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Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads
confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation,
the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase
supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that
the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry
between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the
coupling strength, and the corresponding phase diagram can be universally described with a characteristic height
of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows
that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf
bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation
results.
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Nonequilibrium systems may exhibit self-sustained os-
cillations [1], which play important roles in the generation
of periodic rhythms in nature, especially in biological sys-
tems [2]. The oscillations in such systems are collective
behaviors of many coupled elements, and how to generate
spontaneous oscillations through simple couplings is a core
problem in understanding these emergent behaviors. Coupled
dynamics usually rely on purposely designed frustrations or
unidirectional coupling mechanisms to produce stable limit-
cycle oscillations [3–6]. The recently discovered granular
clock [7–14], which shows that bidiperse beads can oscillate
horizontally between connected compartments under vertical
vibrations, provides a physical and macroscopic oscillation
model without the above constraints. However, the granular
clock is triggered by controlling the energy-dependent spatial
distributions of the binary beads rather than tuning the coupling
of the system, which thus sheds little light on coupling-induced
phenomena.

In this Rapid Communication, we numerically show that
density heterogeneity, instead of bidispersity, can drive a
simple monodisperse granular system to oscillate in coupled
columns. The coupling strength of the system can be mono-
tonically tuned, and the oscillation is triggered by the coupling
strength, giving a completely different type of granular clock.
We find that the oscillation occurs only for an intermediate
range of the coupling strength, and an oscillation phase
diagram is mapped out for different total numbers of beads
and vibrational strengths. A scaling relation for the phase
diagram is also found, which indicates that the occurrence of
the oscillation depends critically on some structural matching
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relations of the system. Based on these results, a minimal
two-phase model is proposed. A linear stability analysis
and numerical solutions of the model qualitatively explain
the triggering mechanism and the global dynamics of the
oscillation.

Using an event-driven molecular dynamics method [15,16],
we simulate vertically vibrated two-dimensional columns
of monodisperse spherical beads under gravity (in the y

direction), as shown in Fig. 1. In our simulation, the mass
m and the diameter d of the beads are both set to 1, and the
time unit is

√
d/g, with g being the gravitational acceleration.

The width of each column is W = 10 [17], and the height of the
sidewalls is considered to be infinite. By assuming a sawtooth
vibration with infinitely small amplitude A and infinitely large
frequency f , the bottom plate is assigned an constant upward
velocity vb = Af but is effectively kept stationary [18]. The
coefficient of restitution between the beads is e = 0.9, and the
dissipation in a particle-wall collision is neglected. Typically, a
two-column system is simulated, and the columns are coupled
through a bottom window with tunable height hw in the
separation wall [Fig. 1(c)]. The particles are permitted to pass
through the window if hw is large enough.

Initially, each column is filled with an equal number of
beads, namely, N1(0) = N2(0) = N/2 (subscript from 1 to
2 denotes the column index from left to right), with N =
N1 + N2 being the total number. Each simulation runs with the
window closed (hw = 0) at the beginning. For proper N and vb,
each column may exhibit a Leidenfrost phenomenon [19,20],
i.e., the formation of a density-inverted structure with a
high-density clustering phase (CP) supported from below by a
gaslike low-density phase (GP) [Fig. 1(a)]. The floating cluster
in an uncoupled column may fluctuate as a piston [21] or show
noisy resonances [22]. A similar irregular motion has also been
observed in our simulation, as shown in Fig. 1(b). However,
the irregular motion is relatively small, and the system can still
be considered to be in a steady state. In this equally partitioned
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FIG. 1. Simulation results for N = 500 and vb = 24: (a) Uncou-
pled granular columns with hw = 0; (b) the height of the center of
mass (y1com) and the number of beads (N1) for the left column in (a);
(c) two coupled granular columns with hw = 32; (d) y1com and N1 for
the left column in (c).

steady state (EPSS), the two columns are statistically identical,
and share the same vertical number-density profile n0(y) with
the same characteristic height hinv of the floating cluster. Here,
n0(y) is measured by counting the number of beads (averaged
over time) per unit length in the y direction, and hinv is
evaluated as the height corresponding to the maximum vertical
gradient of n0(y) [20]. After the EPSS is reached, the window
is opened to the preset height of hw. For two coupled columns
with a proper hw [Figs. 1(c) and 1(d)], we find that the system
oscillates fiercely with an amplitude several times larger than
that of the fluctuations in the uncoupled case.

