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Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment
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We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke
the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in
which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions
in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of
dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion
couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we
consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell.
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A nematic liquid crystal is a fluid consisting of elongated
molecules that exhibit the tendency to align their major axes
along a common direction. Such a preferred direction is usually
described by a unit vector field n, called the nematic director,
which represents the local average orientation. In the last two
decades there has been an increasing interest in soft matter
physics on nematic shells [1,2]. These shells, consisting of thin
films of nematic liquid crystal deposited on curved substrates,
are of fundamental interest because of their suitability to study
a rich variety of topological problems. Furthermore, nematic
shells provide a promising route for generating colloids with
controllable valence [3–6]. The potential applications of ne-
matic shells and their elegant formalism have produced a vivid
research activity [7–14]. Most of the studies on nematic shells
are addressed to understand the role of the shell geometry on
the alignment of nematics at equilibrium. However, while the
static theory of nematic shells is gradually consolidating in
the literature, a dynamic theory for two-dimensional curved
nematics is still missing.

From the dynamical point of view, liquid crystals are
complex non-Newtonian fluids whose continuum dynamical
theory is the result of the independent contributions by
Ericksen and Leslie. We refer the reader to Refs. [15,16] for an
exhaustive and compendious treatise on the Ericksen-Leslie
theory. The hydrostatic theory of nematics has been first
obtained by Ericksen [17], who reformulated the Frank theory
in the general continuum mechanics framework. Ericksen [17]
showed that the stress tensor is the sum of the usual hydrostatic
isotropic term and a nonsymmetric contribution due to the
anisotropy induced by the presence of a preferred direction.
Subsequently, broadening the constitutive assumptions on
viscous dissipative actions, Leslie [18,19] derived a general dy-
namical theory that accounts for the fluid anisotropy and elastic
stresses resulting from the spatial distortion of the director.
In this model the dissipative dynamics is characterized by six
viscosity coefficients. A few years later, Parodi [20] proved that
Leslie’s theory can be derived from a dissipation potential, and,
exploiting the Onsager reciprocal relations, he was able to find
a linear relation among the Leslie viscosity coefficients which
reduces the number of independent coefficients to five. Very
recently, based on a novel hydrodynamic theory of nematic

liquid crystals [21], Biscari et al. [22] obtained a (nonlinear)
equation relating the Leslie viscosity coefficients.

A different perspective is offered by Sonnet and Virga
[23], who derived the Ericksen-Leslie equations for dissi-
pative fluids with a general microstructure by extending the
variational principle introduced by Rayleigh [24] to describe
dissipative discrete systems to continua. This derivation is
valid for quite general constitutive models for the free-energy
and dissipation densities provided that the latter satisfies appro-
priate invariance requirements. In this Rapid Communication
we shall employ the Lagrange-Rayleigh variational principle
to obtain the hydrodynamic equations for a two-dimensional
(2D) nematics coating a fixed surface. Compared to the usual
three-dimensional (3D) nematics, the number of degrees of
freedom of a nematic shell is reduced as the center of mass
of each molecule can move only on the substrate’s surface
(which involves two degrees of freedom) and the molecular
axis can only rotate rigidly around the normal to the substrate
surface (so that its orientation can be described by a single
scalar parameter). Thus, including the continuity equation in
the system of governing equations, we expect to derive four
scalar equations of motion instead of the six needed for a usual
3D nematics.

Our variational approach is based on two constitutive in-
gredients: the free-energy density and the dissipation function.
The free energy is given by the two-dimensional Frank-like
potential that we derived in Refs. [10,25] and accounts for
the interplay between the shell curvature and the nematic
alignment at equilibrium. On the other hand, we here introduce
an appropriate model for the dissipation function which
depends on objective quantities. The equations of motion
we obtain clearly couple the nematic alignment, the in-plane
(covariant) strain rate tensor and the curvature of the shell.

According to the variational approach proposed in Ref. [16],
the equations of motion can be derived from the Lagrange-
Rayleigh variational principle

δW = δR, (1)

W being the total rate of work and R the Rayleigh dissipation
functional. We refer the reader to the book by Sonnet and Virga
[16] for a detailed discussion on the theoretical foundations and
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the pertinence of this principle. Hereinafter, we shall instead
focus on the most appropriate models for W and R.

