal and therefore induces a motion
of the swimmer along the surface. A linear toy model has been
developed that reproduces the speed profile, as well as the
general behavior of the deformation cycles. More specifically,
we obtained the expression of the swimmer velocity as a
function of the fluid parameters and the resonance frequencies
of the magnetocapillary bonds. The theoretical expression of
the velocity suggests that this swimmer could be efficient at
even smaller scale.

As linear springs are used to model the magnetocapillary
bonds, the model remains general. The same approach could
be applied to various systems, using other restoring forces.
For instance, the same particles could be physically linked by
an elastic material. This would allow experiments in the bulk
and could prove more robust than a self-assembly. The model
uses two different spring constants to generate the breaking
of symmetry under a uniform forcing, which could also be
obtained with materials of different elasticity. Furthermore,
it can be shown that a similar spontaneous phase shift can
be obtained by using different viscous dampings and/or
particle masses. This approach could serve to generate various
assemblies more suited to technological applications requiring
microswimmers, micromanipulators, or micropumps.

This work was financially supported by the University of
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