For given N and vb, regular oscillations are observed
only for an intermediate range of hw. As illustrated in
Figs. 2(a)–2(c), a good oscillation is observed at hw = 58 for
N = 500 and vb = 30, but only a fluctuationlike behavior is
observed at smaller hw = 12 or larger hw = 90. Generally, a
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FIG. 2. Coupled dynamics for N = 500, vb = 30: N1(t) for weak
coupling at hw = 12 (a), moderate coupling at hw = 58 (b), and
strong coupling at hw = 90 (c); (d) the first positive peak value C1

of the autocorrelation function of s1(t); the averaged period (e) and
amplitude (f) of s1(t) for different hw , respectively, with relative error
bars in arbitrary units.

larger hw indicates a stronger coupling between the columns,
and the oscillation occurs only in the intermediate coupling
regime. To investigate the coupling effect in triggering the
oscillation, we have performed simulation runs with different
hw for different N and vb. Each run results in a curve such
as that shown in Figs. 2(a)–2(c). We quantify the quality of
the oscillation by calculating the autocorrelation function of
si(t) ≡ Ni(t) − N/2 for each curve,

C(τ ) = 〈si(t)si(t + τ )〉/σ 2, (1)

where σ is the standard deviation of si(t), τ is the time lag,
and 〈·〉 denotes a time average. C(τ ) oscillates for perfect
oscillations but quickly vanishes for pure fluctuations. We
use the first positive peak value C1 of C(τ > 0) to define
the quality of an oscillation. For N = 500 and vb = 30, C1

as a function of hw is shown in Fig. 2(d). C1 first increases
and then decreases, with increasing hw. At about hw = 60,
C1 reaches its maximum of almost 1 for a nearly perfect
oscillation. Empirically, we define an acceptable oscillation
with C1 � 0.75 (above the dotted horizontal line). This gives
a lower boundary hLO = 32 and a upper boundary hHI = 82
(dotted vertical lines) of the range of hw for acceptable
oscillations.

Meanwhile, we perform a Hilbert spectral analysis [2]
on each oscillatory curve, which unambiguously gives the
instantaneous phase φ(t) ∈ [0,2π ) and amplitude A(t) of the
curve regardless of the oscillation quality,

si(t) + iH[si(t)] ≡ Ai(t) exp[iφi(t)], (2)

where H[·] denotes a Hilbert transform and i is the imaginary
unit. Then, the apparent oscillation period can be measured
from φi(t). For N = 500 and vb = 30, the averaged period
and amplitude are respectively shown in Figs. 2(e) and 2(f).
In the regime C1 < 0.75 (hw < hLO or hw > hHI), which is
assumed to be nonoscillatory, the relative errors for both the
period and the amplitude are quite large. Actually, neither the
period nor the amplitude is well defined in this regime. In the
oscillatory regime C1 � 0.75 (hLO � hw � hHI), the period
decreases with increasing hw, while the amplitude behaves
similarly to C1 and reaches a high plateau, which indicates
giant oscillations.