We start by writing the total rate of work as the sum of
three different contributions, W = W (a) − ˙K − Ḟ , where
W (a) is the power of the external actions, K is the kinetic
energy, F is the free energy, and the superimposed dot denotes
differentiation with respect to time.

Next, we consider a nematic shell occupying the surface S
with unit normal ν, and denote ∂S the boundary of S and k
the unit outward normal to ∂S in the tangent plane. The power
of the external actions results in the sum of the power of the
external forces acting on the material element of fluid and the
power expended to make the molecules rotate,

W (a) =
∫
S

(b · v + β · ṅ)da +
∫

∂S
(t · v + γ · ṅ)dl, (2)

where b represents the surface density forces and t the traction
on the boundary, while β and γ are generalized body and
contact force densities acting on n.

As the kinetic energy is concerned, besides the usual trans-
lational contribution, there is also a term due to the rotation of
the molecules. Nevertheless, because of the small moment of
inertia of the molecules, the rotational kinetic energy can be
ignored and thus the total kinetic energy reduces to

K = 1

2

∫
S

�v2da, (3)

where � is the mass density per unit of area.
Following Ref. [10], we assume that the free-energy density

w depends on the director field n and its surface gradient ∇sn
so that

F =
∫
S

w(n,∇sn)da. (4)

The surface gradient is the differential operator ∇s · = (∇·)P,
where P = I − ν ⊗ ν denotes the projection operator onto
the plane tangent to S. The trace of surface gradient of
a smooth vector field w gives the surface divergence, i.e.,
divsw = tr ∇sw, while twice the axial vector corresponding
to the skew-symmetric part of ∇sw gives the surface curl of
w, curlsw = −ε∇sw, with ε being the Ricci alternator. The
surface gradient of w is related to the covariant derivative Dsw
through the identity [26]

Dsw = P∇sw = ∇sw − ν ⊗ Lw, (5)

where L = −∇sν is the extrinsic curvature tensor ofS. Finally,
the surface divergence of a second-order tensor field T is the
vector divsT with components Tij,kPjk .

A 3D nematic liquid crystal dissipates energy through the
fluid velocity v and the local average angular velocity of
the molecules. In the Ericksen-Leslie theory the dissipation
functional is a frame-indifferent quadratic form in the strain
rate tensor (i.e., the symmetric part of the velocity gradient)
and the corotational time derivative of n.

Unlike 3D nematics, in nematic shells the symmetric part
of the velocity gradient and the corotational time derivative

FIG. 1. Darboux frame {n,τ ,ν} on the nematic shellS. The vector
v is the velocity of the center of mass of the molecule and θ is the
angle contained by the director and the dashed line of curvature.

of the director are not frame indifferent.1 Instead, the ap-
propriate frame indifferent tensorial quantity, linear in the
velocity gradient, is the in-plane (covariant) strain tensor Ds =
[Dsv + (Dsv)T ]/2, and the appropriate frame-indifferent time
derivative of n is the in-plane corotational time derivative

◦
n = ∂n

∂t
+ (Dsn)v − Wsn, (6)

where Ws = [Dsv − (Dsv)T ]/2 is the in-plane (covariant)
vorticity tensor. The in-plane corotational time derivative
◦
n gives a measure of the average angular velocity of the
molecules contained in the material element relative to
the regional angular velocity in which the material ele-
ment is embedded. In fact, introducing the vorticity vector

� = curlsv/2 and denoting �ν its normal component,
◦
n =

(θ̇ − ω · v − �ν)ν × n, where θ is the angle that the director
forms with one of the principal directions (see Fig. 1) and
ω is the vector which parametrizes the spin connection on S
[25]. The local average angular velocity of the molecular axes
relative to the fluid is then (θ̇ − ω · v − �ν)ν. Consequently,
the dissipation function can be taken of the form

R =
∫
S

ψ(n; Ds ,
◦
n)da, (7)

with ψ representing the density of dissipation. We may

conclude that, since both Ds and
◦
n depend on the covariant

derivative of the velocity gradient (and not on the surface
gradient of v), the extrinsic curvature of the shell does not
affect directly the dissipative process.