With the empirical criterion C1 � 0.75, an oscillation phase
diagram is obtained for different N and vb, as shown in
Fig. 3(a). Obviously, both hLO and hHI increase with increasing
vb but decrease with increasing N , just as hinv of the EPSS
behaves. Then a simple idea is to replot the phase diagram for
different N and vb with a single parameter, hinv(N,vb). Indeed,
we obtain a collapsed phase diagram with hinv for different N

and vb, as shown in Fig. 3(b). Thus, systems of different N

and vb but with the same hinv would share the same oscillatory
regime hLO < hw < hHI. The fact that hLO and hHI are only
functions of hinv suggests that a structural matching between
the window (hw) and the initial density-inverted structure (hinv)
may play an important role in the oscillatory phenomenon.
Two deductions on this structural matching concept can be
made. First, when hw � hinv, the two columns share the same
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FIG. 3. Oscillation phase diagram: (a) Oscillatory regimes with
lower boundaries shown in open circles and upper boundaries in open
squares, different N is distinguished by colors, and no oscillation is
observed for N = 700, vb < 12 and N = 300, vb > 26 (marked by
vertical solid lines). (b) Collapsed phase diagram in the hw-hinv plane.

gaseous part, and actually merge into a wider nonoscillatory
single column. This explains the collapsed linear relation that
hHI ≈ hinv in Fig. 3(b). Second, only if hw corresponds to
the height of a large enough vertical gradient of n0(y), the
triggering of the oscillation becomes possible (explained in
Fig. 4 and its context). As n0(y) can be roughly determined
by hinv [23], the collapse of hLO in the hw-hinv plane can be
understood. Further side support for the above concept is that
no oscillation has been observed for N = 700, vb < 12 or
N = 300, vb > 26. For large N = 700 and small vb < 12,
n0(y) is highly compressed due to the strong dissipation.
Thus the range from hLO to hHI would be too small to be
observed in our simulation. For small N = 300 and large
vb > 26, the whole system including the floating clusters tends
to be gasified. The vertical gradient of n0(y) would be rather
small, even if a density inversion is still present. As we have
mentioned above, a small density gradient will not help in
triggering an oscillation.

To verify the triggering mechanism of the oscillation, we
inspect in detail the oscillatory process. Four time-sequential
snapshots of one complete oscillation under N = 500, vb =
24, and hw = 32 are shown in Fig. 4. At time t = 290, a larger
floating cluster is formed in column 1 than that in column 2
because of the excessive population (N1 > N2). The cluster

(a) t = 290(a) t = 290(a) t = 290 (b) t = 300(a) t = 290 (b) t = 300(a) t = 290 (b) t = 300 (c) t = 320(a) t = 290 (b) t = 300 (c) t = 320(a) t = 290 (b) t = 300 (c) t = 320 (d) t = 330(a) t = 290 (b) t = 300 (c) t = 320 (d) t = 330
1 2 1 2 1 2 1 2

FIG. 4. Time-sequential snapshots with density analysis for one
oscillation under N = 500, vb = 24, and hw = 32: (a) t = 290; (b)
t = 300; (c) t = 320; (d) t = 330; instantaneous density profiles are
shown in horizontal bars on the left (column 1) or right (column 2)
side of each granular column, and the gray dashed line indicates the
height of the window.
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FIG. 5. Theoretical model and numerical solutions for N = 500
and vb = 24: (a) The simplified density profile (red line) for a
granular column; (b) the net flows between phases considered in our
model; (c) N1(t) for the steady state at hw = 20 and the oscillatory
state at hw = 30; (d) oscillation amplitude and period of N1(t) for
different hw .

in column 1 sinks into the window region due to the lack
of enough support at t = 300, and there the distinct density
difference between the two columns drives a massive flow of
beads from column 1 to 2. The beads that have entered column
2 are heated up by the bottom plate, and push the smaller cluster
on top to a higher place. As dissipation increases dramatically
with the increased population, the beads in column 2 start
to condensate and form an even larger cluster at t = 320.
Meanwhile, a much smaller but higher cluster is formed in
column 1 through an evaporation process due to the decreased
population. The relaxation time needed by both the evaporation
and condensation processes, as well as the large horizontal
density difference, allows enough beads to transfer, which
maintains a nondamping oscillation. After the evaporation and
condensation, the situation becomes similar to that of Fig. 4(a),
except that the two columns have been playing reversed roles.
Then, following the same process, column 2 drives beads back
into 1, as shown in Fig. 4(d). The above oscillation picture is
valid even in the triggering moment, when the two columns
are almost identical. A large vertical gradient in n0(y) around
hw may cause a large horizontal density difference in the
window region under perturbations. Thus any small population
difference between the columns may be amplified through the
above process and the oscillation can be triggered.

To confirm the theoretical feasibility of the structural match-
ing concept and to clarify the critical role played by the density
gradient, we propose a minimal model for the oscillation.
We simplify the density profile ni(y) of any column i by
assuming that both GP and CP, respectively, with a population
of Nig and Nic = Ni − Nig , are homogeneous [Fig. 5(a)].
Both the intercolumn and the intracolumn (between GP and
CP) flows of beads need to be considered. First, the outflow
flux from column i can be measured as Fi = λ

∫ hw

0 ni(y)dy

(λ > 0) [18,24], where λ is a vb-dependent parameter. The
net flux between the columns, F12 = −F21 = F1 − F2, should
mainly describe the transfer of beads from CP in one column to
GP in the other column, as shown in Fig. 4. To emphasize this
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point, we further assume constant number densities, ng and nc,
respectively, for GP and CP. Thus between the columns, only
CP-to-GP flows are allowed due to the density difference,
as illustrated in Fig. 5(b). Employing the constant-density
assumption, Fi can be easily calculated (see the Appendix).
Second, we simply describe the flow between GP and CP
in column i with a rate Ei = −β(Nig − Ns

ig) (β > 0), where
superscript s represents the steady state of the column in the
uncoupled case, and β is another vb-dependent parameter. As
shown in Fig. 5(b), Ei > 0 indicates evaporation and Ei < 0
describes condensation. We assume that Ns

ig(Ni) = Nie
−αNi

(α > 0) [25], with a fitting parameter α. Finally, the dynamics
of the system can be described by the following equations,

Ṅig = Ei + FjiH(Fji), Ṅi = Ṅic + Ṅig = Fji, (3)

where the overdot denotes the derivative with respect to time,
H(·) is the Heaviside step function, i runs from 1 to 2, and
j = 3 − i.

When hw = 0, the coupling term Fij = 0. For an ini-
tial state with N1 = N2 = N/2, the system represented by
Eqs. (3) will obviously stay in an EPSS with fixed Nig =
Ns

ig(N/2) ≡ nghinv. Around the EPSS, ∂F12/∂Nig ∝ S ≡
λ(nc/ng − 1)H(hw − hinv). A linear stability analysis (see the
Appendix) shows that an Andronov-Hopf bifurcation with
respect to β exists for S > 0 but not for S = 0. Though β

cannot be varied in our case, the system is possibly already
in the oscillatory regime (β < S) once the Andronov-Hopf
bifurcation is switched on by S. Thus the triggering dynamics
of the oscillation can be understood as a switchable two-
parameter Andronov-Hopf bifurcation, and the switch S gives
a structural matching boundary hLO = hinv for the oscillation.
Moreover, S ∝ (nc − ng), which also indicates the density
gradient around the height of hinv should be large enough
(S > β) to trigger the oscillation. Since neither hw nor S is
the Andronov-Hopf bifurcation parameter, it is also explained
why no obvious Andronov-Hopf-like triggering behaviors of
oscillation amplitudes and periods are found in our simulation
results.

To numerically solve the model, a close packing density
nc = 2/

√
3W for CP and ng = 0.2W for GP are adopted

according to the simulation results. We keep N and vb fixed,
say, N = 500, vb = 24. Then, α ≈ 0.006 can be obtained
by fitting the data from the simulation of isolated columns,
and this gives hinv ≈ 27.9. We choose β = 0.05, λ = 0.20
to recover similar dynamics to the simulation results. Then
Eqs. (3) can be solved with the Runge-Kutta method. A stable
fixed-point solution corresponding to the EPSS exists for
S = 0 (hw < hinv), and loses its stability to give way to an
oscillation when S becomes positive (hw > hinv), as shown in
Fig. 5(c). Our model also sets an upper boundary hHI ≈ 45
for the oscillation. In the oscillatory regime hLO < hw < hHI,
similar behaviors in the oscillation amplitude and period to the
simulation results [Figs. 2(e) and 2(f)] are found, as shown in
Fig. 5(d). Hence almost all the characteristics of the oscillation
are recovered with this simple model.