The peculiarity of an in-plane liquid crystal flow with a
degenerate anchoring stands in the kinematics. SinceS is fixed,
the admissible velocity field v is tangential. In the sequel, we
shall restrict our attention to inextensible flows, i.e., motions
during which local area is preserved. Within this assumption

1With the aid of (5) one can readily prove that the symmetric
part of the surface gradient of the velocity contains the out-of-plane
term (ν ⊗ Lv + Lv ⊗ ν)/2 which is clearly not objective because
of the nonobjectivity of the velocity. Similarly, the corotational
time derivative contains the nonobjective out-of-plane contribution
(Ln · v)ν/2.
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the velocity is divergence free, namely,

divsv = 0, (8)

and, as a consequence of this constraint and the equation of
continuity, the mass density is constant. Next, since v is a
tangential vector field satisfying the inextensibility constraint
(8), the virtual velocity δv is tangential and divergence free.
On the other hand, since the director is a unit vector lying in the
tangent plane, the infinitesimal variations δṅ allowed by the
constraints point along the conormal vector τ = ν × n, that is,
only virtual rotations about the normal to S are kinematically
admissible.

In line with the Lagrangian spirit, the aforementioned
kinematic restrictions lead to a model with a reduced number of
(scalar) equations compared to the 3D Leslie-Ericksen theory.
The variational principle (1) yields two equations of motion:
the fluid equation,

�as = −∇sς + P divs σ + bs , (9)

where a is the acceleration, σ is the surface stress tensor, ς is
the Lagrange multiplier related to the inextensibility constraint
(8) (having the same physical dimensions as a surface tension),
and the subscript s appended to vector fields denotes their
projections onto the tangent plane; and the director equation,

τ · divs G − gτ + βτ = 0, (10)

where

G =
(

∂w

∂∇sn

)
P, g(c) = ∂w

∂n
, g(d) = ∂ψ

∂
◦
n

, (11)

and gτ and βτ are the components along the conormal vector
τ of the generalized body forces g = g(c) + g(d) and β acting
on the molecules. The fluid equation (9) gives rise to two
scalar equations for the in-plane components of the velocity,
while the director equation (10) is the scalar equation for the
angle θ . The inextensibility constraint (8) closes the system of
governing equations as it allows for the determination of the
Lagrange multiplier ς .

The stress tensor σ is the sum of a constitutive elastic part

σ (c) = −(∇sn)T G, (12a)

and a viscous contribution

σ (d) = 1

2

(
n ⊗ g(d)

s − g(d)
s ⊗ n

) + P
∂ψ

∂Ds

P. (12b)

Notice that σ (c) is the two-dimensional analog of the
Ericksen stress tensor for usual 3D nematics [17]. As in the
3D case, depending on the model for the free-energy density
w, the conservative elastic part of the stress tensor σ (c) may
fail to be symmetric.

The equations of motion are supplemented by the boundary
conditions ts = σk and γτ = τ · Gk on ∂S, where ts is the
tangential traction and γτ is the component of the generalized
boundary force along τ .

Hereinafter, we consider specific models for the free-energy
and dissipation densities. Frank [27] was the first to derive the
most general quadratic model for the free-energy density of
nematic liquid crystals. Its adaptation to nonchiral nematics

confined on curved surfaces is

w = k1

2
(divsn)2 + k2

2
(n · curlsn)2 + k3

2
|n × curlsn|2, (13)

where k1, k2, and k3 are positive constants [10]. Introducing
the geodesic curvatures of the flux lines of n and τ , denoted κn
and κτ , respectively, the normal curvature cn and the geodesic
torsion τn [28], Eq. (13) can be recast in the form

w = k1

2
κ2

τ + k2

2
τ 2

n + k3

2

(
κ2

n + c2
n

)
(14)

that is suited to an elegant and intuitive geometrical interpreta-
tion. Formula (14) highlights the influence of both the extrinsic
and intrinsic curvatures of the substrate on the molecular
alignment. Specifically, the splay term tends to put the flux
lines of τ along geodesics on S, while the term proportional
to κ2

n tries to align n along geodesics. The twist energy favors
instead the alignment of the flux lines of the director along the
lines of curvature on S. Finally, the term proportional to c2

n
tends to align the flux lines of the director along the principal
directions with minimum curvature (in modulus).