In conclusion, a different class of coupling-induced giant
oscillations is discovered in a simple monodisperse granular
system, which indicates that high-energy spatial patterns
such as granular Leidenfrost states may be spontaneously
converted into temporal patterns through mere coupling in

a nonequilibrium system. The triggering mechanism of the
oscillation is confirmed and a switchable Andronov-Hopf
bifurcation is identified by our minimal analytical model.
Controlled by the switch parameter, the dynamics of the
system differs significantly from a typical Andronov-Hopf
bifurcation.

Furthermore, the oscillation is robust in simulation for
different restitution coefficients e or inelastic collision models,
or for a reasonable range of column widths W [26]. Instead
of the underlying mechanism of the clustering behavior, the
density structure proves to be critical to the oscillation, as
also verified by our analytical model. A previous study on a
similar system [27] has reported that, in the absence of external
fields, clustering behaviors due to dissipation only lead to
asymmetric steady states (granular Maxwell demon). In such
a circumstance, the density structure barely stores any potential
energy and cannot provide an efficient feedback mechanism
in the coupled dynamics. Thus no oscillation can be observed.
Similar to the phenomena of granular Maxwell demon [28] and
the bidisperse granular clock [14], our system can be extended
to the case of three or more coupled columns, in which
similar oscillations are observed [26]. Due to the simplicity
and extensibility of our system, the above results may help
in understanding some complex biological oscillations. Our
further study will focus on the experimental observation of
such a monodisperse granular clock.

We thank Yinchang Li for his preliminary work on
the simulation. R.L. thanks C. K. Chan and P. Y. Lai
for useful discussions. This work is supported by National
Natural Science Foundation of China (Grants No. 11404378
and No. 11474326), the MOST 973 Program (Grant No.
2015CB856800), and the Chinese Academy of Sciences
“Strategic Priority Research Program SJ-10” (Grant No.
XDA04020200).

APPENDIX: LINEAR STABILITY ANALYSIS

In this Appendix, we provide the details of the linear
stability analysis of our theoretical model [Eqs. (3)]. All the
analytic calculations and analyses are performed near the
triggering point from an EPSS to an oscillatory state, and thus
only provide information on the lower instability boundary
hw = hLO.

First, we give an explicit form for the flux function Fij in
Eqs. (3). With the constant density assumption for both CP and
GP, the outflux Fi from any column i can be simply calculated
as

Fi = λ[nghw + (nc − ng)(hw − hig)H(hw − hig)], (A1)

where hig = Nig/ng , and nc and ng are, respectively, the linear
number densities of CP and GP (nc > ng).

Since the total number of beads N = N1 + N2 is conserved,
there are only three independent variables in Eqs. (3). By
choosing N1g , N2g , and N1 to be independent, other vari-
ables can be calculated as Nic = Ni − Nig , N2 = N − N1.
In the EPSS, we have N1 = N2 = N/2, Nig = Ns

ig(N/2),
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Nic = N/2 − Ns
ig(N/2), hig = hinv, Fij = 0, and

∂Ei

∂Nj

= εijβR,
∂Ei

∂Njg

= −δijβ, (A2)

∂Fi

∂Nj

= 0,
∂Fi

∂Njg

= −δijS, (A3)

where R = (1 − αN/2)e−αN/2, S = λ(nc/ng − 1)H(hw −
hinv), δij is the Kronecker symbol, and εij = 1 for i = j and
εij = −1 for i 	= j .