From (11) and (13) we obtain

G = k1κτ τ ⊗ τ − k2τnν ⊗ τ

+ k3(κnτ ⊗ n + cnν ⊗ n) (15)

and

g(c)
τ = (k3 − k1)κnκτ + (k2 − k3)cnτn. (16)

Within the one constant approximation (k1 = k2 = k3 ≡ k),
the free-energy density (13) reduces to w = k|∇sn|2/2, G =
k∇sn, and g(c)

τ vanishes.
The dissipation density, derived here by analogy with the

Ericksen-Leslie 3D theory, must obey the mirror symmetry

ψ(n; Ds ,
◦
n) = ψ(−n; Ds ,− ◦

n). Since neither Ds nor
◦
n possess

out-of-plane components, the most general model for ψ ,

quadratic in Ds and
◦
n, is

ψ = 1

2
γ1

◦
n

2 +γ2
◦
n ·Dsn + γ3

2
trD2

s + γ4

2
(n · Dsn)2, (17)

where γi (i = 1,2,3,4) are viscosity coefficients. A compari-
son with the three-dimensional analog (see Ref. [16], p. 176)
shows that the dissipation function for nematic shells (17)
consists of four terms instead of five. Indeed, since Ds is
tangential and traceless, the Hamilton-Cayley theorem implies
that n · D2

s n = 2 trDs .2 Moreover, by virtue of the second law
of thermodynamics, ψ is positive semidefinite, and so the
viscosity coefficients satisfy the inequalities

γ1 � 0, γ3 � 0, γ 2
2 � 2γ1γ3, 2γ3 + γ4 � 0. (18)

We are now able to compute the dissipative quantities that are
involved in the equations of motion. From (12), (11), and (17)
the viscous stress tensor is given by

σ (d) =α1(n · Dsn)n ⊗ n + α2
◦
n ⊗n + α3n⊗ ◦

n

+ α4Ds + α5 skw(n ⊗ Dsn), (19)

2The 2D viscosity coefficients γi (i = 1,2,3,4) can be derived from
the viscosity coefficients of a three-dimensional liquid crystal in the
vanishing thickness limit.
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where

α1 = γ4, 2α2 = γ2 − γ1, 2α3 = γ1 + γ2,

α4 = γ3, α5 = γ2 (20)

are the Leslie viscosity coefficients, and

g(d) = γ1
◦
n +γ2Dsn. (21)

From (20) we deduce the Parodi-like identity α5 = α2 + α3,
while from (18) and (20) we deduce that the Leslie viscosity
coefficients satisfy the inequalities

α2 � α3, α4 � 0, α1 + 2α4 � 0,

(α2 + α3)2 � 2α4(α3 − α2). (22)

To provide a basic understanding of the effect of the surface
curvature on the director alignment, we consider a sample of

nematic liquid crystal flowing on a cylindrical shell of radius r ,
height h, and parametrized through the local coordinates {ϕ,z}.
We assume that the flow is laminar and the velocity of the form
v̄(z) = (v̄z/h)eϕ (v̄ > 0). It can be shown that v̄ is a solution to
the fluid equation whenever the classical viscosity α4 is much
greater then the remaining Leslie viscosity coefficients.