For small perturbations δN ≡ (δN1g,δN2g,δN1) in
(N1g,N2g,N1) around an EPSS, Eqs. (3) can be linearized.
According to Eqs. (A2) and (A3), the Jacobian matrix of the
linearized equations of δN reads

M =

⎡
⎢⎣

−β + SH(0) −SH(0) βR

−S[1 − H(0)] −β + S[1 − H(0)] −βR

S −S 0

⎤
⎥⎦.

(A4)

The characteristic polynomial of M is

det(tI − M) = (t + β)[t2 + (β − S)t − 2βRS], (A5)

where I is the identity matrix, and all H(0) terms cancel out.
Obviously, the corresponding eigenvalues are

t1 = −β,

t2,3 = −(β − S) ±
√

(β − S)2 + 8βRS

2
. (A6)

In our case, α = 0.006, N = 500, which gives R < 0.
S = 0 for hw < hinv, and S > 0 for hw � hinv. S can be theo-
retically negative, by assuming nc < ng in the case of a normal
gaseous state without density inversion. Suppose S > 0. When
β = S, the conjugate pair of eigenvalues t2,3 = ±i

√−8βRS

are purely imaginary, and the real eigenvalue t1 is negative.
Thus an Andronov-Hopf bifurcation with respect to β arises
when β goes from β > S (fixed point) to β < S (limit cycle).
However, only real eigenvalues exist and no limit cycle will
appear if S � 0, no matter how β varies. Hence the Andronov-
Hopf bifurcation can be switched on or off by setting S > 0
or S � 0.

As we choose β = 0.05, λ = 0.20, nc/ng ≈ 5.77 in our
numerical solution, β < S is automatically satisfied and the
system is already in the oscillatory regime once the Andronov-
Hopf bifurcation is switched on by S (hw). Essentially, S > β

indicates that density inversion with a large enough vertical
density gradient is a necessary condition for the system to
trigger an oscillation.

[1] A. A. Andronov and C. E. Chaikin, Theory of Oscillations
(Princeton University Press, Princeton, NJ, 1949).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, New York, 2001).

[3] V. In, A. R. Bulsara, A. Palacios, P. Longhini, A. Kho, and J. D.
Neff, Phys. Rev. E 68, 045102(R) (2003).

[4] V. In, A. Palacios, A. R. Bulsara, P. Longhini, A. Kho, J. D.
Neff, S. Baglio, and B. Ando, Phys. Rev. E 73, 066121 (2006).

[5] A. R. Bulsara, V. In, A. Kho, P. Longhini, A. Palacios, W. J.
Rappel, J. Acebron, S. Baglio, and B. Ando, Phys. Rev. E 70,
036103 (2004).

[6] M. Hernandez, V. In, P. Longhini, A. Palacios, A. Bulsara, and
A. Kho, Phys. Lett. A 372, 4381 (2008).

[7] R. Lambiotte, J. M. Salazar, and L. Brenig, Phys. Lett. A 343,
224 (2005).

[8] G. Costantinia, D. Paolotti, C. Cattuto, and U. M. B. Marconi,
Physica (Amsterdam) 347, 411 (2005).

[9] T. Miao, Y. Liu, F. Miao, and Q. Mu, Chin. Sci. Bull. 50, 726
(2005).

[10] S. Viridi, M. Schmick, and M. Markus, Phys. Rev. E 74, 041301
(2006).

[11] M. Hou, H. Tu, R. Liu, Y. Li, K. Lu, P. Y. Lai, and C. K. Chan,
Phys. Rev. Lett. 100, 068001 (2008).

[12] R. Liu, Y. Li, and M. Hou, Phys. Rev. E 79, 052301
(2009).

[13] Y. Li, R. Liu, and M. Hou, Phys. Rev. Lett. 109, 198001
(2012).

[14] S. Hussain, Y. Li, F. Cui, Q. Zhang, E. Pierre, and M. Hou,
Chin. Phys. Lett. 29, 034501 (2012).

[15] D. C. Rapaport, The Art of Molecular Dynamics Simulation
(Cambridge University Press, Cambridge, U.K., 1997).
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