In the simplest possible scenario, the director depends only
on time and so it can be parametrized as n = cos θeϕ + sin θez,

with θ = θ (t). For the sake of illustration, we consider the
free-energy density within the one constant approximation. In
this case the director equation (10) reads

γ1θt + (α3 cos2 θ − α2 sin2 θ )
v̄

h
− k

2r2
sin(2θ ) = 0. (23)

This equation shows that the director alignment is clearly
affected by the extrinsic curvature of the substrate.
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FIG. 2. Alignment angles as functions of the Leslie viscosity parameters α2 and α3 for cylindrical and planar geometries. (a) refers to the
case α3 > 0, (b) to the case α3 < 0, and (c) to α3 = 0. The solid lines represent linearly stable steady solutions, and the dashed lines unstable
alignments.
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It is natural to proceed by looking for steady solutions
(θt = 0) to (23). In doing so, (23) reduces to the trigonometric
equation

ξ

2
sin(2θ ) + α∗

2 sin2 θ − α∗
3 cos2 θ = 0, (24)

where ξ = h2/r2 and α∗
i = αiv̄h/k (i = 2,3). For α2 �= 0,

Eq. (24) admits the solutions

θ± = arctan
−ξ ± √

ξ 2 + 4α∗
2α

∗
3

2α∗
2

, (25)

provided that α∗
2α

∗
3 � −ξ 2/4. As expected, the curvature

promotes the alignment of the director toward the cylinder
generatrices (that are the directions of minimum curvature),
while the flux tends to orient the molecules along the
azimuthal direction. On the contrary, in the planar case
ξ vanishes and so (25) admits a solution if and only if
α∗

2α
∗
3 is non-negative. Consequently, the alignment angle

depends only on the viscosity coefficients ratio α3/α2, θ
(p)
± =

± arctan
√

α3/α2.3

A linear stability analysis reveals that in the cylindrical
case θ− is stable whereas θ+ is unstable. In the planar case,
instead, the stability of the steady solutions θ

(p)
± depends on

the signs of the viscosity coefficients α2 and α3. If α2 and
α3 are both positive, θ

(p)
+ is unstable and θ

(p)
− is stable. On

the contrary, if α2 and α3 are both negative, θ
(p)
+ is stable

and θ
(p)
− is unstable. If α3 = 0, then the only steady solution

θ (p) = 0 is neutrally stable. It is worth noting that the stability
results in the planar and cylindrical cases matching each other
because, as ξ → 0, θ+ → θ

(p)
+ if α2 and α3 are both positive,

θ+ → θ
(p)
− if α2 and α3 are both negative, and θ± → 0 if

α3 = 0.

3It is worth noting that on flat substrates the alignment is not affected
by the 3D or 2D character of the laminar flow considered as |θ (p)

± |
coincides with the flow alignment angle or Leslie angle [15] in a
three-dimensional nematics.

In the special case in which α2 vanishes, in the cylindrical
case the steady solutions to (23) are

θ1 = π

2
, θ2 = arctan

α3v̄r2

kh
, (26)

with θ1 being linearly stable and θ2 linearly unstable. For
the sake of completeness, in the planar case the only steady
solution to (23), θ1 = θ2 = π/2, is neutrally stable. We finally
observe that, as α2 → 0, θ− → θ1 and θ+ → θ2 (see Fig. 2).

In summary, we have obtained a Leslie-Ericksen-like theory
for nematic shells. The geometrical constraint allows not for
only the reduction of the degrees of freedom with respect to
the 3D theory, but reduces also the number of viscosity coef-
ficients. The complete description of the dynamical problem
needs only four scalar equations: two related to the in-plane
fluid motion, one for the determination of the Lagrange
multiplier associated with the inextensibility constraint, and
one for the evolution of the director. However, the main result
is the coupling among the nematic alignment, the fluid flow,
and the intrinsic and extrinsic curvatures of the shell. We have
shown that, unlike the free-energy (Frank-like potential) where
both the intrinsic and the extrinsic curvatures are concerned,
the density of dissipation (Leslie-Ericksen-like functional) in-
volves only covariant quantities as a consequence of the invari-
ance requirements. The interplay among flow, nematic texture,
and curvature is well highlighted in the example provided.

The potential applications of this model are several. For
example, the motion of topological defects (interaction with
the backflow), their enucleation or annihilation, as well as
their stability, may be carried out by means of numerical
simulations employing the equations derived here. In addition,
our model is an attempt towards more complex dynamics. On
one hand, our variational scheme can be easily extended to the
case of active nematics by simply modifying the dissipation
functional R to include the presence of motors. On the
other hand, the model can be easily generalized to take into
account other kinematic descriptors such as, for instance, the
Landau–de Gennes order tensor.
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